Documentation ¶
Overview ¶
Package network provides data structures and utilities to describe Artificial Neural Network and network solvers.
Index ¶
- Variables
- func ActivateModule(module *NNode, a *neatmath.NodeActivatorsFactory) error
- func ActivateNode(node *NNode, a *neatmath.NodeActivatorsFactory) error
- func NeuronTypeName(neuronType NodeNeuronType) string
- func NodeTypeName(nType NodeType) string
- func PrintAllActivationDepthPaths(n *Network, w io.Writer) error
- func PrintPath(w io.Writer, paths [][]graph.Node) (err error)
- type FastControlNode
- type FastModularNetworkSolver
- func (s *FastModularNetworkSolver) Flush() (bool, error)
- func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error)
- func (s *FastModularNetworkSolver) LinkCount() int
- func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error
- func (s *FastModularNetworkSolver) NodeCount() int
- func (s *FastModularNetworkSolver) ReadOutputs() []float64
- func (s *FastModularNetworkSolver) RecursiveSteps() (res bool, err error)
- func (s *FastModularNetworkSolver) Relax(maxSteps int, maxAllowedSignalDelta float64) (relaxed bool, err error)
- func (s *FastModularNetworkSolver) String() string
- type FastNetworkLink
- type Link
- type NNode
- func (n *NNode) AddIncoming(in *NNode, weight float64) *Link
- func (n *NNode) AddOutgoing(out *NNode, weight float64) *Link
- func (n *NNode) Attributes() []encoding.Attribute
- func (n *NNode) ConnectFrom(in *NNode, weight float64) *Link
- func (n *NNode) Depth(d int, maxDepth int) (int, error)
- func (n *NNode) Flushback()
- func (n *NNode) FlushbackCheck() error
- func (n *NNode) GetActiveOut() float64
- func (n *NNode) GetActiveOutTd() float64
- func (n *NNode) ID() int64
- func (n *NNode) IsNeuron() bool
- func (n *NNode) IsSensor() bool
- func (n *NNode) NodeType() NodeType
- func (n *NNode) PrintDebug() string
- func (n *NNode) SensorLoad(load float64) bool
- func (n *NNode) String() string
- type Network
- func (n *Network) Activate() (bool, error)
- func (n *Network) ActivateSteps(maxSteps int) (bool, error)
- func (n *Network) AllNodes() []*NNode
- func (n *Network) BaseNodes() []*NNode
- func (n *Network) Complexity() int
- func (n *Network) ControlNodes() []*NNode
- func (n *Network) Edge(uid, vid int64) graph.Edge
- func (n *Network) FastNetworkSolver() (Solver, error)
- func (n *Network) Flush() (res bool, err error)
- func (n *Network) ForwardSteps(steps int) (res bool, err error)
- func (n *Network) From(id int64) graph.Nodes
- func (n *Network) HasEdgeBetween(xid, yid int64) bool
- func (n *Network) HasEdgeFromTo(uid, vid int64) bool
- func (n *Network) IsControlNode(nid int) bool
- func (n *Network) IsRecurrent(inNode, outNode *NNode, count *int, thresh int) bool
- func (n *Network) LinkCount() int
- func (n *Network) LoadSensors(sensors []float64) error
- func (n *Network) MaxActivationDepth() (int, error)
- func (n *Network) MaxActivationDepthFast(maxDepth int) (int, error)
- func (n *Network) Node(id int64) graph.Node
- func (n *Network) NodeCount() int
- func (n *Network) Nodes() graph.Nodes
- func (n *Network) OutputIsOff() bool
- func (n *Network) PrintActivation() string
- func (n *Network) PrintInput() string
- func (n *Network) ReadOutputs() []float64
- func (n *Network) RecursiveSteps() (bool, error)
- func (n *Network) Relax(_ int, _ float64) (bool, error)
- func (n *Network) To(id int64) graph.Nodes
- func (n *Network) Weight(xid, yid int64) (w float64, ok bool)
- func (n *Network) WeightedEdge(uid, vid int64) graph.WeightedEdge
- type NodeIdGenerator
- type NodeNeuronType
- type NodeType
- type Solver
Constants ¶
This section is empty.
Variables ¶
var ( // ErrNetExceededMaxActivationAttempts The error to be raised when maximal number of network activation attempts exceeded ErrNetExceededMaxActivationAttempts = errors.New("maximal network activation attempts exceeded") // ErrNetUnsupportedSensorsArraySize The error to be raised when unsupported size of the sensor data array provided ErrNetUnsupportedSensorsArraySize = errors.New("the sensors array size is unsupported by network solver") // ErrMaximalNetDepthExceeded The error to be raised when depth of the network exceeds maximal allowed ErrMaximalNetDepthExceeded = errors.New("depth of the network exceeds maximum allowed, fallback to maximal") // ErrZeroActivationStepsRequested the error to be raised when zero activation steps requested ErrZeroActivationStepsRequested = errors.New("zero activation steps requested") )
Functions ¶
func ActivateModule ¶
func ActivateModule(module *NNode, a *neatmath.NodeActivatorsFactory) error
ActivateModule Method to activate neuron module presented by provided node. As a result of execution the activation values of all input nodes will be processed by corresponding activation function and corresponding activation values of output nodes will be set. Will panic if unsupported activation type requested.
func ActivateNode ¶
func ActivateNode(node *NNode, a *neatmath.NodeActivatorsFactory) error
ActivateNode Method to calculate activation for specified neuron node based on it's ActivationType field value. Will return error and set -0.0 activation if unsupported activation type requested.
func NeuronTypeName ¶
func NeuronTypeName(neuronType NodeNeuronType) string
NeuronTypeName Returns human-readable neuron type name for given constant
func NodeTypeName ¶
NodeTypeName Returns human-readable NNode type name for given constant value
func PrintAllActivationDepthPaths ¶
PrintAllActivationDepthPaths is to print all paths used to find the maximal activation depth of the network
Types ¶
type FastControlNode ¶
type FastControlNode struct { // The activation function for control node ActivationType neatmath.NodeActivationType // The indexes of the input nodes InputIndexes []int // The indexes of the output nodes OutputIndexes []int }
FastControlNode The module relay (control node) descriptor for fast network
type FastModularNetworkSolver ¶
type FastModularNetworkSolver struct { // A network id Id int // Is a name of this network */ Name string // contains filtered or unexported fields }
FastModularNetworkSolver is the network solver implementation to be used for large neural networks simulation.
func NewFastModularNetworkSolver ¶
func NewFastModularNetworkSolver(biasNeuronCount, inputNeuronCount, outputNeuronCount, totalNeuronCount int, activationFunctions []neatmath.NodeActivationType, connections []*FastNetworkLink, biasList []float64, modules []*FastControlNode) *FastModularNetworkSolver
NewFastModularNetworkSolver Creates new fast modular network solver
func (*FastModularNetworkSolver) Flush ¶
func (s *FastModularNetworkSolver) Flush() (bool, error)
Flush Flushes network state by removing all current activations. Returns true if network flushed successfully or false in case of error.
func (*FastModularNetworkSolver) ForwardSteps ¶
func (s *FastModularNetworkSolver) ForwardSteps(steps int) (res bool, err error)
ForwardSteps Propagates activation wave through all network nodes provided number of steps in forward direction. Returns true if activation wave passed from all inputs to the outputs.
func (*FastModularNetworkSolver) LinkCount ¶
func (s *FastModularNetworkSolver) LinkCount() int
LinkCount Returns the total number of links between nodes in the network
func (*FastModularNetworkSolver) LoadSensors ¶
func (s *FastModularNetworkSolver) LoadSensors(inputs []float64) error
LoadSensors Set sensors values to the input nodes of the network
func (*FastModularNetworkSolver) NodeCount ¶
func (s *FastModularNetworkSolver) NodeCount() int
NodeCount Returns the total number of neural units in the network
func (*FastModularNetworkSolver) ReadOutputs ¶
func (s *FastModularNetworkSolver) ReadOutputs() []float64
ReadOutputs Read output values from the output nodes of the network
func (*FastModularNetworkSolver) RecursiveSteps ¶
func (s *FastModularNetworkSolver) RecursiveSteps() (res bool, err error)
RecursiveSteps Propagates activation wave through all network nodes provided number of steps by recursion from output nodes Returns true if activation wave passed from all inputs to the outputs. This method is preferred method of network activation when number of forward steps can not be easy calculated and no network modules are set.
func (*FastModularNetworkSolver) Relax ¶
func (s *FastModularNetworkSolver) Relax(maxSteps int, maxAllowedSignalDelta float64) (relaxed bool, err error)
Relax Attempts to relax network given amount of steps until giving up. The network considered relaxed when absolute value of the change at any given point is less than maxAllowedSignalDelta during activation waves propagation. If maxAllowedSignalDelta value is less than or equal to 0, the method will return true without checking for relaxation.
func (*FastModularNetworkSolver) String ¶
func (s *FastModularNetworkSolver) String() string
Stringer
type FastNetworkLink ¶
type FastNetworkLink struct { // The index of source neuron SourceIndex int // The index of target neuron TargetIndex int // The weight of this link Weight float64 // The signal relayed by this link Signal float64 }
FastNetworkLink The connection descriptor for fast network
type Link ¶
type Link struct { // weight of connection ConnectionWeight float64 // NNode inputting into the link InNode *NNode // NNode that the link affects OutNode *NNode // If TRUE the link is recurrent IsRecurrent bool // If TRUE the link is time delayed IsTimeDelayed bool // Points to a trait of parameters for genetic creation Trait *neat.Trait /* ************ LEARNING PARAMETERS *********** */ // The following parameters are for use in neurons that learn through habituation, // sensitization, or Hebbian-type processes Params []float64 }
Link is a connection from one node to another with an associated weight. It can be marked as recurrent.
func NewLink ¶
NewLink Creates new link with specified weight, input and output neurons connected recurrently or not.
func NewLinkCopy ¶
NewLinkCopy The copy constructor to create new link with parameters taken from provided ones and connecting specified nodes
func NewLinkWithTrait ¶
func NewLinkWithTrait(trait *neat.Trait, weight float64, inputNode, outNode *NNode, recurrent bool) *Link
NewLinkWithTrait Creates new Link with specified Trait
func (*Link) Attributes ¶
Attributes returns list of standard attributes associated with the graph edge
func (*Link) IDString ¶
IDString is to get synthetic ID of this link composed of IDs of connected nodes.
func (*Link) IsEqualGenetically ¶
IsEqualGenetically Checks if this link is genetically equal to provided one, i.e. connects nodes with the same IDs and has equal recurrent flag. I.e. if both links represent the same Gene.
func (*Link) ReversedEdge ¶
ReversedEdge returns the edge reversal of the receiver if a reversal is valid for the data type. When a reversal is valid an edge of the same type as the receiver with nodes of the receiver swapped should be returned, otherwise the receiver should be returned unaltered.
type NNode ¶
type NNode struct { // The ID of the node Id int // The type of node activation function (SIGMOID, ...) ActivationType math.NodeActivationType // The neuron type for this node (HIDDEN, INPUT, OUTPUT, BIAS) NeuronType NodeNeuronType // The node's activation value Activation float64 // The number of activations for current node ActivationsCount int32 // The activation sum ActivationSum float64 // The list of all incoming connections Incoming []*Link // The list of all outgoing connections Outgoing []*Link // The trait linked to the node Trait *neat.Trait // Used for Gene decoding by referencing analogue to this node in organism phenotype PhenotypeAnalogue *NNode /* ************ LEARNING PARAMETERS *********** */ // The following parameters are for use in neurons that learn through habituation, // sensitization, or Hebbian-type processes */ Params []float64 // contains filtered or unexported fields }
NNode is either a NEURON or a SENSOR.
- If it's a sensor, it can be loaded with a value for output
- If it's a neuron, it has a list of its incoming input signals ([]*Link is used)
Use an activation count to avoid flushing
func NewNNode ¶
func NewNNode(nodeId int, neuronType NodeNeuronType) *NNode
NewNNode Creates new node with specified ID and neuron type associated (INPUT, HIDDEN, OUTPUT, BIAS)
func NewNNodeCopy ¶
NewNNodeCopy Construct a NNode off another NNode with given trait for genome purposes
func (*NNode) AddIncoming ¶
AddIncoming adds a non-recurrent incoming link to this node. You should use this with caution because this doesn't create full duplex link needed for proper network activation. This method only intended for linking the control nodes. For all other needs use ConnectFrom which properly creates all needed links.
func (*NNode) AddOutgoing ¶
AddOutgoing adds a non-recurrent outgoing link to this node. You should use this with caution because this doesn't create full duplex link needed for proper network activation. This method only intended for linking the control nodes. For all other needs use ConnectFrom which properly creates all needed links.
func (*NNode) Attributes ¶
Attributes returns list of standard attributes associated with the graph node
func (*NNode) ConnectFrom ¶
ConnectFrom is to create link between two nodes. The incoming links of current node and outgoing links of in node would be updated to have reference to the new link.
func (*NNode) Depth ¶
Depth Find the greatest depth starting from this neuron at depth d. If maxDepth > 0 it can be used to stop early in case if very deep network detected
func (*NNode) Flushback ¶
func (n *NNode) Flushback()
Flushback Recursively deactivate backwards through the network
func (*NNode) FlushbackCheck ¶
FlushbackCheck is to verify flushing for debugging
func (*NNode) GetActiveOut ¶
GetActiveOut Returns activation for a current step
func (*NNode) GetActiveOutTd ¶
GetActiveOutTd Returns activation from PREVIOUS time step
func (*NNode) PrintDebug ¶
PrintDebug is to print all fields of the node to the string
func (*NNode) SensorLoad ¶
SensorLoad If the node is a SENSOR, returns TRUE and loads the value
type Network ¶
type Network struct { // A network id Id int // Is a name of this network Name string // NNodes that output from the network Outputs []*NNode // contains filtered or unexported fields }
Network is a collection of all nodes within an organism's phenotype, which effectively defines Neural Network topology. The point of the network is to define a single entity which can evolve or learn on its own, even though it may be part of a larger framework.
func NewModularNetwork ¶
NewModularNetwork Creates new modular network with control nodes
func NewNetwork ¶
NewNetwork Creates new network
func (*Network) ActivateSteps ¶
ActivateSteps Attempts to activate the network given number of steps before returning error. Normally the maxSteps should be equal to the maximal activation depth of the network as returned by MaxActivationDepth() or MaxActivationDepthFast()
func (*Network) AllNodes ¶
AllNodes Returns all network nodes including MIMO control nodes: base nodes + control nodes
func (*Network) BaseNodes ¶
BaseNodes returns all nodes in this network excluding MIMO control nodes
func (*Network) Complexity ¶
Complexity Returns complexity of this network which is sum of nodes count and links count
func (*Network) ControlNodes ¶
ControlNodes returns all control nodes of this network.
func (*Network) Edge ¶
Edge returns the edge from u to v, with IDs uid and vid, if such an edge exists and nil otherwise. The node v must be directly reachable from u as defined by the From method.
func (*Network) FastNetworkSolver ¶
FastNetworkSolver Creates fast network solver based on the architecture of this network. It's primarily aimed for big networks to improve processing speed.
func (*Network) From ¶
From returns all nodes that can be reached directly from the node with the given ID.
From must not return nil.
func (*Network) HasEdgeBetween ¶
HasEdgeBetween returns whether an edge exists between nodes with IDs xid and yid without considering direction.
func (*Network) HasEdgeFromTo ¶
HasEdgeFromTo returns whether an edge exists in the graph from u to v with IDs uid and vid.
func (*Network) IsControlNode ¶
IsControlNode is to check if specified node ID is a control node
func (*Network) IsRecurrent ¶
IsRecurrent This checks a POTENTIAL link between a potential in_node and potential out_node to see if it must be recurrent. Use count and thresh to jump out in the case of an infinite loop.
func (*Network) LoadSensors ¶
func (*Network) MaxActivationDepth ¶
MaxActivationDepth is to find the maximum number of neuron layers to be activated between an output and an input layers.
func (*Network) MaxActivationDepthFast ¶
MaxActivationDepthFast is to find the maximum number of neuron layers to be activated between an output and an input layers. This is the fastest version of depth calculation but only suitable for simple networks. If current network is modular the error will be raised. It is possible to limit the maximal depth value by setting the maxDepth value greater than zero. If network depth exceeds provided maxDepth value this value will be returned along with ErrMaximalNetDepthExceeded to indicate that calculation stopped. If maxDepth is less or equal to zero no maximal depth limitation will be set.
func (*Network) Node ¶
Node returns the node with the given ID if it exists in the graph, and nil otherwise.
func (*Network) OutputIsOff ¶
OutputIsOff If at least one output is not active then return true
func (*Network) PrintActivation ¶
PrintActivation Prints the values of network outputs to the console
func (*Network) PrintInput ¶
PrintInput Print the values of network inputs to the console
func (*Network) ReadOutputs ¶
func (*Network) RecursiveSteps ¶
func (*Network) To ¶
To returns all nodes that can reach directly to the node with the given ID.
To must not return nil.
func (*Network) Weight ¶
Weight returns the weight for the edge between x and y with IDs xid and yid if Edge(xid, yid) returns a non-nil Edge. If x and y are the same node or there is no joining edge between the two nodes the weight value returned is implementation dependent. Weight returns true if an edge exists between x and y or if x and y have the same ID, false otherwise.
func (*Network) WeightedEdge ¶
func (n *Network) WeightedEdge(uid, vid int64) graph.WeightedEdge
WeightedEdge returns the weighted edge from u to v with IDs uid and vid if such an edge exists and nil otherwise. The node v must be directly reachable from u as defined by the From method.
type NodeIdGenerator ¶
type NodeIdGenerator interface { // NextNodeId is to get next unique node ID NextNodeId() int }
NodeIdGenerator definition of the unique IDs generator for network nodes.
type NodeNeuronType ¶
type NodeNeuronType byte
NodeNeuronType NeuronType defines the type of neuron to create
const ( // HiddenNeuron The node is in hidden layer HiddenNeuron NodeNeuronType = iota // InputNeuron The node is in input layer InputNeuron // OutputNeuron The node is in output layer OutputNeuron // BiasNeuron The node is bias BiasNeuron )
These are NNode layer type
func NeuronTypeByName ¶
func NeuronTypeByName(name string) (NodeNeuronType, error)
NeuronTypeByName Returns neuron node type from its name
type Solver ¶
type Solver interface { // ForwardSteps Propagates activation wave through all network nodes provided number of steps in forward direction. // Normally the number of steps should be equal to the activation depth of the network. // Returns true if activation wave passed from all inputs to the output nodes. ForwardSteps(steps int) (bool, error) // RecursiveSteps Propagates activation wave through all network nodes provided number of steps by recursion from output nodes // Returns true if activation wave passed from all inputs to the output nodes. RecursiveSteps() (bool, error) // Relax Attempts to relax network given amount of steps until giving up. The network considered relaxed when absolute // value of the change at any given point is less than maxAllowedSignalDelta during activation waves propagation. // If maxAllowedSignalDelta value is less than or equal to 0, the method will return true without checking for relaxation. Relax(maxSteps int, maxAllowedSignalDelta float64) (bool, error) // Flush Flushes network state by removing all current activations. Returns true if network flushed successfully or // false in case of error. Flush() (bool, error) // LoadSensors Set sensors values to the input nodes of the network LoadSensors(inputs []float64) error // ReadOutputs Read output values from the output nodes of the network ReadOutputs() []float64 // NodeCount Returns the total number of neural units in the network NodeCount() int // LinkCount Returns the total number of links between nodes in the network LinkCount() int }
Solver defines network solver interface, which allows propagation of the activation waves through the underlying network graph.