Documentation ¶
Overview ¶
Package neat implements the NeuroEvolution of Augmenting Topologies (NEAT) method, which can be used to evolve specific Artificial Neural Networks from scratch using genetic algorithms.
Index ¶
Constants ¶
const NumTraitParams = 8
NumTraitParams The number of parameters used in neurons that learn through habituation, sensitization or Hebbian-type processes
Variables ¶
var ( // LogLevel The current log level of the context LogLevel LoggerLevel // DebugLog The logger to output all messages DebugLog = func(message string) { if LogLevel <= LogLevelDebug { _ = loggerDebug.Output(2, message) } } // InfoLog The logger to output messages with Info and up level InfoLog = func(message string) { if LogLevel <= LogLevelInfo { _ = loggerInfo.Output(2, message) } } // WarnLog The logger to output messages with Warn and up level WarnLog = func(message string) { if LogLevel <= LogLevelWarning { _ = loggerWarn.Output(2, message) } } // ErrorLog The logger to output messages with Error and up level ErrorLog = func(message string) { if LogLevel <= LogLevelError { _ = loggerError.Output(2, message) } } )
var ErrNEATOptionsNotFound = errors.New("NEAT options not found in the context")
var (
ErrTraitsParametersCountMismatch = errors.New("traits parameters number mismatch")
)
Functions ¶
Types ¶
type EpochExecutorType ¶
type EpochExecutorType string
EpochExecutorType is to define the type of epoch evaluator
const ( EpochExecutorTypeSequential EpochExecutorType = "sequential" EpochExecutorTypeParallel EpochExecutorType = "parallel" )
func (EpochExecutorType) Validate ¶
func (e EpochExecutorType) Validate() error
Validate is to check is this executor type is supported by algorithm
type GenomeCompatibilityMethod ¶
type GenomeCompatibilityMethod string
GenomeCompatibilityMethod defines the method to calculate genomes compatibility
const ( GenomeCompatibilityMethodLinear GenomeCompatibilityMethod = "linear" GenomeCompatibilityMethodFast GenomeCompatibilityMethod = "fast" )
func (GenomeCompatibilityMethod) Validate ¶
func (g GenomeCompatibilityMethod) Validate() error
Validate is to check if this genome compatibility method supported by algorithm
type LoggerLevel ¶
type LoggerLevel string
LoggerLevel type to specify logger output level
const ( // LogLevelDebug The Debug log level LogLevelDebug LoggerLevel = "debug" // LogLevelInfo The Info log level LogLevelInfo LoggerLevel = "info" // LogLevelWarning The Warning log level LogLevelWarning LoggerLevel = "warn" // LogLevelError The Error log level LogLevelError LoggerLevel = "error" )
type Options ¶
type Options struct { // Probability of mutating a single trait param TraitParamMutProb float64 `yaml:"trait_param_mut_prob"` // Power of mutation on a single trait param TraitMutationPower float64 `yaml:"trait_mutation_power"` // The power of a link weight mutation WeightMutPower float64 `yaml:"weight_mut_power"` // These 3 global coefficients are used to determine the formula for // computing the compatibility between 2 genomes. The formula is: // disjoint_coeff * pdg + excess_coeff * peg + mutdiff_coeff * mdmg. // See the compatibility method in the Genome class for more info // They can be thought of as the importance of disjoint Genes, // excess Genes, and parametric difference between Genes of the // same function, respectively. DisjointCoeff float64 `yaml:"disjoint_coeff"` ExcessCoeff float64 `yaml:"excess_coeff"` MutdiffCoeff float64 `yaml:"mutdiff_coeff"` // This global tells compatibility threshold under which // two Genomes are considered the same species CompatThreshold float64 `yaml:"compat_threshold"` // How much does age matter? Gives a fitness boost up to some young age (niching). // If it is 1, then young species get no fitness boost. AgeSignificance float64 `yaml:"age_significance"` // Percent of average fitness for survival, how many get to reproduce based on survival_thresh * pop_size SurvivalThresh float64 `yaml:"survival_thresh"` // Probabilities of a non-mating reproduction MutateOnlyProb float64 `yaml:"mutate_only_prob"` MutateRandomTraitProb float64 `yaml:"mutate_random_trait_prob"` MutateLinkTraitProb float64 `yaml:"mutate_link_trait_prob"` MutateNodeTraitProb float64 `yaml:"mutate_node_trait_prob"` MutateLinkWeightsProb float64 `yaml:"mutate_link_weights_prob"` MutateToggleEnableProb float64 `yaml:"mutate_toggle_enable_prob"` MutateGeneReenableProb float64 `yaml:"mutate_gene_reenable_prob"` MutateAddNodeProb float64 `yaml:"mutate_add_node_prob"` MutateAddLinkProb float64 `yaml:"mutate_add_link_prob"` // probability of mutation involving disconnected inputs connection MutateConnectSensors float64 `yaml:"mutate_connect_sensors"` // Probabilities of a mate being outside species InterspeciesMateRate float64 `yaml:"interspecies_mate_rate"` MateMultipointProb float64 `yaml:"mate_multipoint_prob"` MateMultipointAvgProb float64 `yaml:"mate_multipoint_avg_prob"` MateSinglepointProb float64 `yaml:"mate_singlepoint_prob"` // Prob. of mating without mutation MateOnlyProb float64 `yaml:"mate_only_prob"` // Probability of forcing selection of ONLY links that are naturally recurrent RecurOnlyProb float64 `yaml:"recur_only_prob"` // Size of population PopSize int `yaml:"pop_size"` // Age when Species starts to be penalized DropOffAge int `yaml:"dropoff_age"` // Number of tries mutate_add_link will attempt to find an open link NewLinkTries int `yaml:"newlink_tries"` // Tells to print population to file every n generations PrintEvery int `yaml:"print_every"` // The number of babies to stolen off to the champions BabiesStolen int `yaml:"babies_stolen"` // The number of runs to average over in an experiment NumRuns int `yaml:"num_runs"` // The number of epochs (generations) to execute training NumGenerations int `yaml:"num_generations"` // The epoch's executor type to apply (sequential, parallel) EpochExecutorType EpochExecutorType `yaml:"epoch_executor"` // The genome compatibility testing method to use (linear, fast (make sense for large genomes)) GenCompatMethod GenomeCompatibilityMethod `yaml:"genome_compat_method"` // The neuron nodes activation functions list to choose from NodeActivators []math.NodeActivationType `yaml:"-"` // The probabilities of selection of the specific node activator function NodeActivatorsProb []float64 `yaml:"-"` // NodeActivatorsWithProbs the list of supported node activation with probability of each one NodeActivatorsWithProbs []string `yaml:"node_activators"` // LogLevel the log output details level LogLevel string `yaml:"log_level"` }
Options The NEAT algorithm options.
func FromContext ¶
FromContext returns the NEAT Options value stored in ctx, if any.
func LoadNeatOptions ¶
LoadNeatOptions Loads NEAT options configuration from provided reader encode in plain text format (.neat)
func LoadYAMLOptions ¶
LoadYAMLOptions is to load NEAT options encoded as YAML file
func ReadNeatOptionsFromFile ¶
ReadNeatOptionsFromFile reads NEAT options from specified configFilePath automatically resolving config file encoding.
func (*Options) NeatContext ¶
NeatContext is to get Context which carries NEAT options inside to be propagated
func (*Options) RandomNodeActivationType ¶
func (c *Options) RandomNodeActivationType() (math.NodeActivationType, error)
RandomNodeActivationType Returns next random node activation type among registered with this context
type Trait ¶
type Trait struct { // The trait ID Id int `yaml:"id"` // The learned trait parameters Params []float64 `yaml:"params"` }
Trait is a group of parameters that can be expressed as a group more than one time. Traits save a genetic algorithm from having to search vast parameter landscapes on every node. Instead, each node can simply point to a trait and those traits can evolve on their own.
func NewTrait ¶
func NewTrait() *Trait
NewTrait is to create empty trait with default parameters number (see: NumTraitParams above)
func NewTraitAvrg ¶
NewTraitAvrg Special Constructor creates a new Trait which is the average of two existing traits passed in
Directories ¶
Path | Synopsis |
---|---|
Package genetics holds data holders and helper utilities used to implement genetic evolution algorithm
|
Package genetics holds data holders and helper utilities used to implement genetic evolution algorithm |
Package math defines standard mathematical primitives used by the NEAT algorithm as well as utility functions
|
Package math defines standard mathematical primitives used by the NEAT algorithm as well as utility functions |
Package network provides data structures and utilities to describe Artificial Neural Network and network solvers.
|
Package network provides data structures and utilities to describe Artificial Neural Network and network solvers. |
formats
Package formats defines the serialization formats which can be used for network graph persistence
|
Package formats defines the serialization formats which can be used for network graph persistence |