Documentation ¶
Index ¶
- Constants
- func Init(logger *zap.Logger) base.IConnector
- type AudioRequest
- type ClassificationResponse
- type Client
- type Connector
- type Conversation
- type ConversationalParameters
- type ConversationalRequest
- type ConversationalResponse
- type ConverstationalInputs
- type Execution
- type FeatureExtractionRequest
- type FillMaskRequest
- type FillMaskResponseEntry
- type ImageRequest
- type ImageSegmentationResponse
- type ImageToTextResponse
- type ObjectBox
- type ObjectDetectionResponse
- type Options
- type QuestionAnsweringInputs
- type QuestionAnsweringRequest
- type QuestionAnsweringResponse
- type SentenceSimilarityInputs
- type SentenceSimilarityRequest
- type SpeechRecognitionResponse
- type SummarizationParameters
- type SummarizationRequest
- type SummarizationResponse
- type TableQuestionAnsweringInputs
- type TableQuestionAnsweringRequest
- type TableQuestionAnsweringResponse
- type TextClassificationRequest
- type TextGenerationParameters
- type TextGenerationRequest
- type TextGenerationResponse
- type TextToImageRequest
- type TextToImageRequestParameters
- type TextToImageResponse
- type TokenClassificationParameters
- type TokenClassificationRequest
- type TokenClassificationResponseEntity
- type TranslationRequest
- type TranslationResponse
- type ZeroShotParameters
- type ZeroShotRequest
- type ZeroShotResponse
Constants ¶
const ( AuthHeaderKey = "Authorization" AuthHeaderPrefix = "Bearer " ContentTypeHeader = "Content-Type" )
Variables ¶
This section is empty.
Functions ¶
Types ¶
type AudioRequest ¶
type AudioRequest struct {
Audio string `json:"audio"`
}
type ClassificationResponse ¶
type Client ¶
type Client struct { APIKey string BaseURL string IsCustomEndpoint bool HTTPClient util.HTTPClient }
Client represents a OpenAI client
func (*Client) GetConnectionState ¶
func (c *Client) GetConnectionState() (pipelinePB.Connector_State, error)
func (*Client) MakeHFAPIRequest ¶
MakeHFAPIRequest builds and sends an HTTP POST request to the given model using the provided JSON body. If the request is successful, returns the response JSON and a nil error. If the request fails, returns an empty slice and an error describing the failure.
type Connector ¶
func (*Connector) CreateExecution ¶
type Conversation ¶
type Conversation struct { // The last outputs from the model in the conversation, after the model has run. GeneratedResponses []string `json:"generated_responses,omitempty"` // The last inputs from the user in the conversation, after the model has run. PastUserInputs []string `json:"past_user_inputs,omitempty"` }
Used with ConversationalResponse
type ConversationalParameters ¶
type ConversationalParameters struct { // (Default: None). Integer to define the minimum length in tokens of the output summary. MinLength *int `json:"min_length,omitempty"` // (Default: None). Integer to define the maximum length in tokens of the output summary. MaxLength *int `json:"max_length,omitempty"` // (Default: None). Integer to define the top tokens considered within the sample operation to create // new text. TopK *int `json:"top_k,omitempty"` // (Default: None). Float to define the tokens that are within the sample` operation of text generation. // Add tokens in the sample for more probable to least probable until the sum of the probabilities is // greater than top_p. TopP *float64 `json:"top_p,omitempty"` // (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, // 0 mens top_k=1, 100.0 is getting closer to uniform probability. Temperature *float64 `json:"temperature,omitempty"` // (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized // to not be picked in successive generation passes. RepetitionPenalty *float64 `json:"repetition_penalty,omitempty"` // (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. // Network can cause some overhead so it will be a soft limit. MaxTime *float64 `json:"maxtime,omitempty"` }
Used with ConversationalRequest
type ConversationalRequest ¶
type ConversationalRequest struct { // (Required) Inputs ConverstationalInputs `json:"inputs"` Parameters ConversationalParameters `json:"parameters,omitempty"` Options Options `json:"options,omitempty"` }
Request structure for the conversational endpoint
type ConversationalResponse ¶
type ConversationalResponse struct { // The answer of the model GeneratedText string `json:"generated_text,omitempty"` // A facility dictionary to send back for the next input (with the new user input addition). Conversation Conversation `json:"conversation,omitempty"` }
Response structure for the conversational endpoint
type ConverstationalInputs ¶
type ConverstationalInputs struct { // (Required) The last input from the user in the conversation. Text string `json:"text"` // A list of strings corresponding to the earlier replies from the model. GeneratedResponses []string `json:"generated_responses,omitempty"` // A list of strings corresponding to the earlier replies from the user. // Should be of the same length of GeneratedResponses. PastUserInputs []string `json:"past_user_inputs,omitempty"` }
Used with ConversationalRequest
type FillMaskRequest ¶
type FillMaskRequest struct { // (Required) a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask) Inputs string `json:"inputs,omitempty"` Options Options `json:"options,omitempty"` }
Request structure for the Fill Mask endpoint
type FillMaskResponseEntry ¶
type FillMaskResponseEntry struct { // The actual sequence of tokens that ran against the model (may contain special tokens) Sequence string `json:"sequence,omitempty"` // The probability for this token. Score float64 `json:"score,omitempty"` // The id of the token Token int `json:"token,omitempty"` // The string representation of the token TokenStr string `json:"token_str,omitempty"` }
Used in the FillMaskResponse struct
type ImageRequest ¶
type ImageRequest struct {
Image string `json:"image"`
}
type ImageSegmentationResponse ¶
type ImageSegmentationResponse struct { // The label for the class (model specific) of a segment. Label string `json:"label,omitempty"` // A float that represents how likely it is that the segment belongs to the given class. Score float64 `json:"score,omitempty"` // A str (base64 str of a single channel black-and-white img) representing the mask of a segment. Mask string `json:"mask,omitempty"` }
type ImageToTextResponse ¶
type ImageToTextResponse struct { // The generated caption GeneratedText string `json:"generated_text"` }
type ObjectDetectionResponse ¶
type ObjectDetectionResponse struct { // The label for the class (model specific) of a detected object. Label string `json:"label,omitempty"` // A float that represents how likely it is that the detected object belongs to the given class. Score float64 `json:"score,omitempty"` // Bounding box of the detected object Box ObjectBox }
type Options ¶
type Options struct { // (Default: false). Boolean to use GPU instead of CPU for inference. // Requires Startup plan at least. UseGPU *bool `json:"use_gpu,omitempty"` // (Default: true). There is a cache layer on the inference API to speedup // requests we have already seen. Most models can use those results as is // as models are deterministic (meaning the results will be the same anyway). // However if you use a non deterministic model, you can set this parameter // to prevent the caching mechanism from being used resulting in a real new query. UseCache *bool `json:"use_cache,omitempty"` // (Default: false) If the model is not ready, wait for it instead of receiving 503. // It limits the number of requests required to get your inference done. It is advised // to only set this flag to true after receiving a 503 error as it will limit hanging // in your application to known places. WaitForModel *bool `json:"wait_for_model,omitempty"` }
type QuestionAnsweringInputs ¶
type QuestionAnsweringRequest ¶
type QuestionAnsweringRequest struct { // (Required) Inputs QuestionAnsweringInputs `json:"inputs"` Options Options `json:"options,omitempty"` }
Request structure for question answering model
type QuestionAnsweringResponse ¶
type QuestionAnsweringResponse struct { // A string that’s the answer within the Context text. Answer string `json:"answer,omitempty"` // A float that represents how likely that the answer is correct. Score float64 `json:"score,omitempty"` // The string index of the start of the answer within Context. Start int `json:"start,omitempty"` // The string index of the stop of the answer within Context. Stop int `json:"stop,omitempty"` }
Response structure for question answering model
type SentenceSimilarityInputs ¶
type SentenceSimilarityInputs struct { // (Required) The string that you wish to compare the other strings with. // This can be a phrase, sentence, or longer passage, depending on the // model being used. SourceSentence string `json:"source_sentence"` // A list of strings which will be compared against the source_sentence. Sentences []string `json:"sentences"` }
type SentenceSimilarityRequest ¶
type SentenceSimilarityRequest struct { // (Required) Inputs for the request. Inputs SentenceSimilarityInputs `json:"inputs"` Options Options `json:"options,omitempty"` }
Request structure for the Sentence Similarity endpoint.
type SpeechRecognitionResponse ¶
type SpeechRecognitionResponse struct { // The string that was recognized within the audio file. Text string `json:"text,omitempty"` }
type SummarizationParameters ¶
type SummarizationParameters struct { // (Default: None). Integer to define the minimum length in tokens of the output summary. MinLength *int `json:"min_length,omitempty"` // (Default: None). Integer to define the maximum length in tokens of the output summary. MaxLength *int `json:"max_length,omitempty"` // (Default: None). Integer to define the top tokens considered within the sample operation to create // new text. TopK *int `json:"top_k,omitempty"` // (Default: None). Float to define the tokens that are within the sample` operation of text generation. // Add tokens in the sample for more probable to least probable until the sum of the probabilities is // greater than top_p. TopP *float64 `json:"top_p,omitempty"` // (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, // 0 mens top_k=1, 100.0 is getting closer to uniform probability. Temperature *float64 `json:"temperature,omitempty"` // (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized // to not be picked in successive generation passes. RepetitionPenalty *float64 `json:"repetitionpenalty,omitempty"` // (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. // Network can cause some overhead so it will be a soft limit. MaxTime *float64 `json:"maxtime,omitempty"` }
Used with SummarizationRequest
type SummarizationRequest ¶
type SummarizationRequest struct { // String to be summarized Inputs string `json:"inputs"` Parameters SummarizationParameters `json:"parameters,omitempty"` Options Options `json:"options,omitempty"` }
Request structure for the summarization endpoint
type SummarizationResponse ¶
type SummarizationResponse struct { // The summarized input string SummaryText string `json:"summary_text,omitempty"` }
Response structure for the summarization endpoint
type TableQuestionAnsweringInputs ¶
type TableQuestionAnsweringInputs struct { // (Required) The query in plain text that you want to ask the table Query string `json:"query"` // (Required) A table of data represented as a dict of list where entries // are headers and the lists are all the values, all lists must // have the same size. Table map[string][]string `json:"table"` }
type TableQuestionAnsweringRequest ¶
type TableQuestionAnsweringRequest struct { Inputs TableQuestionAnsweringInputs `json:"inputs"` Options Options `json:"options,omitempty"` }
Request structure for table question answering model
type TableQuestionAnsweringResponse ¶
type TableQuestionAnsweringResponse struct { // The plaintext answer Answer string `json:"answer,omitempty"` // A list of coordinates of the cells references in the answer Coordinates [][]int `json:"coordinates,omitempty"` // A list of coordinates of the cells contents Cells []string `json:"cells,omitempty"` // The aggregator used to get the answer Aggregator string `json:"aggregator,omitempty"` }
Response structure for table question answering model
type TextClassificationRequest ¶
type TextClassificationRequest struct { //String to be classified Inputs string `json:"inputs"` Options Options `json:"options,omitempty"` }
Request structure for the Text classification endpoint
type TextGenerationParameters ¶
type TextGenerationParameters struct { // (Default: None). Integer to define the top tokens considered within the sample operation to create new text. TopK *int `json:"top_k,omitempty"` // (Default: None). Float to define the tokens that are within the sample` operation of text generation. Add // tokens in the sample for more probable to least probable until the sum of the probabilities is greater // than top_p. TopP *float64 `json:"top_p,omitempty"` // (Default: 1.0). Float (0.0-100.0). The temperature of the sampling operation. 1 means regular sampling, // 0 means top_k=1, 100.0 is getting closer to uniform probability. Temperature *float64 `json:"temperature,omitempty"` // (Default: None). Float (0.0-100.0). The more a token is used within generation the more it is penalized // to not be picked in successive generation passes. RepetitionPenalty *float64 `json:"repetition_penalty,omitempty"` // (Default: None). Int (0-250). The amount of new tokens to be generated, this does not include the input // length it is a estimate of the size of generated text you want. Each new tokens slows down the request, // so look for balance between response times and length of text generated. MaxNewTokens *int `json:"max_new_tokens,omitempty"` // (Default: None). Float (0-120.0). The amount of time in seconds that the query should take maximum. // Network can cause some overhead so it will be a soft limit. Use that in combination with max_new_tokens // for best results. MaxTime *float64 `json:"max_time,omitempty"` // (Default: True). Bool. If set to False, the return results will not contain the original query making it // easier for prompting. ReturnFullText *bool `json:"return_full_text,omitempty"` // (Default: 1). Integer. The number of proposition you want to be returned. NumReturnSequences *int `json:"num_return_sequences,omitempty"` }
type TextGenerationRequest ¶
type TextGenerationRequest struct { // (Required) a string to be generated from Inputs string `json:"inputs"` Parameters TextGenerationParameters `json:"parameters,omitempty"` Options Options `json:"options,omitempty"` }
type TextGenerationResponse ¶
type TextGenerationResponse struct {
GeneratedText string `json:"generated_text,omitempty"`
}
type TextToImageRequest ¶
type TextToImageRequest struct { // The prompt or prompts to guide the image generation. Inputs string `json:"inputs"` Options Options `json:"options,omitempty"` Parameters TextToImageRequestParameters `json:"parameters,omitempty"` }
Request structure for text-to-image model
type TextToImageRequestParameters ¶
type TextToImageRequestParameters struct { // The prompt or prompts not to guide the image generation. // Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). NegativePrompt string `json:"negative_prompt,omitempty"` // The height in pixels of the generated image. Height int64 `json:"height,omitempty"` // The width in pixels of the generated image. Width int64 `json:"width,omitempty"` // The number of denoising steps. More denoising steps usually lead to a higher quality // image at the expense of slower inference. Defaults to 50. NumInferenceSteps int64 `json:"num_inference_steps,omitempty"` // Higher guidance scale encourages to generate images that are closely linked to the text // input, usually at the expense of lower image quality. Defaults to 7.5. GuidanceScale float64 `json:"guidance_scale,omitempty"` }
type TextToImageResponse ¶
type TextToImageResponse struct {
Image string `json:"image"`
}
Request structure for text-to-image model
type TokenClassificationParameters ¶
type TokenClassificationParameters struct { // (Default: simple) AggregationStrategy string `json:"aggregation_strategy,omitempty"` }
type TokenClassificationRequest ¶
type TokenClassificationRequest struct { // (Required) strings to be classified Inputs string `json:"inputs"` Parameters TokenClassificationParameters `json:"parameters,omitempty"` Options Options `json:"options,omitempty"` }
Request structure for the token classification endpoint
type TokenClassificationResponseEntity ¶
type TokenClassificationResponseEntity struct { // The type for the entity being recognized (model specific). EntityGroup string `json:"entity_group,omitempty"` // How likely the entity was recognized. Score float64 `json:"score,omitempty"` // The string that was captured Word string `json:"word,omitempty"` // The offset stringwise where the answer is located. Useful to disambiguate if Entity occurs multiple times. Start int `json:"start,omitempty"` // The offset stringwise where the answer is located. Useful to disambiguate if Entity occurs multiple times. End int `json:"end,omitempty"` }
type TranslationRequest ¶
type TranslationRequest struct { // (Required) a string to be translated in the original languages Inputs string `json:"inputs"` Options Options `json:"options,omitempty"` }
Request structure for the Translation endpoint
type TranslationResponse ¶
type TranslationResponse struct { // The translated Input string TranslationText string `json:"translation_text,omitempty"` }
Response structure from the Translation endpoint
type ZeroShotParameters ¶
type ZeroShotParameters struct { // (Required) A list of strings that are potential classes for inputs. Max 10 candidate_labels, // for more, simply run multiple requests, results are going to be misleading if using // too many candidate_labels anyway. If you want to keep the exact same, you can // simply run multi_label=True and do the scaling on your end. CandidateLabels []string `json:"candidate_labels"` // (Default: false) Boolean that is set to True if classes can overlap MultiLabel *bool `json:"multi_label,omitempty"` }
Used with ZeroShotRequest
type ZeroShotRequest ¶
type ZeroShotRequest struct { // (Required) Inputs string `json:"inputs"` // (Required) Parameters ZeroShotParameters `json:"parameters"` Options Options `json:"options,omitempty"` }
type ZeroShotResponse ¶
type ZeroShotResponse struct { // The string sent as an input Sequence string `json:"sequence,omitempty"` // The list of labels sent in the request, sorted in descending order // by probability that the input corresponds to the to the label. Labels []string `json:"labels,omitempty"` // a list of floats that correspond the the probability of label, in the same order as labels. Scores []float64 `json:"scores,omitempty"` }
Response structure from the Zero-shot classification endpoint.