automlpb

package
v1.14.3 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Dec 12, 2024 License: Apache-2.0 Imports: 15 Imported by: 1

Documentation

Index

Constants

This section is empty.

Variables

View Source
var (
	ClassificationType_name = map[int32]string{
		0: "CLASSIFICATION_TYPE_UNSPECIFIED",
		1: "MULTICLASS",
		2: "MULTILABEL",
	}
	ClassificationType_value = map[string]int32{
		"CLASSIFICATION_TYPE_UNSPECIFIED": 0,
		"MULTICLASS":                      1,
		"MULTILABEL":                      2,
	}
)

Enum value maps for ClassificationType.

View Source
var (
	DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{
		0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED",
		1: "INCH",
		2: "CENTIMETER",
		3: "POINT",
	}
	DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{
		"DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0,
		"INCH":                                1,
		"CENTIMETER":                          2,
		"POINT":                               3,
	}
)

Enum value maps for DocumentDimensions_DocumentDimensionUnit.

View Source
var (
	Document_Layout_TextSegmentType_name = map[int32]string{
		0: "TEXT_SEGMENT_TYPE_UNSPECIFIED",
		1: "TOKEN",
		2: "PARAGRAPH",
		3: "FORM_FIELD",
		4: "FORM_FIELD_NAME",
		5: "FORM_FIELD_CONTENTS",
		6: "TABLE",
		7: "TABLE_HEADER",
		8: "TABLE_ROW",
		9: "TABLE_CELL",
	}
	Document_Layout_TextSegmentType_value = map[string]int32{
		"TEXT_SEGMENT_TYPE_UNSPECIFIED": 0,
		"TOKEN":                         1,
		"PARAGRAPH":                     2,
		"FORM_FIELD":                    3,
		"FORM_FIELD_NAME":               4,
		"FORM_FIELD_CONTENTS":           5,
		"TABLE":                         6,
		"TABLE_HEADER":                  7,
		"TABLE_ROW":                     8,
		"TABLE_CELL":                    9,
	}
)

Enum value maps for Document_Layout_TextSegmentType.

View Source
var (
	TypeCode_name = map[int32]string{
		0:  "TYPE_CODE_UNSPECIFIED",
		3:  "FLOAT64",
		4:  "TIMESTAMP",
		6:  "STRING",
		8:  "ARRAY",
		9:  "STRUCT",
		10: "CATEGORY",
	}
	TypeCode_value = map[string]int32{
		"TYPE_CODE_UNSPECIFIED": 0,
		"FLOAT64":               3,
		"TIMESTAMP":             4,
		"STRING":                6,
		"ARRAY":                 8,
		"STRUCT":                9,
		"CATEGORY":              10,
	}
)

Enum value maps for TypeCode.

View Source
var (
	Model_DeploymentState_name = map[int32]string{
		0: "DEPLOYMENT_STATE_UNSPECIFIED",
		1: "DEPLOYED",
		2: "UNDEPLOYED",
	}
	Model_DeploymentState_value = map[string]int32{
		"DEPLOYMENT_STATE_UNSPECIFIED": 0,
		"DEPLOYED":                     1,
		"UNDEPLOYED":                   2,
	}
)

Enum value maps for Model_DeploymentState.

View Source
var File_google_cloud_automl_v1beta1_annotation_payload_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_annotation_spec_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_classification_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_column_spec_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_data_items_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_data_stats_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_data_types_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_dataset_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_detection_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_geometry_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_image_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_io_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_model_evaluation_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_model_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_operations_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_prediction_service_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_ranges_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_regression_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_service_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_table_spec_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_tables_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_temporal_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_text_extraction_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_text_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_text_segment_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_text_sentiment_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_translation_proto protoreflect.FileDescriptor
View Source
var File_google_cloud_automl_v1beta1_video_proto protoreflect.FileDescriptor

Functions

func RegisterAutoMlServer

func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)

func RegisterPredictionServiceServer

func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)

Types

type AnnotationPayload

type AnnotationPayload struct {

	// Output only . Additional information about the annotation
	// specific to the AutoML domain.
	//
	// Types that are assignable to Detail:
	//
	//	*AnnotationPayload_Translation
	//	*AnnotationPayload_Classification
	//	*AnnotationPayload_ImageObjectDetection
	//	*AnnotationPayload_VideoClassification
	//	*AnnotationPayload_VideoObjectTracking
	//	*AnnotationPayload_TextExtraction
	//	*AnnotationPayload_TextSentiment
	//	*AnnotationPayload_Tables
	Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"`
	// Output only . The resource ID of the annotation spec that
	// this annotation pertains to. The annotation spec comes from either an
	// ancestor dataset, or the dataset that was used to train the model in use.
	AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// Output only. The value of
	// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name]
	// when the model was trained. Because this field returns a value at model
	// training time, for different models trained using the same dataset, the
	// returned value could be different as model owner could update the
	// `display_name` between any two model training.
	DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation information that is relevant to AutoML.

func (*AnnotationPayload) Descriptor deprecated

func (*AnnotationPayload) Descriptor() ([]byte, []int)

Deprecated: Use AnnotationPayload.ProtoReflect.Descriptor instead.

func (*AnnotationPayload) GetAnnotationSpecId

func (x *AnnotationPayload) GetAnnotationSpecId() string

func (*AnnotationPayload) GetClassification

func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation

func (*AnnotationPayload) GetDetail

func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail

func (*AnnotationPayload) GetDisplayName

func (x *AnnotationPayload) GetDisplayName() string

func (*AnnotationPayload) GetImageObjectDetection

func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation

func (*AnnotationPayload) GetTables

func (x *AnnotationPayload) GetTables() *TablesAnnotation

func (*AnnotationPayload) GetTextExtraction

func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation

func (*AnnotationPayload) GetTextSentiment

func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation

func (*AnnotationPayload) GetTranslation

func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation

func (*AnnotationPayload) GetVideoClassification

func (x *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation

func (*AnnotationPayload) GetVideoObjectTracking

func (x *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation

func (*AnnotationPayload) ProtoMessage

func (*AnnotationPayload) ProtoMessage()

func (*AnnotationPayload) ProtoReflect

func (x *AnnotationPayload) ProtoReflect() protoreflect.Message

func (*AnnotationPayload) Reset

func (x *AnnotationPayload) Reset()

func (*AnnotationPayload) String

func (x *AnnotationPayload) String() string

type AnnotationPayload_Classification

type AnnotationPayload_Classification struct {
	// Annotation details for content or image classification.
	Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"`
}

type AnnotationPayload_ImageObjectDetection

type AnnotationPayload_ImageObjectDetection struct {
	// Annotation details for image object detection.
	ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"`
}

type AnnotationPayload_Tables

type AnnotationPayload_Tables struct {
	// Annotation details for Tables.
	Tables *TablesAnnotation `protobuf:"bytes,10,opt,name=tables,proto3,oneof"`
}

type AnnotationPayload_TextExtraction

type AnnotationPayload_TextExtraction struct {
	// Annotation details for text extraction.
	TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"`
}

type AnnotationPayload_TextSentiment

type AnnotationPayload_TextSentiment struct {
	// Annotation details for text sentiment.
	TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"`
}

type AnnotationPayload_Translation

type AnnotationPayload_Translation struct {
	// Annotation details for translation.
	Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"`
}

type AnnotationPayload_VideoClassification

type AnnotationPayload_VideoClassification struct {
	// Annotation details for video classification.
	// Returned for Video Classification predictions.
	VideoClassification *VideoClassificationAnnotation `protobuf:"bytes,9,opt,name=video_classification,json=videoClassification,proto3,oneof"`
}

type AnnotationPayload_VideoObjectTracking

type AnnotationPayload_VideoObjectTracking struct {
	// Annotation details for video object tracking.
	VideoObjectTracking *VideoObjectTrackingAnnotation `protobuf:"bytes,8,opt,name=video_object_tracking,json=videoObjectTracking,proto3,oneof"`
}

type AnnotationSpec

type AnnotationSpec struct {

	// Output only. Resource name of the annotation spec.
	// Form:
	//
	// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The name of the annotation spec to show in the interface. The name can be
	// up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`.
	DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. The number of examples in the parent dataset
	// labeled by the annotation spec.
	ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// contains filtered or unexported fields
}

A definition of an annotation spec.

func (*AnnotationSpec) Descriptor deprecated

func (*AnnotationSpec) Descriptor() ([]byte, []int)

Deprecated: Use AnnotationSpec.ProtoReflect.Descriptor instead.

func (*AnnotationSpec) GetDisplayName

func (x *AnnotationSpec) GetDisplayName() string

func (*AnnotationSpec) GetExampleCount

func (x *AnnotationSpec) GetExampleCount() int32

func (*AnnotationSpec) GetName

func (x *AnnotationSpec) GetName() string

func (*AnnotationSpec) ProtoMessage

func (*AnnotationSpec) ProtoMessage()

func (*AnnotationSpec) ProtoReflect

func (x *AnnotationSpec) ProtoReflect() protoreflect.Message

func (*AnnotationSpec) Reset

func (x *AnnotationSpec) Reset()

func (*AnnotationSpec) String

func (x *AnnotationSpec) String() string

type ArrayStats

type ArrayStats struct {

	// Stats of all the values of all arrays, as if they were a single long
	// series of data. The type depends on the element type of the array.
	MemberStats *DataStats `protobuf:"bytes,2,opt,name=member_stats,json=memberStats,proto3" json:"member_stats,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of ARRAY values.

func (*ArrayStats) Descriptor deprecated

func (*ArrayStats) Descriptor() ([]byte, []int)

Deprecated: Use ArrayStats.ProtoReflect.Descriptor instead.

func (*ArrayStats) GetMemberStats

func (x *ArrayStats) GetMemberStats() *DataStats

func (*ArrayStats) ProtoMessage

func (*ArrayStats) ProtoMessage()

func (*ArrayStats) ProtoReflect

func (x *ArrayStats) ProtoReflect() protoreflect.Message

func (*ArrayStats) Reset

func (x *ArrayStats) Reset()

func (*ArrayStats) String

func (x *ArrayStats) String() string

type AutoMlClient

type AutoMlClient interface {
	// Creates a dataset.
	CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Gets a dataset.
	GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Lists datasets in a project.
	ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error)
	// Updates a dataset.
	UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Deletes a dataset and all of its contents.
	// Returns empty response in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Imports data into a dataset.
	// For Tables this method can only be called on an empty Dataset.
	//
	// For Tables:
	// *   A
	// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
	//
	//	parameter must be explicitly set.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports dataset's data to the provided output location.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets an annotation spec.
	GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error)
	// Gets a table spec.
	GetTableSpec(ctx context.Context, in *GetTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
	// Lists table specs in a dataset.
	ListTableSpecs(ctx context.Context, in *ListTableSpecsRequest, opts ...grpc.CallOption) (*ListTableSpecsResponse, error)
	// Updates a table spec.
	UpdateTableSpec(ctx context.Context, in *UpdateTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
	// Gets a column spec.
	GetColumnSpec(ctx context.Context, in *GetColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
	// Lists column specs in a table spec.
	ListColumnSpecs(ctx context.Context, in *ListColumnSpecsRequest, opts ...grpc.CallOption) (*ListColumnSpecsResponse, error)
	// Updates a column spec.
	UpdateColumnSpec(ctx context.Context, in *UpdateColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
	// Creates a model.
	// Returns a Model in the [response][google.longrunning.Operation.response]
	// field when it completes.
	// When you create a model, several model evaluations are created for it:
	// a global evaluation, and one evaluation for each annotation spec.
	CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets a model.
	GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error)
	// Lists models.
	ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error)
	// Deletes a model.
	// Returns `google.protobuf.Empty` in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Deploys a model. If a model is already deployed, deploying it with the
	// same parameters has no effect. Deploying with different parametrs
	// (as e.g. changing
	//
	// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
	//
	//	will reset the deployment state without pausing the model's availability.
	//
	// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
	// deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Undeploys a model. If the model is not deployed this method has no effect.
	//
	// Only applicable for Text Classification, Image Object Detection and Tables;
	// all other domains manage deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports a trained, "export-able", model to a user specified Google Cloud
	// Storage location. A model is considered export-able if and only if it has
	// an export format defined for it in
	//
	// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports examples on which the model was evaluated (i.e. which were in the
	// TEST set of the dataset the model was created from), together with their
	// ground truth annotations and the annotations created (predicted) by the
	// model.
	// The examples, ground truth and predictions are exported in the state
	// they were at the moment the model was evaluated.
	//
	// This export is available only for 30 days since the model evaluation is
	// created.
	//
	// Currently only available for Tables.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportEvaluatedExamples(ctx context.Context, in *ExportEvaluatedExamplesRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets a model evaluation.
	GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error)
	// Lists model evaluations.
	ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error)
}

AutoMlClient is the client API for AutoMl service.

For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.

func NewAutoMlClient

func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient

type AutoMlServer

type AutoMlServer interface {
	// Creates a dataset.
	CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error)
	// Gets a dataset.
	GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error)
	// Lists datasets in a project.
	ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error)
	// Updates a dataset.
	UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error)
	// Deletes a dataset and all of its contents.
	// Returns empty response in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error)
	// Imports data into a dataset.
	// For Tables this method can only be called on an empty Dataset.
	//
	// For Tables:
	// *   A
	// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
	//
	//	parameter must be explicitly set.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error)
	// Exports dataset's data to the provided output location.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error)
	// Gets an annotation spec.
	GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error)
	// Gets a table spec.
	GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error)
	// Lists table specs in a dataset.
	ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
	// Updates a table spec.
	UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error)
	// Gets a column spec.
	GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error)
	// Lists column specs in a table spec.
	ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
	// Updates a column spec.
	UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error)
	// Creates a model.
	// Returns a Model in the [response][google.longrunning.Operation.response]
	// field when it completes.
	// When you create a model, several model evaluations are created for it:
	// a global evaluation, and one evaluation for each annotation spec.
	CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error)
	// Gets a model.
	GetModel(context.Context, *GetModelRequest) (*Model, error)
	// Lists models.
	ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
	// Deletes a model.
	// Returns `google.protobuf.Empty` in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error)
	// Deploys a model. If a model is already deployed, deploying it with the
	// same parameters has no effect. Deploying with different parametrs
	// (as e.g. changing
	//
	// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
	//
	//	will reset the deployment state without pausing the model's availability.
	//
	// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
	// deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error)
	// Undeploys a model. If the model is not deployed this method has no effect.
	//
	// Only applicable for Text Classification, Image Object Detection and Tables;
	// all other domains manage deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error)
	// Exports a trained, "export-able", model to a user specified Google Cloud
	// Storage location. A model is considered export-able if and only if it has
	// an export format defined for it in
	//
	// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error)
	// Exports examples on which the model was evaluated (i.e. which were in the
	// TEST set of the dataset the model was created from), together with their
	// ground truth annotations and the annotations created (predicted) by the
	// model.
	// The examples, ground truth and predictions are exported in the state
	// they were at the moment the model was evaluated.
	//
	// This export is available only for 30 days since the model evaluation is
	// created.
	//
	// Currently only available for Tables.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunningpb.Operation, error)
	// Gets a model evaluation.
	GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error)
	// Lists model evaluations.
	ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
}

AutoMlServer is the server API for AutoMl service.

type BatchPredictInputConfig

type BatchPredictInputConfig struct {

	// Required. The source of the input.
	//
	// Types that are assignable to Source:
	//
	//	*BatchPredictInputConfig_GcsSource
	//	*BatchPredictInputConfig_BigquerySource
	Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"`
	// contains filtered or unexported fields
}

Input configuration for BatchPredict Action.

The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

  • For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf

  • For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf

  • For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }

  • For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or

[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].

GCS case:
  CSV file(s), each by itself 10GB or smaller and total size must be
  100GB or smaller, where first file must have a header containing
  column names. If the first row of a subsequent file is the same as
  the header, then it is also treated as a header. All other rows
  contain values for the corresponding columns.
  The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows, i.e. the CSV
lines, will be attempted. For FORECASTING

[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

all columns having

[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]

type will be ignored.
First three sample rows of a CSV file:
  "First Name","Last Name","Dob","Addresses"

"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"

"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}

BigQuery case:
  An URI of a BigQuery table. The user data size of the BigQuery
  table must be 100GB or smaller.
  The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows of the table
will be attempted. For FORECASTING

[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

all columns having

[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]

         type will be ignored.

Definitions:
GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
               double quotes ("")
TIME_SEGMENT_START = TIME_OFFSET
                     Expresses a beginning, inclusive, of a time segment
                     within an
                     example that has a time dimension (e.g. video).
TIME_SEGMENT_END = TIME_OFFSET
                   Expresses an end, exclusive, of a time segment within
                   an example that has a time dimension (e.g. video).
TIME_OFFSET = A number of seconds as measured from the start of an
              example (e.g. video). Fractions are allowed, up to a
              microsecond precision. "inf" is allowed and it means the end
              of the example.

Errors:
If any of the provided CSV files can't be parsed or if more than certain
percent of CSV rows cannot be processed then the operation fails and
prediction does not happen. Regardless of overall success or failure the
per-row failures, up to a certain count cap, will be listed in
Operation.metadata.partial_failures.

func (*BatchPredictInputConfig) Descriptor deprecated

func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictInputConfig.ProtoReflect.Descriptor instead.

func (*BatchPredictInputConfig) GetBigquerySource

func (x *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource

func (*BatchPredictInputConfig) GetGcsSource

func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource

func (*BatchPredictInputConfig) GetSource

func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source

func (*BatchPredictInputConfig) ProtoMessage

func (*BatchPredictInputConfig) ProtoMessage()

func (*BatchPredictInputConfig) ProtoReflect

func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message

func (*BatchPredictInputConfig) Reset

func (x *BatchPredictInputConfig) Reset()

func (*BatchPredictInputConfig) String

func (x *BatchPredictInputConfig) String() string

type BatchPredictInputConfig_BigquerySource

type BatchPredictInputConfig_BigquerySource struct {
	// The BigQuery location for the input content.
	BigquerySource *BigQuerySource `protobuf:"bytes,2,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}

type BatchPredictInputConfig_GcsSource

type BatchPredictInputConfig_GcsSource struct {
	// The Google Cloud Storage location for the input content.
	GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}

type BatchPredictOperationMetadata

type BatchPredictOperationMetadata struct {

	// Output only. The input config that was given upon starting this
	// batch predict operation.
	InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// Output only. Information further describing this batch predict's output.
	OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of BatchPredict operation.

func (*BatchPredictOperationMetadata) Descriptor deprecated

func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictOperationMetadata.ProtoReflect.Descriptor instead.

func (*BatchPredictOperationMetadata) GetInputConfig

func (*BatchPredictOperationMetadata) GetOutputInfo

func (*BatchPredictOperationMetadata) ProtoMessage

func (*BatchPredictOperationMetadata) ProtoMessage()

func (*BatchPredictOperationMetadata) ProtoReflect

func (*BatchPredictOperationMetadata) Reset

func (x *BatchPredictOperationMetadata) Reset()

func (*BatchPredictOperationMetadata) String

type BatchPredictOperationMetadata_BatchPredictOutputInfo

type BatchPredictOperationMetadata_BatchPredictOutputInfo struct {

	// The output location into which prediction output is written.
	//
	// Types that are assignable to OutputLocation:
	//
	//	*BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
	//	*BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
	OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
	// contains filtered or unexported fields
}

Further describes this batch predict's output. Supplements

BatchPredictOutputConfig[google.cloud.automl.v1beta1.BatchPredictOutputConfig].

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor deprecated

Deprecated: Use BatchPredictOperationMetadata_BatchPredictOutputInfo.ProtoReflect.Descriptor instead.

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset

func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation

func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String

type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset

type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset struct {
	// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
	// format, into which the prediction output is written.
	BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}

type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory

type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct {
	// The full path of the Google Cloud Storage directory created, into which
	// the prediction output is written.
	GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}

type BatchPredictOutputConfig

type BatchPredictOutputConfig struct {

	// Required. The destination of the output.
	//
	// Types that are assignable to Destination:
	//
	//	*BatchPredictOutputConfig_GcsDestination
	//	*BatchPredictOutputConfig_BigqueryDestination
	Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"`
	// contains filtered or unexported fields
}

Output configuration for BatchPredict Action.

As destination the

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-<model-display-name>-<timestamp-of-prediction-call>", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for.

  • For Image Classification: In the created directory files `image_classification_1.jsonl`, `image_classification_2.jsonl`,...,`image_classification_N.jsonl` will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`fields.

*  For Image Object Detection:
       In the created directory files `image_object_detection_1.jsonl`,
       `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of the successfully predicted images and annotations.
       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps image's "ID" : "<id_value>" followed by a list of
       zero or more AnnotationPayload protos (called annotations), which
       have image_object_detection detail populated. A single image will
       be listed only once with all its annotations, and its annotations
       will never be split across files.
       If prediction for any image failed (partially or completely), then
       additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
       files will be created (N depends on total number of failed
       predictions). These files will have a JSON representation of a proto
       that wraps the same "ID" : "<id_value>" but here followed by
       exactly one

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`fields.
*  For Video Classification:
       In the created directory a video_classification.csv file, and a .JSON
       file per each video classification requested in the input (i.e. each
       line in given CSV(s)), will be created.

       The format of video_classification.csv is:

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS

       where:
       GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
           the prediction input lines (i.e. video_classification.csv has
           precisely the same number of lines as the prediction input had.)
       JSON_FILE_NAME = Name of .JSON file in the output directory, which
           contains prediction responses for the video time segment.
       STATUS = "OK" if prediction completed successfully, or an error code
           with message otherwise. If STATUS is not "OK" then the .JSON file
           for that line may not exist or be empty.

       Each .JSON file, assuming STATUS is "OK", will contain a list of
       AnnotationPayload protos in JSON format, which are the predictions
       for the video time segment the file is assigned to in the
       video_classification.csv. All AnnotationPayload protos will have
       video_classification field set, and will be sorted by
       video_classification.type field (note that the returned types are
       governed by `classifaction_types` parameter in
       [PredictService.BatchPredictRequest.params][]).

*  For Video Object Tracking:
       In the created directory a video_object_tracking.csv file will be
       created, and multiple files video_object_trackinng_1.json,
       video_object_trackinng_2.json,..., video_object_trackinng_N.json,
       where N is the number of requests in the input (i.e. the number of
       lines in given CSV(s)).

       The format of video_object_tracking.csv is:

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS

       where:
       GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
           the prediction input lines (i.e. video_object_tracking.csv has
           precisely the same number of lines as the prediction input had.)
       JSON_FILE_NAME = Name of .JSON file in the output directory, which
           contains prediction responses for the video time segment.
       STATUS = "OK" if prediction completed successfully, or an error
           code with message otherwise. If STATUS is not "OK" then the .JSON
           file for that line may not exist or be empty.

       Each .JSON file, assuming STATUS is "OK", will contain a list of
       AnnotationPayload protos in JSON format, which are the predictions
       for each frame of the video time segment the file is assigned to in
       video_object_tracking.csv. All AnnotationPayload protos will have
       video_object_tracking field set.
*  For Text Classification:
       In the created directory files `text_classification_1.jsonl`,
       `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of inputs and annotations found.

       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps input text snippet or input text file and a list of
       zero or more AnnotationPayload protos (called annotations), which
       have classification detail populated. A single text snippet or file
       will be listed only once with all its annotations, and its
       annotations will never be split across files.

       If prediction for any text snippet or file failed (partially or
       completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
       `errors_N.jsonl` files will be created (N depends on total number of
       failed predictions). These files will have a JSON representation of a
       proto that wraps input text snippet or input text file followed by
       exactly one

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`.

*  For Text Sentiment:
       In the created directory files `text_sentiment_1.jsonl`,
       `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of inputs and annotations found.

       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps input text snippet or input text file and a list of
       zero or more AnnotationPayload protos (called annotations), which
       have text_sentiment detail populated. A single text snippet or file
       will be listed only once with all its annotations, and its
       annotations will never be split across files.

       If prediction for any text snippet or file failed (partially or
       completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
       `errors_N.jsonl` files will be created (N depends on total number of
       failed predictions). These files will have a JSON representation of a
       proto that wraps input text snippet or input text file followed by
       exactly one

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

      containing only `code` and `message`.

*  For Text Extraction:
      In the created directory files `text_extraction_1.jsonl`,
      `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
      will be created, where N may be 1, and depends on the
      total number of inputs and annotations found.
      The contents of these .JSONL file(s) depend on whether the input
      used inline text, or documents.
      If input was inline, then each .JSONL file will contain, per line,
        a JSON representation of a proto that wraps given in request text
        snippet's "id" (if specified), followed by input text snippet,
        and a list of zero or more
        AnnotationPayload protos (called annotations), which have
        text_extraction detail populated. A single text snippet will be
        listed only once with all its annotations, and its annotations will
        never be split across files.
      If input used documents, then each .JSONL file will contain, per
        line, a JSON representation of a proto that wraps given in request
        document proto, followed by its OCR-ed representation in the form
        of a text snippet, finally followed by a list of zero or more
        AnnotationPayload protos (called annotations), which have
        text_extraction detail populated and refer, via their indices, to
        the OCR-ed text snippet. A single document (and its text snippet)
        will be listed only once with all its annotations, and its
        annotations will never be split across files.
      If prediction for any text snippet failed (partially or completely),
      then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
      `errors_N.jsonl` files will be created (N depends on total number of
      failed predictions). These files will have a JSON representation of a
      proto that wraps either the "id" : "<id_value>" (in case of inline)
      or the document proto (in case of document) but here followed by
      exactly one

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`.

*  For Tables:
       Output depends on whether

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]

or

[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]

is set (either is allowed).
GCS case:
  In the created directory files `tables_1.csv`, `tables_2.csv`,...,
  `tables_N.csv` will be created, where N may be 1, and depends on
  the total number of the successfully predicted rows.
  For all CLASSIFICATION

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

Each .csv file will contain a header, listing all columns'

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

given on input followed by M target column names in the format of

"<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target

  value>_score" where M is the number of distinct target values,
  i.e. number of distinct values in the target column of the table
  used to train the model. Subsequent lines will contain the
  respective values of successfully predicted rows, with the last,
  i.e. the target, columns having the corresponding prediction
  [scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
For REGRESSION and FORECASTING

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.display_name] given
on input followed by the predicted target column with name in the
format of

"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"

Subsequent lines will contain the respective values of
successfully predicted rows, with the last, i.e. the target,
column having the predicted target value.
If prediction for any rows failed, then an additional
`errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
created (N depends on total number of failed rows). These files
will have analogous format as `tables_*.csv`, but always with a
single target column having

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

    represented as a JSON string, and containing only `code` and
    `message`.
BigQuery case:

[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]

pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name
`prediction_<model-display-name>_<timestamp-of-prediction-call>`
where <model-display-name> will be made
BigQuery-dataset-name compatible (e.g. most special characters will
become underscores), and timestamp will be in
YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
two tables will be created, `predictions`, and `errors`.
The `predictions` table's column names will be the input columns'

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

followed by the target column with name in the format of

"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"

The input feature columns will contain the respective values of
successfully predicted rows, with the target column having an
ARRAY of

[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],

represented as STRUCT-s, containing
[TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
The `errors` table contains rows for which the prediction has
failed, it has analogous input columns while the target column name
is in the format of

"errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",

and as a value has

[`google.rpc.Status`](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

represented as a STRUCT, and containing only `code` and `message`.

func (*BatchPredictOutputConfig) Descriptor deprecated

func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictOutputConfig.ProtoReflect.Descriptor instead.

func (*BatchPredictOutputConfig) GetBigqueryDestination

func (x *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination

func (*BatchPredictOutputConfig) GetDestination

func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination

func (*BatchPredictOutputConfig) GetGcsDestination

func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination

func (*BatchPredictOutputConfig) ProtoMessage

func (*BatchPredictOutputConfig) ProtoMessage()

func (*BatchPredictOutputConfig) ProtoReflect

func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message

func (*BatchPredictOutputConfig) Reset

func (x *BatchPredictOutputConfig) Reset()

func (*BatchPredictOutputConfig) String

func (x *BatchPredictOutputConfig) String() string

type BatchPredictOutputConfig_BigqueryDestination

type BatchPredictOutputConfig_BigqueryDestination struct {
	// The BigQuery location where the output is to be written to.
	BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}

type BatchPredictOutputConfig_GcsDestination

type BatchPredictOutputConfig_GcsDestination struct {
	// The Google Cloud Storage location of the directory where the output is to
	// be written to.
	GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}

type BatchPredictRequest

type BatchPredictRequest struct {

	// Required. Name of the model requested to serve the batch prediction.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The input configuration for batch prediction.
	InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// Required. The Configuration specifying where output predictions should
	// be written.
	OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
	// Required. Additional domain-specific parameters for the predictions, any string must
	// be up to 25000 characters long.
	//
	// *  For Text Classification:
	//
	//	`score_threshold` - (float) A value from 0.0 to 1.0. When the model
	//	     makes predictions for a text snippet, it will only produce results
	//	     that have at least this confidence score. The default is 0.5.
	//
	// *  For Image Classification:
	//
	//	`score_threshold` - (float) A value from 0.0 to 1.0. When the model
	//	     makes predictions for an image, it will only produce results that
	//	     have at least this confidence score. The default is 0.5.
	//
	// *  For Image Object Detection:
	//
	//	`score_threshold` - (float) When Model detects objects on the image,
	//	    it will only produce bounding boxes which have at least this
	//	    confidence score. Value in 0 to 1 range, default is 0.5.
	//	`max_bounding_box_count` - (int64) No more than this number of bounding
	//	    boxes will be produced per image. Default is 100, the
	//	    requested value may be limited by server.
	//
	// *  For Video Classification :
	//
	//	`score_threshold` - (float) A value from 0.0 to 1.0. When the model
	//	    makes predictions for a video, it will only produce results that
	//	    have at least this confidence score. The default is 0.5.
	//	`segment_classification` - (boolean) Set to true to request
	//	    segment-level classification. AutoML Video Intelligence returns
	//	    labels and their confidence scores for the entire segment of the
	//	    video that user specified in the request configuration.
	//	    The default is "true".
	//	`shot_classification` - (boolean) Set to true to request shot-level
	//	    classification. AutoML Video Intelligence determines the boundaries
	//	    for each camera shot in the entire segment of the video that user
	//	    specified in the request configuration. AutoML Video Intelligence
	//	    then returns labels and their confidence scores for each detected
	//	    shot, along with the start and end time of the shot.
	//	    WARNING: Model evaluation is not done for this classification type,
	//	    the quality of it depends on training data, but there are no metrics
	//	    provided to describe that quality. The default is "false".
	//	`1s_interval_classification` - (boolean) Set to true to request
	//	    classification for a video at one-second intervals. AutoML Video
	//	    Intelligence returns labels and their confidence scores for each
	//	    second of the entire segment of the video that user specified in the
	//	    request configuration.
	//	    WARNING: Model evaluation is not done for this classification
	//	    type, the quality of it depends on training data, but there are no
	//	    metrics provided to describe that quality. The default is
	//	    "false".
	//
	// *  For Tables:
	//
	//	feature_imp<span>ortan</span>ce - (boolean) Whether feature importance
	//	    should be populated in the returned TablesAnnotations. The
	//	    default is false.
	//
	// *  For Video Object Tracking:
	//
	//	`score_threshold` - (float) When Model detects objects on video frames,
	//	    it will only produce bounding boxes which have at least this
	//	    confidence score. Value in 0 to 1 range, default is 0.5.
	//	`max_bounding_box_count` - (int64) No more than this number of bounding
	//	    boxes will be returned per frame. Default is 100, the requested
	//	    value may be limited by server.
	//	`min_bounding_box_size` - (float) Only bounding boxes with shortest edge
	//	  at least that long as a relative value of video frame size will be
	//	  returned. Value in 0 to 1 range. Default is 0.
	Params map[string]string `` /* 153-byte string literal not displayed */
	// contains filtered or unexported fields
}

Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].

func (*BatchPredictRequest) Descriptor deprecated

func (*BatchPredictRequest) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictRequest.ProtoReflect.Descriptor instead.

func (*BatchPredictRequest) GetInputConfig

func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig

func (*BatchPredictRequest) GetName

func (x *BatchPredictRequest) GetName() string

func (*BatchPredictRequest) GetOutputConfig

func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig

func (*BatchPredictRequest) GetParams

func (x *BatchPredictRequest) GetParams() map[string]string

func (*BatchPredictRequest) ProtoMessage

func (*BatchPredictRequest) ProtoMessage()

func (*BatchPredictRequest) ProtoReflect

func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message

func (*BatchPredictRequest) Reset

func (x *BatchPredictRequest) Reset()

func (*BatchPredictRequest) String

func (x *BatchPredictRequest) String() string

type BatchPredictResult

type BatchPredictResult struct {

	// Additional domain-specific prediction response metadata.
	//
	//   - For Image Object Detection:
	//     `max_bounding_box_count` - (int64) At most that many bounding boxes per
	//     image could have been returned.
	//
	//   - For Video Object Tracking:
	//     `max_bounding_box_count` - (int64) At most that many bounding boxes per
	//     frame could have been returned.
	Metadata map[string]string `` /* 157-byte string literal not displayed */
	// contains filtered or unexported fields
}

Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].

func (*BatchPredictResult) Descriptor deprecated

func (*BatchPredictResult) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictResult.ProtoReflect.Descriptor instead.

func (*BatchPredictResult) GetMetadata

func (x *BatchPredictResult) GetMetadata() map[string]string

func (*BatchPredictResult) ProtoMessage

func (*BatchPredictResult) ProtoMessage()

func (*BatchPredictResult) ProtoReflect

func (x *BatchPredictResult) ProtoReflect() protoreflect.Message

func (*BatchPredictResult) Reset

func (x *BatchPredictResult) Reset()

func (*BatchPredictResult) String

func (x *BatchPredictResult) String() string

type BigQueryDestination

type BigQueryDestination struct {

	// Required. BigQuery URI to a project, up to 2000 characters long.
	// Accepted forms:
	// *  BigQuery path e.g. bq://projectId
	OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"`
	// contains filtered or unexported fields
}

The BigQuery location for the output content.

func (*BigQueryDestination) Descriptor deprecated

func (*BigQueryDestination) Descriptor() ([]byte, []int)

Deprecated: Use BigQueryDestination.ProtoReflect.Descriptor instead.

func (*BigQueryDestination) GetOutputUri

func (x *BigQueryDestination) GetOutputUri() string

func (*BigQueryDestination) ProtoMessage

func (*BigQueryDestination) ProtoMessage()

func (*BigQueryDestination) ProtoReflect

func (x *BigQueryDestination) ProtoReflect() protoreflect.Message

func (*BigQueryDestination) Reset

func (x *BigQueryDestination) Reset()

func (*BigQueryDestination) String

func (x *BigQueryDestination) String() string

type BigQuerySource

type BigQuerySource struct {

	// Required. BigQuery URI to a table, up to 2000 characters long.
	// Accepted forms:
	// *  BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId
	InputUri string `protobuf:"bytes,1,opt,name=input_uri,json=inputUri,proto3" json:"input_uri,omitempty"`
	// contains filtered or unexported fields
}

The BigQuery location for the input content.

func (*BigQuerySource) Descriptor deprecated

func (*BigQuerySource) Descriptor() ([]byte, []int)

Deprecated: Use BigQuerySource.ProtoReflect.Descriptor instead.

func (*BigQuerySource) GetInputUri

func (x *BigQuerySource) GetInputUri() string

func (*BigQuerySource) ProtoMessage

func (*BigQuerySource) ProtoMessage()

func (*BigQuerySource) ProtoReflect

func (x *BigQuerySource) ProtoReflect() protoreflect.Message

func (*BigQuerySource) Reset

func (x *BigQuerySource) Reset()

func (*BigQuerySource) String

func (x *BigQuerySource) String() string

type BoundingBoxMetricsEntry

type BoundingBoxMetricsEntry struct {

	// Output only. The intersection-over-union threshold value used to compute
	// this metrics entry.
	IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"`
	// Output only. The mean average precision, most often close to au_prc.
	MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"`
	// Output only. Metrics for each label-match confidence_threshold from
	// 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is
	// derived from them.
	ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry `` /* 135-byte string literal not displayed */
	// contains filtered or unexported fields
}

Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.

func (*BoundingBoxMetricsEntry) Descriptor deprecated

func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)

Deprecated: Use BoundingBoxMetricsEntry.ProtoReflect.Descriptor instead.

func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries

func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry

func (*BoundingBoxMetricsEntry) GetIouThreshold

func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32

func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision

func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32

func (*BoundingBoxMetricsEntry) ProtoMessage

func (*BoundingBoxMetricsEntry) ProtoMessage()

func (*BoundingBoxMetricsEntry) ProtoReflect

func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message

func (*BoundingBoxMetricsEntry) Reset

func (x *BoundingBoxMetricsEntry) Reset()

func (*BoundingBoxMetricsEntry) String

func (x *BoundingBoxMetricsEntry) String() string

type BoundingBoxMetricsEntry_ConfidenceMetricsEntry

type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct {

	// Output only. The confidence threshold value used to compute the metrics.
	ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
	// Output only. Recall under the given confidence threshold.
	Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
	// Output only. Precision under the given confidence threshold.
	Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
	// Output only. The harmonic mean of recall and precision.
	F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
	// contains filtered or unexported fields
}

Metrics for a single confidence threshold.

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor deprecated

Deprecated: Use BoundingBoxMetricsEntry_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold

func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String

type BoundingPoly

type BoundingPoly struct {

	// Output only . The bounding polygon normalized vertices.
	NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"`
	// contains filtered or unexported fields
}

A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.

func (*BoundingPoly) Descriptor deprecated

func (*BoundingPoly) Descriptor() ([]byte, []int)

Deprecated: Use BoundingPoly.ProtoReflect.Descriptor instead.

func (*BoundingPoly) GetNormalizedVertices

func (x *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex

func (*BoundingPoly) ProtoMessage

func (*BoundingPoly) ProtoMessage()

func (*BoundingPoly) ProtoReflect

func (x *BoundingPoly) ProtoReflect() protoreflect.Message

func (*BoundingPoly) Reset

func (x *BoundingPoly) Reset()

func (*BoundingPoly) String

func (x *BoundingPoly) String() string

type CategoryStats

type CategoryStats struct {

	// The statistics of the top 20 CATEGORY values, ordered by
	//
	// [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count].
	TopCategoryStats []*CategoryStats_SingleCategoryStats `protobuf:"bytes,1,rep,name=top_category_stats,json=topCategoryStats,proto3" json:"top_category_stats,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of CATEGORY values.

func (*CategoryStats) Descriptor deprecated

func (*CategoryStats) Descriptor() ([]byte, []int)

Deprecated: Use CategoryStats.ProtoReflect.Descriptor instead.

func (*CategoryStats) GetTopCategoryStats

func (x *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats

func (*CategoryStats) ProtoMessage

func (*CategoryStats) ProtoMessage()

func (*CategoryStats) ProtoReflect

func (x *CategoryStats) ProtoReflect() protoreflect.Message

func (*CategoryStats) Reset

func (x *CategoryStats) Reset()

func (*CategoryStats) String

func (x *CategoryStats) String() string

type CategoryStats_SingleCategoryStats

type CategoryStats_SingleCategoryStats struct {

	// The CATEGORY value.
	Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
	// The number of occurrences of this value in the series.
	Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"`
	// contains filtered or unexported fields
}

The statistics of a single CATEGORY value.

func (*CategoryStats_SingleCategoryStats) Descriptor deprecated

func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)

Deprecated: Use CategoryStats_SingleCategoryStats.ProtoReflect.Descriptor instead.

func (*CategoryStats_SingleCategoryStats) GetCount

func (*CategoryStats_SingleCategoryStats) GetValue

func (*CategoryStats_SingleCategoryStats) ProtoMessage

func (*CategoryStats_SingleCategoryStats) ProtoMessage()

func (*CategoryStats_SingleCategoryStats) ProtoReflect

func (*CategoryStats_SingleCategoryStats) Reset

func (*CategoryStats_SingleCategoryStats) String

type ClassificationAnnotation

type ClassificationAnnotation struct {

	// Output only. A confidence estimate between 0.0 and 1.0. A higher value
	// means greater confidence that the annotation is positive. If a user
	// approves an annotation as negative or positive, the score value remains
	// unchanged. If a user creates an annotation, the score is 0 for negative or
	// 1 for positive.
	Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation details specific to classification.

func (*ClassificationAnnotation) Descriptor deprecated

func (*ClassificationAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use ClassificationAnnotation.ProtoReflect.Descriptor instead.

func (*ClassificationAnnotation) GetScore

func (x *ClassificationAnnotation) GetScore() float32

func (*ClassificationAnnotation) ProtoMessage

func (*ClassificationAnnotation) ProtoMessage()

func (*ClassificationAnnotation) ProtoReflect

func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message

func (*ClassificationAnnotation) Reset

func (x *ClassificationAnnotation) Reset()

func (*ClassificationAnnotation) String

func (x *ClassificationAnnotation) String() string

type ClassificationEvaluationMetrics

type ClassificationEvaluationMetrics struct {

	// Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
	// for the overall evaluation.
	AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"`
	// Output only. The Area Under Precision-Recall Curve metric based on priors.
	// Micro-averaged for the overall evaluation.
	// Deprecated.
	//
	// Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto.
	BaseAuPrc float32 `protobuf:"fixed32,2,opt,name=base_au_prc,json=baseAuPrc,proto3" json:"base_au_prc,omitempty"`
	// Output only. The Area Under Receiver Operating Characteristic curve metric.
	// Micro-averaged for the overall evaluation.
	AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"`
	// Output only. The Log Loss metric.
	LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"`
	// Output only. Metrics for each confidence_threshold in
	// 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
	// position_threshold = INT32_MAX_VALUE.
	// ROC and precision-recall curves, and other aggregated metrics are derived
	// from them. The confidence metrics entries may also be supplied for
	// additional values of position_threshold, but from these no aggregated
	// metrics are computed.
	ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry `` /* 129-byte string literal not displayed */
	// Output only. Confusion matrix of the evaluation.
	// Only set for MULTICLASS classification problems where number
	// of labels is no more than 10.
	// Only set for model level evaluation, not for evaluation per label.
	ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"`
	// Output only. The annotation spec ids used for this evaluation.
	AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// contains filtered or unexported fields
}

Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.

func (*ClassificationEvaluationMetrics) Descriptor deprecated

func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use ClassificationEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics) GetAnnotationSpecId

func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string

func (*ClassificationEvaluationMetrics) GetAuPrc

func (*ClassificationEvaluationMetrics) GetAuRoc

func (*ClassificationEvaluationMetrics) GetBaseAuPrc deprecated

func (x *ClassificationEvaluationMetrics) GetBaseAuPrc() float32

Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto.

func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry

func (*ClassificationEvaluationMetrics) GetConfusionMatrix

func (*ClassificationEvaluationMetrics) GetLogLoss

func (x *ClassificationEvaluationMetrics) GetLogLoss() float32

func (*ClassificationEvaluationMetrics) ProtoMessage

func (*ClassificationEvaluationMetrics) ProtoMessage()

func (*ClassificationEvaluationMetrics) ProtoReflect

func (*ClassificationEvaluationMetrics) Reset

func (*ClassificationEvaluationMetrics) String

type ClassificationEvaluationMetrics_ConfidenceMetricsEntry

type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct {

	// Output only. Metrics are computed with an assumption that the model
	// never returns predictions with score lower than this value.
	ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
	// Output only. Metrics are computed with an assumption that the model
	// always returns at most this many predictions (ordered by their score,
	// descendingly), but they all still need to meet the confidence_threshold.
	PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"`
	// Output only. Recall (True Positive Rate) for the given confidence
	// threshold.
	Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
	// Output only. Precision for the given confidence threshold.
	Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
	// Output only. False Positive Rate for the given confidence threshold.
	FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"`
	// Output only. The harmonic mean of recall and precision.
	F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
	// Output only. The Recall (True Positive Rate) when only considering the
	// label that has the highest prediction score and not below the confidence
	// threshold for each example.
	RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"`
	// Output only. The precision when only considering the label that has the
	// highest prediction score and not below the confidence threshold for each
	// example.
	PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"`
	// Output only. The False Positive Rate when only considering the label that
	// has the highest prediction score and not below the confidence threshold
	// for each example.
	FalsePositiveRateAt1 float32 `` /* 127-byte string literal not displayed */
	// Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
	F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"`
	// Output only. The number of model created labels that match a ground truth
	// label.
	TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"`
	// Output only. The number of model created labels that do not match a
	// ground truth label.
	FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"`
	// Output only. The number of ground truth labels that are not matched
	// by a model created label.
	FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"`
	// Output only. The number of labels that were not created by the model,
	// but if they would, they would not match a ground truth label.
	TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"`
	// contains filtered or unexported fields
}

Metrics for a single confidence threshold.

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor deprecated

Deprecated: Use ClassificationEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String

type ClassificationEvaluationMetrics_ConfusionMatrix

type ClassificationEvaluationMetrics_ConfusionMatrix struct {

	// Output only. IDs of the annotation specs used in the confusion matrix.
	// For Tables CLASSIFICATION
	//
	// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
	// only list of [annotation_spec_display_name-s][] is populated.
	AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// Output only. Display name of the annotation specs used in the confusion
	// matrix, as they were at the moment of the evaluation. For Tables
	// CLASSIFICATION
	//
	// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
	// distinct values of the target column at the moment of the model
	// evaluation are populated here.
	DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. Rows in the confusion matrix. The number of rows is equal to
	// the size of `annotation_spec_id`.
	// `row[i].example_count[j]` is the number of examples that have ground
	// truth of the `annotation_spec_id[i]` and are predicted as
	// `annotation_spec_id[j]` by the model being evaluated.
	Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"`
	// contains filtered or unexported fields
}

Confusion matrix of the model running the classification.

func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor deprecated

Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId

func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetRow

func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset

func (*ClassificationEvaluationMetrics_ConfusionMatrix) String

type ClassificationEvaluationMetrics_ConfusionMatrix_Row

type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct {

	// Output only. Value of the specific cell in the confusion matrix.
	// The number of values each row has (i.e. the length of the row) is equal
	// to the length of the `annotation_spec_id` field or, if that one is not
	// populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
	ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// contains filtered or unexported fields
}

Output only. A row in the confusion matrix.

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor deprecated

Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String

type ClassificationType

type ClassificationType int32

Type of the classification problem.

const (
	// An un-set value of this enum.
	ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0
	// At most one label is allowed per example.
	ClassificationType_MULTICLASS ClassificationType = 1
	// Multiple labels are allowed for one example.
	ClassificationType_MULTILABEL ClassificationType = 2
)

func (ClassificationType) Descriptor

func (ClassificationType) Enum

func (ClassificationType) EnumDescriptor deprecated

func (ClassificationType) EnumDescriptor() ([]byte, []int)

Deprecated: Use ClassificationType.Descriptor instead.

func (ClassificationType) Number

func (ClassificationType) String

func (x ClassificationType) String() string

func (ClassificationType) Type

type ColumnSpec

type ColumnSpec struct {

	// Output only. The resource name of the column specs.
	// Form:
	//
	// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// The data type of elements stored in the column.
	DataType *DataType `protobuf:"bytes,2,opt,name=data_type,json=dataType,proto3" json:"data_type,omitempty"`
	// Output only. The name of the column to show in the interface. The name can
	// be up to 100 characters long and can consist only of ASCII Latin letters
	// A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and
	// must start with a letter or a digit.
	DisplayName string `protobuf:"bytes,3,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. Stats of the series of values in the column.
	// This field may be stale, see the ancestor's
	// Dataset.tables_dataset_metadata.stats_update_time field
	// for the timestamp at which these stats were last updated.
	DataStats *DataStats `protobuf:"bytes,4,opt,name=data_stats,json=dataStats,proto3" json:"data_stats,omitempty"`
	// Deprecated.
	TopCorrelatedColumns []*ColumnSpec_CorrelatedColumn `protobuf:"bytes,5,rep,name=top_correlated_columns,json=topCorrelatedColumns,proto3" json:"top_correlated_columns,omitempty"`
	// Used to perform consistent read-modify-write updates. If not set, a blind
	// "overwrite" update happens.
	Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"`
	// contains filtered or unexported fields
}

A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:

  • Tables

func (*ColumnSpec) Descriptor deprecated

func (*ColumnSpec) Descriptor() ([]byte, []int)

Deprecated: Use ColumnSpec.ProtoReflect.Descriptor instead.

func (*ColumnSpec) GetDataStats

func (x *ColumnSpec) GetDataStats() *DataStats

func (*ColumnSpec) GetDataType

func (x *ColumnSpec) GetDataType() *DataType

func (*ColumnSpec) GetDisplayName

func (x *ColumnSpec) GetDisplayName() string

func (*ColumnSpec) GetEtag

func (x *ColumnSpec) GetEtag() string

func (*ColumnSpec) GetName

func (x *ColumnSpec) GetName() string

func (*ColumnSpec) GetTopCorrelatedColumns

func (x *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn

func (*ColumnSpec) ProtoMessage

func (*ColumnSpec) ProtoMessage()

func (*ColumnSpec) ProtoReflect

func (x *ColumnSpec) ProtoReflect() protoreflect.Message

func (*ColumnSpec) Reset

func (x *ColumnSpec) Reset()

func (*ColumnSpec) String

func (x *ColumnSpec) String() string

type ColumnSpec_CorrelatedColumn

type ColumnSpec_CorrelatedColumn struct {

	// The column_spec_id of the correlated column, which belongs to the same
	// table as the in-context column.
	ColumnSpecId string `protobuf:"bytes,1,opt,name=column_spec_id,json=columnSpecId,proto3" json:"column_spec_id,omitempty"`
	// Correlation between this and the in-context column.
	CorrelationStats *CorrelationStats `protobuf:"bytes,2,opt,name=correlation_stats,json=correlationStats,proto3" json:"correlation_stats,omitempty"`
	// contains filtered or unexported fields
}

Identifies the table's column, and its correlation with the column this ColumnSpec describes.

func (*ColumnSpec_CorrelatedColumn) Descriptor deprecated

func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)

Deprecated: Use ColumnSpec_CorrelatedColumn.ProtoReflect.Descriptor instead.

func (*ColumnSpec_CorrelatedColumn) GetColumnSpecId

func (x *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string

func (*ColumnSpec_CorrelatedColumn) GetCorrelationStats

func (x *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats

func (*ColumnSpec_CorrelatedColumn) ProtoMessage

func (*ColumnSpec_CorrelatedColumn) ProtoMessage()

func (*ColumnSpec_CorrelatedColumn) ProtoReflect

func (*ColumnSpec_CorrelatedColumn) Reset

func (x *ColumnSpec_CorrelatedColumn) Reset()

func (*ColumnSpec_CorrelatedColumn) String

func (x *ColumnSpec_CorrelatedColumn) String() string

type CorrelationStats

type CorrelationStats struct {

	// The correlation value using the Cramer's V measure.
	CramersV float64 `protobuf:"fixed64,1,opt,name=cramers_v,json=cramersV,proto3" json:"cramers_v,omitempty"`
	// contains filtered or unexported fields
}

A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.

func (*CorrelationStats) Descriptor deprecated

func (*CorrelationStats) Descriptor() ([]byte, []int)

Deprecated: Use CorrelationStats.ProtoReflect.Descriptor instead.

func (*CorrelationStats) GetCramersV

func (x *CorrelationStats) GetCramersV() float64

func (*CorrelationStats) ProtoMessage

func (*CorrelationStats) ProtoMessage()

func (*CorrelationStats) ProtoReflect

func (x *CorrelationStats) ProtoReflect() protoreflect.Message

func (*CorrelationStats) Reset

func (x *CorrelationStats) Reset()

func (*CorrelationStats) String

func (x *CorrelationStats) String() string

type CreateDatasetRequest

type CreateDatasetRequest struct {

	// Required. The resource name of the project to create the dataset for.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Required. The dataset to create.
	Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].

func (*CreateDatasetRequest) Descriptor deprecated

func (*CreateDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use CreateDatasetRequest.ProtoReflect.Descriptor instead.

func (*CreateDatasetRequest) GetDataset

func (x *CreateDatasetRequest) GetDataset() *Dataset

func (*CreateDatasetRequest) GetParent

func (x *CreateDatasetRequest) GetParent() string

func (*CreateDatasetRequest) ProtoMessage

func (*CreateDatasetRequest) ProtoMessage()

func (*CreateDatasetRequest) ProtoReflect

func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message

func (*CreateDatasetRequest) Reset

func (x *CreateDatasetRequest) Reset()

func (*CreateDatasetRequest) String

func (x *CreateDatasetRequest) String() string

type CreateModelOperationMetadata

type CreateModelOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of CreateModel operation.

func (*CreateModelOperationMetadata) Descriptor deprecated

func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use CreateModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*CreateModelOperationMetadata) ProtoMessage

func (*CreateModelOperationMetadata) ProtoMessage()

func (*CreateModelOperationMetadata) ProtoReflect

func (*CreateModelOperationMetadata) Reset

func (x *CreateModelOperationMetadata) Reset()

func (*CreateModelOperationMetadata) String

type CreateModelRequest

type CreateModelRequest struct {

	// Required. Resource name of the parent project where the model is being created.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Required. The model to create.
	Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].

func (*CreateModelRequest) Descriptor deprecated

func (*CreateModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use CreateModelRequest.ProtoReflect.Descriptor instead.

func (*CreateModelRequest) GetModel

func (x *CreateModelRequest) GetModel() *Model

func (*CreateModelRequest) GetParent

func (x *CreateModelRequest) GetParent() string

func (*CreateModelRequest) ProtoMessage

func (*CreateModelRequest) ProtoMessage()

func (*CreateModelRequest) ProtoReflect

func (x *CreateModelRequest) ProtoReflect() protoreflect.Message

func (*CreateModelRequest) Reset

func (x *CreateModelRequest) Reset()

func (*CreateModelRequest) String

func (x *CreateModelRequest) String() string

type DataStats

type DataStats struct {

	// The data statistics specific to a DataType.
	//
	// Types that are assignable to Stats:
	//
	//	*DataStats_Float64Stats
	//	*DataStats_StringStats
	//	*DataStats_TimestampStats
	//	*DataStats_ArrayStats
	//	*DataStats_StructStats
	//	*DataStats_CategoryStats
	Stats isDataStats_Stats `protobuf_oneof:"stats"`
	// The number of distinct values.
	DistinctValueCount int64 `protobuf:"varint,1,opt,name=distinct_value_count,json=distinctValueCount,proto3" json:"distinct_value_count,omitempty"`
	// The number of values that are null.
	NullValueCount int64 `protobuf:"varint,2,opt,name=null_value_count,json=nullValueCount,proto3" json:"null_value_count,omitempty"`
	// The number of values that are valid.
	ValidValueCount int64 `protobuf:"varint,9,opt,name=valid_value_count,json=validValueCount,proto3" json:"valid_value_count,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of values that share the same DataType.

func (*DataStats) Descriptor deprecated

func (*DataStats) Descriptor() ([]byte, []int)

Deprecated: Use DataStats.ProtoReflect.Descriptor instead.

func (*DataStats) GetArrayStats

func (x *DataStats) GetArrayStats() *ArrayStats

func (*DataStats) GetCategoryStats

func (x *DataStats) GetCategoryStats() *CategoryStats

func (*DataStats) GetDistinctValueCount

func (x *DataStats) GetDistinctValueCount() int64

func (*DataStats) GetFloat64Stats

func (x *DataStats) GetFloat64Stats() *Float64Stats

func (*DataStats) GetNullValueCount

func (x *DataStats) GetNullValueCount() int64

func (*DataStats) GetStats

func (m *DataStats) GetStats() isDataStats_Stats

func (*DataStats) GetStringStats

func (x *DataStats) GetStringStats() *StringStats

func (*DataStats) GetStructStats

func (x *DataStats) GetStructStats() *StructStats

func (*DataStats) GetTimestampStats

func (x *DataStats) GetTimestampStats() *TimestampStats

func (*DataStats) GetValidValueCount

func (x *DataStats) GetValidValueCount() int64

func (*DataStats) ProtoMessage

func (*DataStats) ProtoMessage()

func (*DataStats) ProtoReflect

func (x *DataStats) ProtoReflect() protoreflect.Message

func (*DataStats) Reset

func (x *DataStats) Reset()

func (*DataStats) String

func (x *DataStats) String() string

type DataStats_ArrayStats

type DataStats_ArrayStats struct {
	// The statistics for ARRAY DataType.
	ArrayStats *ArrayStats `protobuf:"bytes,6,opt,name=array_stats,json=arrayStats,proto3,oneof"`
}

type DataStats_CategoryStats

type DataStats_CategoryStats struct {
	// The statistics for CATEGORY DataType.
	CategoryStats *CategoryStats `protobuf:"bytes,8,opt,name=category_stats,json=categoryStats,proto3,oneof"`
}

type DataStats_Float64Stats

type DataStats_Float64Stats struct {
	// The statistics for FLOAT64 DataType.
	Float64Stats *Float64Stats `protobuf:"bytes,3,opt,name=float64_stats,json=float64Stats,proto3,oneof"`
}

type DataStats_StringStats

type DataStats_StringStats struct {
	// The statistics for STRING DataType.
	StringStats *StringStats `protobuf:"bytes,4,opt,name=string_stats,json=stringStats,proto3,oneof"`
}

type DataStats_StructStats

type DataStats_StructStats struct {
	// The statistics for STRUCT DataType.
	StructStats *StructStats `protobuf:"bytes,7,opt,name=struct_stats,json=structStats,proto3,oneof"`
}

type DataStats_TimestampStats

type DataStats_TimestampStats struct {
	// The statistics for TIMESTAMP DataType.
	TimestampStats *TimestampStats `protobuf:"bytes,5,opt,name=timestamp_stats,json=timestampStats,proto3,oneof"`
}

type DataType

type DataType struct {

	// Details of DataType-s that need additional specification.
	//
	// Types that are assignable to Details:
	//
	//	*DataType_ListElementType
	//	*DataType_StructType
	//	*DataType_TimeFormat
	Details isDataType_Details `protobuf_oneof:"details"`
	// Required. The [TypeCode][google.cloud.automl.v1beta1.TypeCode] for this type.
	TypeCode TypeCode `` /* 128-byte string literal not displayed */
	// If true, this DataType can also be `NULL`. In .CSV files `NULL` value is
	// expressed as an empty string.
	Nullable bool `protobuf:"varint,4,opt,name=nullable,proto3" json:"nullable,omitempty"`
	// contains filtered or unexported fields
}

Indicated the type of data that can be stored in a structured data entity (e.g. a table).

func (*DataType) Descriptor deprecated

func (*DataType) Descriptor() ([]byte, []int)

Deprecated: Use DataType.ProtoReflect.Descriptor instead.

func (*DataType) GetDetails

func (m *DataType) GetDetails() isDataType_Details

func (*DataType) GetListElementType

func (x *DataType) GetListElementType() *DataType

func (*DataType) GetNullable

func (x *DataType) GetNullable() bool

func (*DataType) GetStructType

func (x *DataType) GetStructType() *StructType

func (*DataType) GetTimeFormat

func (x *DataType) GetTimeFormat() string

func (*DataType) GetTypeCode

func (x *DataType) GetTypeCode() TypeCode

func (*DataType) ProtoMessage

func (*DataType) ProtoMessage()

func (*DataType) ProtoReflect

func (x *DataType) ProtoReflect() protoreflect.Message

func (*DataType) Reset

func (x *DataType) Reset()

func (*DataType) String

func (x *DataType) String() string

type DataType_ListElementType

type DataType_ListElementType struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [ARRAY][google.cloud.automl.v1beta1.TypeCode.ARRAY],
	// then `list_element_type` is the type of the elements.
	ListElementType *DataType `protobuf:"bytes,2,opt,name=list_element_type,json=listElementType,proto3,oneof"`
}

type DataType_StructType

type DataType_StructType struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT], then `struct_type`
	// provides type information for the struct's fields.
	StructType *StructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"`
}

type DataType_TimeFormat

type DataType_TimeFormat struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [TIMESTAMP][google.cloud.automl.v1beta1.TypeCode.TIMESTAMP]
	// then `time_format` provides the format in which that time field is
	// expressed. The time_format must either be one of:
	// * `UNIX_SECONDS`
	// * `UNIX_MILLISECONDS`
	// * `UNIX_MICROSECONDS`
	// * `UNIX_NANOSECONDS`
	// (for respectively number of seconds, milliseconds, microseconds and
	// nanoseconds since start of the Unix epoch);
	// or be written in `strftime` syntax. If time_format is not set, then the
	// default format as described on the type_code is used.
	TimeFormat string `protobuf:"bytes,5,opt,name=time_format,json=timeFormat,proto3,oneof"`
}

type Dataset

type Dataset struct {

	// Required.
	// The dataset metadata that is specific to the problem type.
	//
	// Types that are assignable to DatasetMetadata:
	//
	//	*Dataset_TranslationDatasetMetadata
	//	*Dataset_ImageClassificationDatasetMetadata
	//	*Dataset_TextClassificationDatasetMetadata
	//	*Dataset_ImageObjectDetectionDatasetMetadata
	//	*Dataset_VideoClassificationDatasetMetadata
	//	*Dataset_VideoObjectTrackingDatasetMetadata
	//	*Dataset_TextExtractionDatasetMetadata
	//	*Dataset_TextSentimentDatasetMetadata
	//	*Dataset_TablesDatasetMetadata
	DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"`
	// Output only. The resource name of the dataset.
	// Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The name of the dataset to show in the interface. The name can be
	// up to 32 characters long and can consist only of ASCII Latin letters A-Z
	// and a-z, underscores
	// (_), and ASCII digits 0-9.
	DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// User-provided description of the dataset. The description can be up to
	// 25000 characters long.
	Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"`
	// Output only. The number of examples in the dataset.
	ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// Output only. Timestamp when this dataset was created.
	CreateTime *timestamppb.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
	// Used to perform consistent read-modify-write updates. If not set, a blind
	// "overwrite" update happens.
	Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"`
	// contains filtered or unexported fields
}

A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.

func (*Dataset) Descriptor deprecated

func (*Dataset) Descriptor() ([]byte, []int)

Deprecated: Use Dataset.ProtoReflect.Descriptor instead.

func (*Dataset) GetCreateTime

func (x *Dataset) GetCreateTime() *timestamppb.Timestamp

func (*Dataset) GetDatasetMetadata

func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata

func (*Dataset) GetDescription

func (x *Dataset) GetDescription() string

func (*Dataset) GetDisplayName

func (x *Dataset) GetDisplayName() string

func (*Dataset) GetEtag

func (x *Dataset) GetEtag() string

func (*Dataset) GetExampleCount

func (x *Dataset) GetExampleCount() int32

func (*Dataset) GetImageClassificationDatasetMetadata

func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata

func (*Dataset) GetImageObjectDetectionDatasetMetadata

func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata

func (*Dataset) GetName

func (x *Dataset) GetName() string

func (*Dataset) GetTablesDatasetMetadata

func (x *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata

func (*Dataset) GetTextClassificationDatasetMetadata

func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata

func (*Dataset) GetTextExtractionDatasetMetadata

func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata

func (*Dataset) GetTextSentimentDatasetMetadata

func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata

func (*Dataset) GetTranslationDatasetMetadata

func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata

func (*Dataset) GetVideoClassificationDatasetMetadata

func (x *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata

func (*Dataset) GetVideoObjectTrackingDatasetMetadata

func (x *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata

func (*Dataset) ProtoMessage

func (*Dataset) ProtoMessage()

func (*Dataset) ProtoReflect

func (x *Dataset) ProtoReflect() protoreflect.Message

func (*Dataset) Reset

func (x *Dataset) Reset()

func (*Dataset) String

func (x *Dataset) String() string

type Dataset_ImageClassificationDatasetMetadata

type Dataset_ImageClassificationDatasetMetadata struct {
	// Metadata for a dataset used for image classification.
	ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"`
}

type Dataset_ImageObjectDetectionDatasetMetadata

type Dataset_ImageObjectDetectionDatasetMetadata struct {
	// Metadata for a dataset used for image object detection.
	ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"`
}

type Dataset_TablesDatasetMetadata

type Dataset_TablesDatasetMetadata struct {
	// Metadata for a dataset used for Tables.
	TablesDatasetMetadata *TablesDatasetMetadata `protobuf:"bytes,33,opt,name=tables_dataset_metadata,json=tablesDatasetMetadata,proto3,oneof"`
}

type Dataset_TextClassificationDatasetMetadata

type Dataset_TextClassificationDatasetMetadata struct {
	// Metadata for a dataset used for text classification.
	TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"`
}

type Dataset_TextExtractionDatasetMetadata

type Dataset_TextExtractionDatasetMetadata struct {
	// Metadata for a dataset used for text extraction.
	TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"`
}

type Dataset_TextSentimentDatasetMetadata

type Dataset_TextSentimentDatasetMetadata struct {
	// Metadata for a dataset used for text sentiment.
	TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"`
}

type Dataset_TranslationDatasetMetadata

type Dataset_TranslationDatasetMetadata struct {
	// Metadata for a dataset used for translation.
	TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"`
}

type Dataset_VideoClassificationDatasetMetadata

type Dataset_VideoClassificationDatasetMetadata struct {
	// Metadata for a dataset used for video classification.
	VideoClassificationDatasetMetadata *VideoClassificationDatasetMetadata `protobuf:"bytes,31,opt,name=video_classification_dataset_metadata,json=videoClassificationDatasetMetadata,proto3,oneof"`
}

type Dataset_VideoObjectTrackingDatasetMetadata

type Dataset_VideoObjectTrackingDatasetMetadata struct {
	// Metadata for a dataset used for video object tracking.
	VideoObjectTrackingDatasetMetadata *VideoObjectTrackingDatasetMetadata `protobuf:"bytes,29,opt,name=video_object_tracking_dataset_metadata,json=videoObjectTrackingDatasetMetadata,proto3,oneof"`
}

type DeleteDatasetRequest

type DeleteDatasetRequest struct {

	// Required. The resource name of the dataset to delete.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].

func (*DeleteDatasetRequest) Descriptor deprecated

func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeleteDatasetRequest.ProtoReflect.Descriptor instead.

func (*DeleteDatasetRequest) GetName

func (x *DeleteDatasetRequest) GetName() string

func (*DeleteDatasetRequest) ProtoMessage

func (*DeleteDatasetRequest) ProtoMessage()

func (*DeleteDatasetRequest) ProtoReflect

func (x *DeleteDatasetRequest) ProtoReflect() protoreflect.Message

func (*DeleteDatasetRequest) Reset

func (x *DeleteDatasetRequest) Reset()

func (*DeleteDatasetRequest) String

func (x *DeleteDatasetRequest) String() string

type DeleteModelRequest

type DeleteModelRequest struct {

	// Required. Resource name of the model being deleted.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].

func (*DeleteModelRequest) Descriptor deprecated

func (*DeleteModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeleteModelRequest.ProtoReflect.Descriptor instead.

func (*DeleteModelRequest) GetName

func (x *DeleteModelRequest) GetName() string

func (*DeleteModelRequest) ProtoMessage

func (*DeleteModelRequest) ProtoMessage()

func (*DeleteModelRequest) ProtoReflect

func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message

func (*DeleteModelRequest) Reset

func (x *DeleteModelRequest) Reset()

func (*DeleteModelRequest) String

func (x *DeleteModelRequest) String() string

type DeleteOperationMetadata

type DeleteOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of operations that perform deletes of any entities.

func (*DeleteOperationMetadata) Descriptor deprecated

func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use DeleteOperationMetadata.ProtoReflect.Descriptor instead.

func (*DeleteOperationMetadata) ProtoMessage

func (*DeleteOperationMetadata) ProtoMessage()

func (*DeleteOperationMetadata) ProtoReflect

func (x *DeleteOperationMetadata) ProtoReflect() protoreflect.Message

func (*DeleteOperationMetadata) Reset

func (x *DeleteOperationMetadata) Reset()

func (*DeleteOperationMetadata) String

func (x *DeleteOperationMetadata) String() string

type DeployModelOperationMetadata

type DeployModelOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of DeployModel operation.

func (*DeployModelOperationMetadata) Descriptor deprecated

func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use DeployModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*DeployModelOperationMetadata) ProtoMessage

func (*DeployModelOperationMetadata) ProtoMessage()

func (*DeployModelOperationMetadata) ProtoReflect

func (*DeployModelOperationMetadata) Reset

func (x *DeployModelOperationMetadata) Reset()

func (*DeployModelOperationMetadata) String

type DeployModelRequest

type DeployModelRequest struct {

	// The per-domain specific deployment parameters.
	//
	// Types that are assignable to ModelDeploymentMetadata:
	//
	//	*DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
	//	*DeployModelRequest_ImageClassificationModelDeploymentMetadata
	ModelDeploymentMetadata isDeployModelRequest_ModelDeploymentMetadata `protobuf_oneof:"model_deployment_metadata"`
	// Required. Resource name of the model to deploy.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].

func (*DeployModelRequest) Descriptor deprecated

func (*DeployModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeployModelRequest.ProtoReflect.Descriptor instead.

func (*DeployModelRequest) GetImageClassificationModelDeploymentMetadata

func (x *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata

func (*DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata

func (x *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata

func (*DeployModelRequest) GetModelDeploymentMetadata

func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata

func (*DeployModelRequest) GetName

func (x *DeployModelRequest) GetName() string

func (*DeployModelRequest) ProtoMessage

func (*DeployModelRequest) ProtoMessage()

func (*DeployModelRequest) ProtoReflect

func (x *DeployModelRequest) ProtoReflect() protoreflect.Message

func (*DeployModelRequest) Reset

func (x *DeployModelRequest) Reset()

func (*DeployModelRequest) String

func (x *DeployModelRequest) String() string

type DeployModelRequest_ImageClassificationModelDeploymentMetadata

type DeployModelRequest_ImageClassificationModelDeploymentMetadata struct {
	// Model deployment metadata specific to Image Classification.
	ImageClassificationModelDeploymentMetadata *ImageClassificationModelDeploymentMetadata `` /* 135-byte string literal not displayed */
}

type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata

type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata struct {
	// Model deployment metadata specific to Image Object Detection.
	ImageObjectDetectionModelDeploymentMetadata *ImageObjectDetectionModelDeploymentMetadata `` /* 138-byte string literal not displayed */
}

type Document

type Document struct {

	// An input config specifying the content of the document.
	InputConfig *DocumentInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// The plain text version of this document.
	DocumentText *TextSnippet `protobuf:"bytes,2,opt,name=document_text,json=documentText,proto3" json:"document_text,omitempty"`
	// Describes the layout of the document.
	// Sorted by [page_number][].
	Layout []*Document_Layout `protobuf:"bytes,3,rep,name=layout,proto3" json:"layout,omitempty"`
	// The dimensions of the page in the document.
	DocumentDimensions *DocumentDimensions `protobuf:"bytes,4,opt,name=document_dimensions,json=documentDimensions,proto3" json:"document_dimensions,omitempty"`
	// Number of pages in the document.
	PageCount int32 `protobuf:"varint,5,opt,name=page_count,json=pageCount,proto3" json:"page_count,omitempty"`
	// contains filtered or unexported fields
}

A structured text document e.g. a PDF.

func (*Document) Descriptor deprecated

func (*Document) Descriptor() ([]byte, []int)

Deprecated: Use Document.ProtoReflect.Descriptor instead.

func (*Document) GetDocumentDimensions

func (x *Document) GetDocumentDimensions() *DocumentDimensions

func (*Document) GetDocumentText

func (x *Document) GetDocumentText() *TextSnippet

func (*Document) GetInputConfig

func (x *Document) GetInputConfig() *DocumentInputConfig

func (*Document) GetLayout

func (x *Document) GetLayout() []*Document_Layout

func (*Document) GetPageCount

func (x *Document) GetPageCount() int32

func (*Document) ProtoMessage

func (*Document) ProtoMessage()

func (*Document) ProtoReflect

func (x *Document) ProtoReflect() protoreflect.Message

func (*Document) Reset

func (x *Document) Reset()

func (*Document) String

func (x *Document) String() string

type DocumentDimensions

type DocumentDimensions struct {

	// Unit of the dimension.
	Unit DocumentDimensions_DocumentDimensionUnit `` /* 136-byte string literal not displayed */
	// Width value of the document, works together with the unit.
	Width float32 `protobuf:"fixed32,2,opt,name=width,proto3" json:"width,omitempty"`
	// Height value of the document, works together with the unit.
	Height float32 `protobuf:"fixed32,3,opt,name=height,proto3" json:"height,omitempty"`
	// contains filtered or unexported fields
}

Message that describes dimension of a document.

func (*DocumentDimensions) Descriptor deprecated

func (*DocumentDimensions) Descriptor() ([]byte, []int)

Deprecated: Use DocumentDimensions.ProtoReflect.Descriptor instead.

func (*DocumentDimensions) GetHeight

func (x *DocumentDimensions) GetHeight() float32

func (*DocumentDimensions) GetUnit

func (*DocumentDimensions) GetWidth

func (x *DocumentDimensions) GetWidth() float32

func (*DocumentDimensions) ProtoMessage

func (*DocumentDimensions) ProtoMessage()

func (*DocumentDimensions) ProtoReflect

func (x *DocumentDimensions) ProtoReflect() protoreflect.Message

func (*DocumentDimensions) Reset

func (x *DocumentDimensions) Reset()

func (*DocumentDimensions) String

func (x *DocumentDimensions) String() string

type DocumentDimensions_DocumentDimensionUnit

type DocumentDimensions_DocumentDimensionUnit int32

Unit of the document dimension.

const (
	// Should not be used.
	DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_DocumentDimensionUnit = 0
	// Document dimension is measured in inches.
	DocumentDimensions_INCH DocumentDimensions_DocumentDimensionUnit = 1
	// Document dimension is measured in centimeters.
	DocumentDimensions_CENTIMETER DocumentDimensions_DocumentDimensionUnit = 2
	// Document dimension is measured in points. 72 points = 1 inch.
	DocumentDimensions_POINT DocumentDimensions_DocumentDimensionUnit = 3
)

func (DocumentDimensions_DocumentDimensionUnit) Descriptor

func (DocumentDimensions_DocumentDimensionUnit) Enum

func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor deprecated

func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)

Deprecated: Use DocumentDimensions_DocumentDimensionUnit.Descriptor instead.

func (DocumentDimensions_DocumentDimensionUnit) Number

func (DocumentDimensions_DocumentDimensionUnit) String

func (DocumentDimensions_DocumentDimensionUnit) Type

type DocumentInputConfig

type DocumentInputConfig struct {

	// The Google Cloud Storage location of the document file. Only a single path
	// should be given.
	// Max supported size: 512MB.
	// Supported extensions: .PDF.
	GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3" json:"gcs_source,omitempty"`
	// contains filtered or unexported fields
}

Input configuration of a Document[google.cloud.automl.v1beta1.Document].

func (*DocumentInputConfig) Descriptor deprecated

func (*DocumentInputConfig) Descriptor() ([]byte, []int)

Deprecated: Use DocumentInputConfig.ProtoReflect.Descriptor instead.

func (*DocumentInputConfig) GetGcsSource

func (x *DocumentInputConfig) GetGcsSource() *GcsSource

func (*DocumentInputConfig) ProtoMessage

func (*DocumentInputConfig) ProtoMessage()

func (*DocumentInputConfig) ProtoReflect

func (x *DocumentInputConfig) ProtoReflect() protoreflect.Message

func (*DocumentInputConfig) Reset

func (x *DocumentInputConfig) Reset()

func (*DocumentInputConfig) String

func (x *DocumentInputConfig) String() string

type Document_Layout

type Document_Layout struct {

	// Text Segment that represents a segment in
	// [document_text][google.cloud.automl.v1beta1.Document.document_text].
	TextSegment *TextSegment `protobuf:"bytes,1,opt,name=text_segment,json=textSegment,proto3" json:"text_segment,omitempty"`
	// Page number of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the original document, starts
	// from 1.
	PageNumber int32 `protobuf:"varint,2,opt,name=page_number,json=pageNumber,proto3" json:"page_number,omitempty"`
	// The position of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the page.
	// Contains exactly 4
	//
	// [normalized_vertices][google.cloud.automl.v1beta1.BoundingPoly.normalized_vertices]
	// and they are connected by edges in the order provided, which will
	// represent a rectangle parallel to the frame. The
	// [NormalizedVertex-s][google.cloud.automl.v1beta1.NormalizedVertex] are
	// relative to the page.
	// Coordinates are based on top-left as point (0,0).
	BoundingPoly *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_poly,json=boundingPoly,proto3" json:"bounding_poly,omitempty"`
	// The type of the [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in document.
	TextSegmentType Document_Layout_TextSegmentType `` /* 174-byte string literal not displayed */
	// contains filtered or unexported fields
}

Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.

func (*Document_Layout) Descriptor deprecated

func (*Document_Layout) Descriptor() ([]byte, []int)

Deprecated: Use Document_Layout.ProtoReflect.Descriptor instead.

func (*Document_Layout) GetBoundingPoly

func (x *Document_Layout) GetBoundingPoly() *BoundingPoly

func (*Document_Layout) GetPageNumber

func (x *Document_Layout) GetPageNumber() int32

func (*Document_Layout) GetTextSegment

func (x *Document_Layout) GetTextSegment() *TextSegment

func (*Document_Layout) GetTextSegmentType

func (x *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType

func (*Document_Layout) ProtoMessage

func (*Document_Layout) ProtoMessage()

func (*Document_Layout) ProtoReflect

func (x *Document_Layout) ProtoReflect() protoreflect.Message

func (*Document_Layout) Reset

func (x *Document_Layout) Reset()

func (*Document_Layout) String

func (x *Document_Layout) String() string

type Document_Layout_TextSegmentType

type Document_Layout_TextSegmentType int32

The type of TextSegment in the context of the original document.

const (
	// Should not be used.
	Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TextSegmentType = 0
	// The text segment is a token. e.g. word.
	Document_Layout_TOKEN Document_Layout_TextSegmentType = 1
	// The text segment is a paragraph.
	Document_Layout_PARAGRAPH Document_Layout_TextSegmentType = 2
	// The text segment is a form field.
	Document_Layout_FORM_FIELD Document_Layout_TextSegmentType = 3
	// The text segment is the name part of a form field. It will be treated
	// as child of another FORM_FIELD TextSegment if its span is subspan of
	// another TextSegment with type FORM_FIELD.
	Document_Layout_FORM_FIELD_NAME Document_Layout_TextSegmentType = 4
	// The text segment is the text content part of a form field. It will be
	// treated as child of another FORM_FIELD TextSegment if its span is
	// subspan of another TextSegment with type FORM_FIELD.
	Document_Layout_FORM_FIELD_CONTENTS Document_Layout_TextSegmentType = 5
	// The text segment is a whole table, including headers, and all rows.
	Document_Layout_TABLE Document_Layout_TextSegmentType = 6
	// The text segment is a table's headers. It will be treated as child of
	// another TABLE TextSegment if its span is subspan of another TextSegment
	// with type TABLE.
	Document_Layout_TABLE_HEADER Document_Layout_TextSegmentType = 7
	// The text segment is a row in table. It will be treated as child of
	// another TABLE TextSegment if its span is subspan of another TextSegment
	// with type TABLE.
	Document_Layout_TABLE_ROW Document_Layout_TextSegmentType = 8
	// The text segment is a cell in table. It will be treated as child of
	// another TABLE_ROW TextSegment if its span is subspan of another
	// TextSegment with type TABLE_ROW.
	Document_Layout_TABLE_CELL Document_Layout_TextSegmentType = 9
)

func (Document_Layout_TextSegmentType) Descriptor

func (Document_Layout_TextSegmentType) Enum

func (Document_Layout_TextSegmentType) EnumDescriptor deprecated

func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Document_Layout_TextSegmentType.Descriptor instead.

func (Document_Layout_TextSegmentType) Number

func (Document_Layout_TextSegmentType) String

func (Document_Layout_TextSegmentType) Type

type DoubleRange

type DoubleRange struct {

	// Start of the range, inclusive.
	Start float64 `protobuf:"fixed64,1,opt,name=start,proto3" json:"start,omitempty"`
	// End of the range, exclusive.
	End float64 `protobuf:"fixed64,2,opt,name=end,proto3" json:"end,omitempty"`
	// contains filtered or unexported fields
}

A range between two double numbers.

func (*DoubleRange) Descriptor deprecated

func (*DoubleRange) Descriptor() ([]byte, []int)

Deprecated: Use DoubleRange.ProtoReflect.Descriptor instead.

func (*DoubleRange) GetEnd

func (x *DoubleRange) GetEnd() float64

func (*DoubleRange) GetStart

func (x *DoubleRange) GetStart() float64

func (*DoubleRange) ProtoMessage

func (*DoubleRange) ProtoMessage()

func (*DoubleRange) ProtoReflect

func (x *DoubleRange) ProtoReflect() protoreflect.Message

func (*DoubleRange) Reset

func (x *DoubleRange) Reset()

func (*DoubleRange) String

func (x *DoubleRange) String() string

type ExamplePayload

type ExamplePayload struct {

	// Required. Input only. The example data.
	//
	// Types that are assignable to Payload:
	//
	//	*ExamplePayload_Image
	//	*ExamplePayload_TextSnippet
	//	*ExamplePayload_Document
	//	*ExamplePayload_Row
	Payload isExamplePayload_Payload `protobuf_oneof:"payload"`
	// contains filtered or unexported fields
}

Example data used for training or prediction.

func (*ExamplePayload) Descriptor deprecated

func (*ExamplePayload) Descriptor() ([]byte, []int)

Deprecated: Use ExamplePayload.ProtoReflect.Descriptor instead.

func (*ExamplePayload) GetDocument

func (x *ExamplePayload) GetDocument() *Document

func (*ExamplePayload) GetImage

func (x *ExamplePayload) GetImage() *Image

func (*ExamplePayload) GetPayload

func (m *ExamplePayload) GetPayload() isExamplePayload_Payload

func (*ExamplePayload) GetRow

func (x *ExamplePayload) GetRow() *Row

func (*ExamplePayload) GetTextSnippet

func (x *ExamplePayload) GetTextSnippet() *TextSnippet

func (*ExamplePayload) ProtoMessage

func (*ExamplePayload) ProtoMessage()

func (*ExamplePayload) ProtoReflect

func (x *ExamplePayload) ProtoReflect() protoreflect.Message

func (*ExamplePayload) Reset

func (x *ExamplePayload) Reset()

func (*ExamplePayload) String

func (x *ExamplePayload) String() string

type ExamplePayload_Document

type ExamplePayload_Document struct {
	// Example document.
	Document *Document `protobuf:"bytes,4,opt,name=document,proto3,oneof"`
}

type ExamplePayload_Image

type ExamplePayload_Image struct {
	// Example image.
	Image *Image `protobuf:"bytes,1,opt,name=image,proto3,oneof"`
}

type ExamplePayload_Row

type ExamplePayload_Row struct {
	// Example relational table row.
	Row *Row `protobuf:"bytes,3,opt,name=row,proto3,oneof"`
}

type ExamplePayload_TextSnippet

type ExamplePayload_TextSnippet struct {
	// Example text.
	TextSnippet *TextSnippet `protobuf:"bytes,2,opt,name=text_snippet,json=textSnippet,proto3,oneof"`
}

type ExportDataOperationMetadata

type ExportDataOperationMetadata struct {

	// Output only. Information further describing this export data's output.
	OutputInfo *ExportDataOperationMetadata_ExportDataOutputInfo `protobuf:"bytes,1,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of ExportData operation.

func (*ExportDataOperationMetadata) Descriptor deprecated

func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ExportDataOperationMetadata.ProtoReflect.Descriptor instead.

func (*ExportDataOperationMetadata) GetOutputInfo

func (*ExportDataOperationMetadata) ProtoMessage

func (*ExportDataOperationMetadata) ProtoMessage()

func (*ExportDataOperationMetadata) ProtoReflect

func (*ExportDataOperationMetadata) Reset

func (x *ExportDataOperationMetadata) Reset()

func (*ExportDataOperationMetadata) String

func (x *ExportDataOperationMetadata) String() string

type ExportDataOperationMetadata_ExportDataOutputInfo

type ExportDataOperationMetadata_ExportDataOutputInfo struct {

	// The output location to which the exported data is written.
	//
	// Types that are assignable to OutputLocation:
	//
	//	*ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
	//	*ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset
	OutputLocation isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
	// contains filtered or unexported fields
}

Further describes this export data's output. Supplements OutputConfig[google.cloud.automl.v1beta1.OutputConfig].

func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor deprecated

Deprecated: Use ExportDataOperationMetadata_ExportDataOutputInfo.ProtoReflect.Descriptor instead.

func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset

func (x *ExportDataOperationMetadata_ExportDataOutputInfo) GetBigqueryOutputDataset() string

func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory

func (x *ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory() string

func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation

func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation() isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation

func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage

func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoReflect

func (*ExportDataOperationMetadata_ExportDataOutputInfo) Reset

func (*ExportDataOperationMetadata_ExportDataOutputInfo) String

type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset

type ExportDataOperationMetadata_ExportDataOutputInfo_BigqueryOutputDataset struct {
	// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
	// format, into which the exported data is written.
	BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}

type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory

type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory struct {
	// The full path of the Google Cloud Storage directory created, into which
	// the exported data is written.
	GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}

type ExportDataRequest

type ExportDataRequest struct {

	// Required. The resource name of the dataset.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The desired output location.
	OutputConfig *OutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ExportData][google.cloud.automl.v1beta1.AutoMl.ExportData].

func (*ExportDataRequest) Descriptor deprecated

func (*ExportDataRequest) Descriptor() ([]byte, []int)

Deprecated: Use ExportDataRequest.ProtoReflect.Descriptor instead.

func (*ExportDataRequest) GetName

func (x *ExportDataRequest) GetName() string

func (*ExportDataRequest) GetOutputConfig

func (x *ExportDataRequest) GetOutputConfig() *OutputConfig

func (*ExportDataRequest) ProtoMessage

func (*ExportDataRequest) ProtoMessage()

func (*ExportDataRequest) ProtoReflect

func (x *ExportDataRequest) ProtoReflect() protoreflect.Message

func (*ExportDataRequest) Reset

func (x *ExportDataRequest) Reset()

func (*ExportDataRequest) String

func (x *ExportDataRequest) String() string

type ExportEvaluatedExamplesOperationMetadata

type ExportEvaluatedExamplesOperationMetadata struct {

	// Output only. Information further describing the output of this evaluated
	// examples export.
	OutputInfo *ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of EvaluatedExamples operation.

func (*ExportEvaluatedExamplesOperationMetadata) Descriptor deprecated

func (*ExportEvaluatedExamplesOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ExportEvaluatedExamplesOperationMetadata.ProtoReflect.Descriptor instead.

func (*ExportEvaluatedExamplesOperationMetadata) ProtoMessage

func (*ExportEvaluatedExamplesOperationMetadata) ProtoReflect

func (*ExportEvaluatedExamplesOperationMetadata) Reset

func (*ExportEvaluatedExamplesOperationMetadata) String

type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo

type ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo struct {

	// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
	// format, into which the output of export evaluated examples is written.
	BigqueryOutputDataset string `` /* 126-byte string literal not displayed */
	// contains filtered or unexported fields
}

Further describes the output of the evaluated examples export. Supplements

ExportEvaluatedExamplesOutputConfig[google.cloud.automl.v1beta1.ExportEvaluatedExamplesOutputConfig].

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Descriptor deprecated

Deprecated: Use ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo.ProtoReflect.Descriptor instead.

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) GetBigqueryOutputDataset

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoMessage

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) ProtoReflect

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) Reset

func (*ExportEvaluatedExamplesOperationMetadata_ExportEvaluatedExamplesOutputInfo) String

type ExportEvaluatedExamplesOutputConfig

type ExportEvaluatedExamplesOutputConfig struct {

	// Required. The destination of the output.
	//
	// Types that are assignable to Destination:
	//
	//	*ExportEvaluatedExamplesOutputConfig_BigqueryDestination
	Destination isExportEvaluatedExamplesOutputConfig_Destination `protobuf_oneof:"destination"`
	// contains filtered or unexported fields
}

Output configuration for ExportEvaluatedExamples Action. Note that this call is available only for 30 days since the moment the model was evaluated. The output depends on the domain, as follows (note that only examples from the TEST set are exported):

  • For Tables:

[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]

pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name

`export_evaluated_examples_<model-display-name>_<timestamp-of-export-call>`

where <model-display-name> will be made BigQuery-dataset-name
compatible (e.g. most special characters will become underscores),
and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601"
format. In the dataset an `evaluated_examples` table will be
created. It will have all the same columns as the

[primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]

of the
[dataset][google.cloud.automl.v1beta1.Model.dataset_id] from which
the model was created, as they were at the moment of model's
evaluation (this includes the target column with its ground
truth), followed by a column called "predicted_<target_column>". That
last column will contain the model's prediction result for each
respective row, given as ARRAY of
[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
represented as STRUCT-s, containing
[TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].

func (*ExportEvaluatedExamplesOutputConfig) Descriptor deprecated

func (*ExportEvaluatedExamplesOutputConfig) Descriptor() ([]byte, []int)

Deprecated: Use ExportEvaluatedExamplesOutputConfig.ProtoReflect.Descriptor instead.

func (*ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination

func (x *ExportEvaluatedExamplesOutputConfig) GetBigqueryDestination() *BigQueryDestination

func (*ExportEvaluatedExamplesOutputConfig) GetDestination

func (m *ExportEvaluatedExamplesOutputConfig) GetDestination() isExportEvaluatedExamplesOutputConfig_Destination

func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage

func (*ExportEvaluatedExamplesOutputConfig) ProtoMessage()

func (*ExportEvaluatedExamplesOutputConfig) ProtoReflect

func (*ExportEvaluatedExamplesOutputConfig) Reset

func (*ExportEvaluatedExamplesOutputConfig) String

type ExportEvaluatedExamplesOutputConfig_BigqueryDestination

type ExportEvaluatedExamplesOutputConfig_BigqueryDestination struct {
	// The BigQuery location where the output is to be written to.
	BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}

type ExportEvaluatedExamplesRequest

type ExportEvaluatedExamplesRequest struct {

	// Required. The resource name of the model whose evaluated examples are to
	// be exported.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The desired output location and configuration.
	OutputConfig *ExportEvaluatedExamplesOutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ExportEvaluatedExamples][google.cloud.automl.v1beta1.AutoMl.ExportEvaluatedExamples].

func (*ExportEvaluatedExamplesRequest) Descriptor deprecated

func (*ExportEvaluatedExamplesRequest) Descriptor() ([]byte, []int)

Deprecated: Use ExportEvaluatedExamplesRequest.ProtoReflect.Descriptor instead.

func (*ExportEvaluatedExamplesRequest) GetName

func (*ExportEvaluatedExamplesRequest) GetOutputConfig

func (*ExportEvaluatedExamplesRequest) ProtoMessage

func (*ExportEvaluatedExamplesRequest) ProtoMessage()

func (*ExportEvaluatedExamplesRequest) ProtoReflect

func (*ExportEvaluatedExamplesRequest) Reset

func (x *ExportEvaluatedExamplesRequest) Reset()

func (*ExportEvaluatedExamplesRequest) String

type ExportModelOperationMetadata

type ExportModelOperationMetadata struct {

	// Output only. Information further describing the output of this model
	// export.
	OutputInfo *ExportModelOperationMetadata_ExportModelOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of ExportModel operation.

func (*ExportModelOperationMetadata) Descriptor deprecated

func (*ExportModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ExportModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*ExportModelOperationMetadata) GetOutputInfo

func (*ExportModelOperationMetadata) ProtoMessage

func (*ExportModelOperationMetadata) ProtoMessage()

func (*ExportModelOperationMetadata) ProtoReflect

func (*ExportModelOperationMetadata) Reset

func (x *ExportModelOperationMetadata) Reset()

func (*ExportModelOperationMetadata) String

type ExportModelOperationMetadata_ExportModelOutputInfo

type ExportModelOperationMetadata_ExportModelOutputInfo struct {

	// The full path of the Google Cloud Storage directory created, into which
	// the model will be exported.
	GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3" json:"gcs_output_directory,omitempty"`
	// contains filtered or unexported fields
}

Further describes the output of model export. Supplements

ModelExportOutputConfig[google.cloud.automl.v1beta1.ModelExportOutputConfig].

func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor deprecated

Deprecated: Use ExportModelOperationMetadata_ExportModelOutputInfo.ProtoReflect.Descriptor instead.

func (*ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory

func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage

func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoReflect

func (*ExportModelOperationMetadata_ExportModelOutputInfo) Reset

func (*ExportModelOperationMetadata_ExportModelOutputInfo) String

type ExportModelRequest

type ExportModelRequest struct {

	// Required. The resource name of the model to export.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The desired output location and configuration.
	OutputConfig *ModelExportOutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.

func (*ExportModelRequest) Descriptor deprecated

func (*ExportModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use ExportModelRequest.ProtoReflect.Descriptor instead.

func (*ExportModelRequest) GetName

func (x *ExportModelRequest) GetName() string

func (*ExportModelRequest) GetOutputConfig

func (x *ExportModelRequest) GetOutputConfig() *ModelExportOutputConfig

func (*ExportModelRequest) ProtoMessage

func (*ExportModelRequest) ProtoMessage()

func (*ExportModelRequest) ProtoReflect

func (x *ExportModelRequest) ProtoReflect() protoreflect.Message

func (*ExportModelRequest) Reset

func (x *ExportModelRequest) Reset()

func (*ExportModelRequest) String

func (x *ExportModelRequest) String() string

type Float64Stats

type Float64Stats struct {

	// The mean of the series.
	Mean float64 `protobuf:"fixed64,1,opt,name=mean,proto3" json:"mean,omitempty"`
	// The standard deviation of the series.
	StandardDeviation float64 `protobuf:"fixed64,2,opt,name=standard_deviation,json=standardDeviation,proto3" json:"standard_deviation,omitempty"`
	// Ordered from 0 to k k-quantile values of the data series of n values.
	// The value at index i is, approximately, the i*n/k-th smallest value in the
	// series; for i = 0 and i = k these are, respectively, the min and max
	// values.
	Quantiles []float64 `protobuf:"fixed64,3,rep,packed,name=quantiles,proto3" json:"quantiles,omitempty"`
	// Histogram buckets of the data series. Sorted by the min value of the
	// bucket, ascendingly, and the number of the buckets is dynamically
	// generated. The buckets are non-overlapping and completely cover whole
	// FLOAT64 range with min of first bucket being `"-Infinity"`, and max of
	// the last one being `"Infinity"`.
	HistogramBuckets []*Float64Stats_HistogramBucket `protobuf:"bytes,4,rep,name=histogram_buckets,json=histogramBuckets,proto3" json:"histogram_buckets,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of FLOAT64 values.

func (*Float64Stats) Descriptor deprecated

func (*Float64Stats) Descriptor() ([]byte, []int)

Deprecated: Use Float64Stats.ProtoReflect.Descriptor instead.

func (*Float64Stats) GetHistogramBuckets

func (x *Float64Stats) GetHistogramBuckets() []*Float64Stats_HistogramBucket

func (*Float64Stats) GetMean

func (x *Float64Stats) GetMean() float64

func (*Float64Stats) GetQuantiles

func (x *Float64Stats) GetQuantiles() []float64

func (*Float64Stats) GetStandardDeviation

func (x *Float64Stats) GetStandardDeviation() float64

func (*Float64Stats) ProtoMessage

func (*Float64Stats) ProtoMessage()

func (*Float64Stats) ProtoReflect

func (x *Float64Stats) ProtoReflect() protoreflect.Message

func (*Float64Stats) Reset

func (x *Float64Stats) Reset()

func (*Float64Stats) String

func (x *Float64Stats) String() string

type Float64Stats_HistogramBucket

type Float64Stats_HistogramBucket struct {

	// The minimum value of the bucket, inclusive.
	Min float64 `protobuf:"fixed64,1,opt,name=min,proto3" json:"min,omitempty"`
	// The maximum value of the bucket, exclusive unless max = `"Infinity"`, in
	// which case it's inclusive.
	Max float64 `protobuf:"fixed64,2,opt,name=max,proto3" json:"max,omitempty"`
	// The number of data values that are in the bucket, i.e. are between
	// min and max values.
	Count int64 `protobuf:"varint,3,opt,name=count,proto3" json:"count,omitempty"`
	// contains filtered or unexported fields
}

A bucket of a histogram.

func (*Float64Stats_HistogramBucket) Descriptor deprecated

func (*Float64Stats_HistogramBucket) Descriptor() ([]byte, []int)

Deprecated: Use Float64Stats_HistogramBucket.ProtoReflect.Descriptor instead.

func (*Float64Stats_HistogramBucket) GetCount

func (x *Float64Stats_HistogramBucket) GetCount() int64

func (*Float64Stats_HistogramBucket) GetMax

func (*Float64Stats_HistogramBucket) GetMin

func (*Float64Stats_HistogramBucket) ProtoMessage

func (*Float64Stats_HistogramBucket) ProtoMessage()

func (*Float64Stats_HistogramBucket) ProtoReflect

func (*Float64Stats_HistogramBucket) Reset

func (x *Float64Stats_HistogramBucket) Reset()

func (*Float64Stats_HistogramBucket) String

type GcrDestination

type GcrDestination struct {

	// Required. Google Contained Registry URI of the new image, up to 2000
	// characters long. See
	//
	// https:
	// //cloud.google.com/container-registry/do
	// // cs/pushing-and-pulling#pushing_an_image_to_a_registry
	// Accepted forms:
	// * [HOSTNAME]/[PROJECT-ID]/[IMAGE]
	// * [HOSTNAME]/[PROJECT-ID]/[IMAGE]:[TAG]
	//
	// The requesting user must have permission to push images the project.
	OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"`
	// contains filtered or unexported fields
}

The GCR location where the image must be pushed to.

func (*GcrDestination) Descriptor deprecated

func (*GcrDestination) Descriptor() ([]byte, []int)

Deprecated: Use GcrDestination.ProtoReflect.Descriptor instead.

func (*GcrDestination) GetOutputUri

func (x *GcrDestination) GetOutputUri() string

func (*GcrDestination) ProtoMessage

func (*GcrDestination) ProtoMessage()

func (*GcrDestination) ProtoReflect

func (x *GcrDestination) ProtoReflect() protoreflect.Message

func (*GcrDestination) Reset

func (x *GcrDestination) Reset()

func (*GcrDestination) String

func (x *GcrDestination) String() string

type GcsDestination

type GcsDestination struct {

	// Required. Google Cloud Storage URI to output directory, up to 2000
	// characters long.
	// Accepted forms:
	// * Prefix path: gs://bucket/directory
	// The requesting user must have write permission to the bucket.
	// The directory is created if it doesn't exist.
	OutputUriPrefix string `protobuf:"bytes,1,opt,name=output_uri_prefix,json=outputUriPrefix,proto3" json:"output_uri_prefix,omitempty"`
	// contains filtered or unexported fields
}

The Google Cloud Storage location where the output is to be written to.

func (*GcsDestination) Descriptor deprecated

func (*GcsDestination) Descriptor() ([]byte, []int)

Deprecated: Use GcsDestination.ProtoReflect.Descriptor instead.

func (*GcsDestination) GetOutputUriPrefix

func (x *GcsDestination) GetOutputUriPrefix() string

func (*GcsDestination) ProtoMessage

func (*GcsDestination) ProtoMessage()

func (*GcsDestination) ProtoReflect

func (x *GcsDestination) ProtoReflect() protoreflect.Message

func (*GcsDestination) Reset

func (x *GcsDestination) Reset()

func (*GcsDestination) String

func (x *GcsDestination) String() string

type GcsSource

type GcsSource struct {

	// Required. Google Cloud Storage URIs to input files, up to 2000 characters
	// long. Accepted forms:
	// * Full object path, e.g. gs://bucket/directory/object.csv
	InputUris []string `protobuf:"bytes,1,rep,name=input_uris,json=inputUris,proto3" json:"input_uris,omitempty"`
	// contains filtered or unexported fields
}

The Google Cloud Storage location for the input content.

func (*GcsSource) Descriptor deprecated

func (*GcsSource) Descriptor() ([]byte, []int)

Deprecated: Use GcsSource.ProtoReflect.Descriptor instead.

func (*GcsSource) GetInputUris

func (x *GcsSource) GetInputUris() []string

func (*GcsSource) ProtoMessage

func (*GcsSource) ProtoMessage()

func (*GcsSource) ProtoReflect

func (x *GcsSource) ProtoReflect() protoreflect.Message

func (*GcsSource) Reset

func (x *GcsSource) Reset()

func (*GcsSource) String

func (x *GcsSource) String() string

type GetAnnotationSpecRequest

type GetAnnotationSpecRequest struct {

	// Required. The resource name of the annotation spec to retrieve.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1beta1.AutoMl.GetAnnotationSpec].

func (*GetAnnotationSpecRequest) Descriptor deprecated

func (*GetAnnotationSpecRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetAnnotationSpecRequest.ProtoReflect.Descriptor instead.

func (*GetAnnotationSpecRequest) GetName

func (x *GetAnnotationSpecRequest) GetName() string

func (*GetAnnotationSpecRequest) ProtoMessage

func (*GetAnnotationSpecRequest) ProtoMessage()

func (*GetAnnotationSpecRequest) ProtoReflect

func (x *GetAnnotationSpecRequest) ProtoReflect() protoreflect.Message

func (*GetAnnotationSpecRequest) Reset

func (x *GetAnnotationSpecRequest) Reset()

func (*GetAnnotationSpecRequest) String

func (x *GetAnnotationSpecRequest) String() string

type GetColumnSpecRequest

type GetColumnSpecRequest struct {

	// Required. The resource name of the column spec to retrieve.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Mask specifying which fields to read.
	FieldMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetColumnSpec][google.cloud.automl.v1beta1.AutoMl.GetColumnSpec].

func (*GetColumnSpecRequest) Descriptor deprecated

func (*GetColumnSpecRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetColumnSpecRequest.ProtoReflect.Descriptor instead.

func (*GetColumnSpecRequest) GetFieldMask

func (x *GetColumnSpecRequest) GetFieldMask() *fieldmaskpb.FieldMask

func (*GetColumnSpecRequest) GetName

func (x *GetColumnSpecRequest) GetName() string

func (*GetColumnSpecRequest) ProtoMessage

func (*GetColumnSpecRequest) ProtoMessage()

func (*GetColumnSpecRequest) ProtoReflect

func (x *GetColumnSpecRequest) ProtoReflect() protoreflect.Message

func (*GetColumnSpecRequest) Reset

func (x *GetColumnSpecRequest) Reset()

func (*GetColumnSpecRequest) String

func (x *GetColumnSpecRequest) String() string

type GetDatasetRequest

type GetDatasetRequest struct {

	// Required. The resource name of the dataset to retrieve.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetDataset][google.cloud.automl.v1beta1.AutoMl.GetDataset].

func (*GetDatasetRequest) Descriptor deprecated

func (*GetDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetDatasetRequest.ProtoReflect.Descriptor instead.

func (*GetDatasetRequest) GetName

func (x *GetDatasetRequest) GetName() string

func (*GetDatasetRequest) ProtoMessage

func (*GetDatasetRequest) ProtoMessage()

func (*GetDatasetRequest) ProtoReflect

func (x *GetDatasetRequest) ProtoReflect() protoreflect.Message

func (*GetDatasetRequest) Reset

func (x *GetDatasetRequest) Reset()

func (*GetDatasetRequest) String

func (x *GetDatasetRequest) String() string

type GetModelEvaluationRequest

type GetModelEvaluationRequest struct {

	// Required. Resource name for the model evaluation.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1beta1.AutoMl.GetModelEvaluation].

func (*GetModelEvaluationRequest) Descriptor deprecated

func (*GetModelEvaluationRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetModelEvaluationRequest.ProtoReflect.Descriptor instead.

func (*GetModelEvaluationRequest) GetName

func (x *GetModelEvaluationRequest) GetName() string

func (*GetModelEvaluationRequest) ProtoMessage

func (*GetModelEvaluationRequest) ProtoMessage()

func (*GetModelEvaluationRequest) ProtoReflect

func (*GetModelEvaluationRequest) Reset

func (x *GetModelEvaluationRequest) Reset()

func (*GetModelEvaluationRequest) String

func (x *GetModelEvaluationRequest) String() string

type GetModelRequest

type GetModelRequest struct {

	// Required. Resource name of the model.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetModel][google.cloud.automl.v1beta1.AutoMl.GetModel].

func (*GetModelRequest) Descriptor deprecated

func (*GetModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetModelRequest.ProtoReflect.Descriptor instead.

func (*GetModelRequest) GetName

func (x *GetModelRequest) GetName() string

func (*GetModelRequest) ProtoMessage

func (*GetModelRequest) ProtoMessage()

func (*GetModelRequest) ProtoReflect

func (x *GetModelRequest) ProtoReflect() protoreflect.Message

func (*GetModelRequest) Reset

func (x *GetModelRequest) Reset()

func (*GetModelRequest) String

func (x *GetModelRequest) String() string

type GetTableSpecRequest

type GetTableSpecRequest struct {

	// Required. The resource name of the table spec to retrieve.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Mask specifying which fields to read.
	FieldMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.GetTableSpec][google.cloud.automl.v1beta1.AutoMl.GetTableSpec].

func (*GetTableSpecRequest) Descriptor deprecated

func (*GetTableSpecRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetTableSpecRequest.ProtoReflect.Descriptor instead.

func (*GetTableSpecRequest) GetFieldMask

func (x *GetTableSpecRequest) GetFieldMask() *fieldmaskpb.FieldMask

func (*GetTableSpecRequest) GetName

func (x *GetTableSpecRequest) GetName() string

func (*GetTableSpecRequest) ProtoMessage

func (*GetTableSpecRequest) ProtoMessage()

func (*GetTableSpecRequest) ProtoReflect

func (x *GetTableSpecRequest) ProtoReflect() protoreflect.Message

func (*GetTableSpecRequest) Reset

func (x *GetTableSpecRequest) Reset()

func (*GetTableSpecRequest) String

func (x *GetTableSpecRequest) String() string

type Image

type Image struct {

	// Input only. The data representing the image.
	// For Predict calls [image_bytes][google.cloud.automl.v1beta1.Image.image_bytes] must be set, as other options are not
	// currently supported by prediction API. You can read the contents of an
	// uploaded image by using the [content_uri][google.cloud.automl.v1beta1.Image.content_uri] field.
	//
	// Types that are assignable to Data:
	//
	//	*Image_ImageBytes
	//	*Image_InputConfig
	Data isImage_Data `protobuf_oneof:"data"`
	// Output only. HTTP URI to the thumbnail image.
	ThumbnailUri string `protobuf:"bytes,4,opt,name=thumbnail_uri,json=thumbnailUri,proto3" json:"thumbnail_uri,omitempty"`
	// contains filtered or unexported fields
}

A representation of an image. Only images up to 30MB in size are supported.

func (*Image) Descriptor deprecated

func (*Image) Descriptor() ([]byte, []int)

Deprecated: Use Image.ProtoReflect.Descriptor instead.

func (*Image) GetData

func (m *Image) GetData() isImage_Data

func (*Image) GetImageBytes

func (x *Image) GetImageBytes() []byte

func (*Image) GetInputConfig

func (x *Image) GetInputConfig() *InputConfig

func (*Image) GetThumbnailUri

func (x *Image) GetThumbnailUri() string

func (*Image) ProtoMessage

func (*Image) ProtoMessage()

func (*Image) ProtoReflect

func (x *Image) ProtoReflect() protoreflect.Message

func (*Image) Reset

func (x *Image) Reset()

func (*Image) String

func (x *Image) String() string

type ImageClassificationDatasetMetadata

type ImageClassificationDatasetMetadata struct {

	// Required. Type of the classification problem.
	ClassificationType ClassificationType `` /* 168-byte string literal not displayed */
	// contains filtered or unexported fields
}

Dataset metadata that is specific to image classification.

func (*ImageClassificationDatasetMetadata) Descriptor deprecated

func (*ImageClassificationDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ImageClassificationDatasetMetadata.ProtoReflect.Descriptor instead.

func (*ImageClassificationDatasetMetadata) GetClassificationType

func (x *ImageClassificationDatasetMetadata) GetClassificationType() ClassificationType

func (*ImageClassificationDatasetMetadata) ProtoMessage

func (*ImageClassificationDatasetMetadata) ProtoMessage()

func (*ImageClassificationDatasetMetadata) ProtoReflect

func (*ImageClassificationDatasetMetadata) Reset

func (*ImageClassificationDatasetMetadata) String

type ImageClassificationModelDeploymentMetadata

type ImageClassificationModelDeploymentMetadata struct {

	// Input only. The number of nodes to deploy the model on. A node is an
	// abstraction of a machine resource, which can handle online prediction QPS
	// as given in the model's
	//
	// [node_qps][google.cloud.automl.v1beta1.ImageClassificationModelMetadata.node_qps].
	// Must be between 1 and 100, inclusive on both ends.
	NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
	// contains filtered or unexported fields
}

Model deployment metadata specific to Image Classification.

func (*ImageClassificationModelDeploymentMetadata) Descriptor deprecated

Deprecated: Use ImageClassificationModelDeploymentMetadata.ProtoReflect.Descriptor instead.

func (*ImageClassificationModelDeploymentMetadata) GetNodeCount

func (*ImageClassificationModelDeploymentMetadata) ProtoMessage

func (*ImageClassificationModelDeploymentMetadata) ProtoReflect

func (*ImageClassificationModelDeploymentMetadata) Reset

func (*ImageClassificationModelDeploymentMetadata) String

type ImageClassificationModelMetadata

type ImageClassificationModelMetadata struct {

	// Optional. The ID of the `base` model. If it is specified, the new model
	// will be created based on the `base` model. Otherwise, the new model will be
	// created from scratch. The `base` model must be in the same
	// `project` and `location` as the new model to create, and have the same
	// `model_type`.
	BaseModelId string `protobuf:"bytes,1,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"`
	// Required. The train budget of creating this model, expressed in hours. The
	// actual `train_cost` will be equal or less than this value.
	TrainBudget int64 `protobuf:"varint,2,opt,name=train_budget,json=trainBudget,proto3" json:"train_budget,omitempty"`
	// Output only. The actual train cost of creating this model, expressed in
	// hours. If this model is created from a `base` model, the train cost used
	// to create the `base` model are not included.
	TrainCost int64 `protobuf:"varint,3,opt,name=train_cost,json=trainCost,proto3" json:"train_cost,omitempty"`
	// Output only. The reason that this create model operation stopped,
	// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
	StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"`
	// Optional. Type of the model. The available values are:
	//   - `cloud` - Model to be used via prediction calls to AutoML API.
	//     This is the default value.
	//   - `mobile-low-latency-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards. Expected to have low latency, but
	//     may have lower prediction quality than other models.
	//   - `mobile-versatile-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards.
	//   - `mobile-high-accuracy-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards.  Expected to have a higher
	//     latency, but should also have a higher prediction quality
	//     than other models.
	//   - `mobile-core-ml-low-latency-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core
	//     ML afterwards. Expected to have low latency, but may have
	//     lower prediction quality than other models.
	//   - `mobile-core-ml-versatile-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with Core
	//     ML afterwards.
	//   - `mobile-core-ml-high-accuracy-1` - A model that, in addition to
	//     providing prediction via AutoML API, can also be exported
	//     (see [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile device with
	//     Core ML afterwards.  Expected to have a higher latency, but
	//     should also have a higher prediction quality than other
	//     models.
	ModelType string `protobuf:"bytes,7,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"`
	// Output only. An approximate number of online prediction QPS that can
	// be supported by this model per each node on which it is deployed.
	NodeQps float64 `protobuf:"fixed64,13,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"`
	// Output only. The number of nodes this model is deployed on. A node is an
	// abstraction of a machine resource, which can handle online prediction QPS
	// as given in the node_qps field.
	NodeCount int64 `protobuf:"varint,14,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
	// contains filtered or unexported fields
}

Model metadata for image classification.

func (*ImageClassificationModelMetadata) Descriptor deprecated

func (*ImageClassificationModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ImageClassificationModelMetadata.ProtoReflect.Descriptor instead.

func (*ImageClassificationModelMetadata) GetBaseModelId

func (x *ImageClassificationModelMetadata) GetBaseModelId() string

func (*ImageClassificationModelMetadata) GetModelType

func (x *ImageClassificationModelMetadata) GetModelType() string

func (*ImageClassificationModelMetadata) GetNodeCount

func (x *ImageClassificationModelMetadata) GetNodeCount() int64

func (*ImageClassificationModelMetadata) GetNodeQps

func (x *ImageClassificationModelMetadata) GetNodeQps() float64

func (*ImageClassificationModelMetadata) GetStopReason

func (x *ImageClassificationModelMetadata) GetStopReason() string

func (*ImageClassificationModelMetadata) GetTrainBudget

func (x *ImageClassificationModelMetadata) GetTrainBudget() int64

func (*ImageClassificationModelMetadata) GetTrainCost

func (x *ImageClassificationModelMetadata) GetTrainCost() int64

func (*ImageClassificationModelMetadata) ProtoMessage

func (*ImageClassificationModelMetadata) ProtoMessage()

func (*ImageClassificationModelMetadata) ProtoReflect

func (*ImageClassificationModelMetadata) Reset

func (*ImageClassificationModelMetadata) String

type ImageObjectDetectionAnnotation

type ImageObjectDetectionAnnotation struct {

	// Output only. The rectangle representing the object location.
	BoundingBox *BoundingPoly `protobuf:"bytes,1,opt,name=bounding_box,json=boundingBox,proto3" json:"bounding_box,omitempty"`
	// Output only. The confidence that this annotation is positive for the parent example,
	// value in [0, 1], higher means higher positivity confidence.
	Score float32 `protobuf:"fixed32,2,opt,name=score,proto3" json:"score,omitempty"`
	// contains filtered or unexported fields
}

Annotation details for image object detection.

func (*ImageObjectDetectionAnnotation) Descriptor deprecated

func (*ImageObjectDetectionAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use ImageObjectDetectionAnnotation.ProtoReflect.Descriptor instead.

func (*ImageObjectDetectionAnnotation) GetBoundingBox

func (x *ImageObjectDetectionAnnotation) GetBoundingBox() *BoundingPoly

func (*ImageObjectDetectionAnnotation) GetScore

func (*ImageObjectDetectionAnnotation) ProtoMessage

func (*ImageObjectDetectionAnnotation) ProtoMessage()

func (*ImageObjectDetectionAnnotation) ProtoReflect

func (*ImageObjectDetectionAnnotation) Reset

func (x *ImageObjectDetectionAnnotation) Reset()

func (*ImageObjectDetectionAnnotation) String

type ImageObjectDetectionDatasetMetadata

type ImageObjectDetectionDatasetMetadata struct {
	// contains filtered or unexported fields
}

Dataset metadata specific to image object detection.

func (*ImageObjectDetectionDatasetMetadata) Descriptor deprecated

func (*ImageObjectDetectionDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ImageObjectDetectionDatasetMetadata.ProtoReflect.Descriptor instead.

func (*ImageObjectDetectionDatasetMetadata) ProtoMessage

func (*ImageObjectDetectionDatasetMetadata) ProtoMessage()

func (*ImageObjectDetectionDatasetMetadata) ProtoReflect

func (*ImageObjectDetectionDatasetMetadata) Reset

func (*ImageObjectDetectionDatasetMetadata) String

type ImageObjectDetectionEvaluationMetrics

type ImageObjectDetectionEvaluationMetrics struct {

	// Output only. The total number of bounding boxes (i.e. summed over all
	// images) the ground truth used to create this evaluation had.
	EvaluatedBoundingBoxCount int32 `` /* 141-byte string literal not displayed */
	// Output only. The bounding boxes match metrics for each
	// Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
	// and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
	// pair.
	BoundingBoxMetricsEntries []*BoundingBoxMetricsEntry `` /* 140-byte string literal not displayed */
	// Output only. The single metric for bounding boxes evaluation:
	// the mean_average_precision averaged over all bounding_box_metrics_entries.
	BoundingBoxMeanAveragePrecision float32 `` /* 162-byte string literal not displayed */
	// contains filtered or unexported fields
}

Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.

func (*ImageObjectDetectionEvaluationMetrics) Descriptor deprecated

func (*ImageObjectDetectionEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use ImageObjectDetectionEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision

func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32

func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries

func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry

func (*ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount

func (x *ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32

func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage

func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage()

func (*ImageObjectDetectionEvaluationMetrics) ProtoReflect

func (*ImageObjectDetectionEvaluationMetrics) Reset

func (*ImageObjectDetectionEvaluationMetrics) String

type ImageObjectDetectionModelDeploymentMetadata

type ImageObjectDetectionModelDeploymentMetadata struct {

	// Input only. The number of nodes to deploy the model on. A node is an
	// abstraction of a machine resource, which can handle online prediction QPS
	// as given in the model's
	//
	// [qps_per_node][google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.qps_per_node].
	// Must be between 1 and 100, inclusive on both ends.
	NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
	// contains filtered or unexported fields
}

Model deployment metadata specific to Image Object Detection.

func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor deprecated

Deprecated: Use ImageObjectDetectionModelDeploymentMetadata.ProtoReflect.Descriptor instead.

func (*ImageObjectDetectionModelDeploymentMetadata) GetNodeCount

func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage

func (*ImageObjectDetectionModelDeploymentMetadata) ProtoReflect

func (*ImageObjectDetectionModelDeploymentMetadata) Reset

func (*ImageObjectDetectionModelDeploymentMetadata) String

type ImageObjectDetectionModelMetadata

type ImageObjectDetectionModelMetadata struct {

	// Optional. Type of the model. The available values are:
	//   - `cloud-high-accuracy-1` - (default) A model to be used via prediction
	//     calls to AutoML API. Expected to have a higher latency, but
	//     should also have a higher prediction quality than other
	//     models.
	//   - `cloud-low-latency-1` -  A model to be used via prediction
	//     calls to AutoML API. Expected to have low latency, but may
	//     have lower prediction quality than other models.
	//   - `mobile-low-latency-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards. Expected to have low latency, but
	//     may have lower prediction quality than other models.
	//   - `mobile-versatile-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards.
	//   - `mobile-high-accuracy-1` - A model that, in addition to providing
	//     prediction via AutoML API, can also be exported (see
	//     [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
	//     with TensorFlow afterwards.  Expected to have a higher
	//     latency, but should also have a higher prediction quality
	//     than other models.
	ModelType string `protobuf:"bytes,1,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"`
	// Output only. The number of nodes this model is deployed on. A node is an
	// abstraction of a machine resource, which can handle online prediction QPS
	// as given in the qps_per_node field.
	NodeCount int64 `protobuf:"varint,3,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
	// Output only. An approximate number of online prediction QPS that can
	// be supported by this model per each node on which it is deployed.
	NodeQps float64 `protobuf:"fixed64,4,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"`
	// Output only. The reason that this create model operation stopped,
	// e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
	StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"`
	// The train budget of creating this model, expressed in milli node
	// hours i.e. 1,000 value in this field means 1 node hour. The actual
	// `train_cost` will be equal or less than this value. If further model
	// training ceases to provide any improvements, it will stop without using
	// full budget and the stop_reason will be `MODEL_CONVERGED`.
	// Note, node_hour  = actual_hour * number_of_nodes_invovled.
	// For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
	// the train budget must be between 20,000 and 900,000 milli node hours,
	// inclusive. The default value is 216, 000 which represents one day in
	// wall time.
	// For model type `mobile-low-latency-1`, `mobile-versatile-1`,
	// `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
	// `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
	// budget must be between 1,000 and 100,000 milli node hours, inclusive.
	// The default value is 24, 000 which represents one day in wall time.
	TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */
	// Output only. The actual train cost of creating this model, expressed in
	// milli node hours, i.e. 1,000 value in this field means 1 node hour.
	// Guaranteed to not exceed the train budget.
	TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */
	// contains filtered or unexported fields
}

Model metadata specific to image object detection.

func (*ImageObjectDetectionModelMetadata) Descriptor deprecated

func (*ImageObjectDetectionModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ImageObjectDetectionModelMetadata.ProtoReflect.Descriptor instead.

func (*ImageObjectDetectionModelMetadata) GetModelType

func (x *ImageObjectDetectionModelMetadata) GetModelType() string

func (*ImageObjectDetectionModelMetadata) GetNodeCount

func (x *ImageObjectDetectionModelMetadata) GetNodeCount() int64

func (*ImageObjectDetectionModelMetadata) GetNodeQps

func (*ImageObjectDetectionModelMetadata) GetStopReason

func (x *ImageObjectDetectionModelMetadata) GetStopReason() string

func (*ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours

func (x *ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours() int64

func (*ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours

func (x *ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours() int64

func (*ImageObjectDetectionModelMetadata) ProtoMessage

func (*ImageObjectDetectionModelMetadata) ProtoMessage()

func (*ImageObjectDetectionModelMetadata) ProtoReflect

func (*ImageObjectDetectionModelMetadata) Reset

func (*ImageObjectDetectionModelMetadata) String

type Image_ImageBytes

type Image_ImageBytes struct {
	// Image content represented as a stream of bytes.
	// Note: As with all `bytes` fields, protobuffers use a pure binary
	// representation, whereas JSON representations use base64.
	ImageBytes []byte `protobuf:"bytes,1,opt,name=image_bytes,json=imageBytes,proto3,oneof"`
}

type Image_InputConfig

type Image_InputConfig struct {
	// An input config specifying the content of the image.
	InputConfig *InputConfig `protobuf:"bytes,6,opt,name=input_config,json=inputConfig,proto3,oneof"`
}

type ImportDataOperationMetadata

type ImportDataOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of ImportData operation.

func (*ImportDataOperationMetadata) Descriptor deprecated

func (*ImportDataOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ImportDataOperationMetadata.ProtoReflect.Descriptor instead.

func (*ImportDataOperationMetadata) ProtoMessage

func (*ImportDataOperationMetadata) ProtoMessage()

func (*ImportDataOperationMetadata) ProtoReflect

func (*ImportDataOperationMetadata) Reset

func (x *ImportDataOperationMetadata) Reset()

func (*ImportDataOperationMetadata) String

func (x *ImportDataOperationMetadata) String() string

type ImportDataRequest

type ImportDataRequest struct {

	// Required. Dataset name. Dataset must already exist. All imported
	// annotations and examples will be added.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The desired input location and its domain specific semantics,
	// if any.
	InputConfig *InputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData].

func (*ImportDataRequest) Descriptor deprecated

func (*ImportDataRequest) Descriptor() ([]byte, []int)

Deprecated: Use ImportDataRequest.ProtoReflect.Descriptor instead.

func (*ImportDataRequest) GetInputConfig

func (x *ImportDataRequest) GetInputConfig() *InputConfig

func (*ImportDataRequest) GetName

func (x *ImportDataRequest) GetName() string

func (*ImportDataRequest) ProtoMessage

func (*ImportDataRequest) ProtoMessage()

func (*ImportDataRequest) ProtoReflect

func (x *ImportDataRequest) ProtoReflect() protoreflect.Message

func (*ImportDataRequest) Reset

func (x *ImportDataRequest) Reset()

func (*ImportDataRequest) String

func (x *ImportDataRequest) String() string

type InputConfig

type InputConfig struct {

	// The source of the input.
	//
	// Types that are assignable to Source:
	//
	//	*InputConfig_GcsSource
	//	*InputConfig_BigquerySource
	Source isInputConfig_Source `protobuf_oneof:"source"`
	// Additional domain-specific parameters describing the semantic of the
	// imported data, any string must be up to 25000
	// characters long.
	//
	//   - For Tables:
	//     `schema_inference_version` - (integer) Required. The version of the
	//     algorithm that should be used for the initial inference of the
	//     schema (columns' DataTypes) of the table the data is being imported
	//     into. Allowed values: "1".
	Params map[string]string `` /* 153-byte string literal not displayed */
	// contains filtered or unexported fields
}

Input configuration for ImportData Action.

The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

  • For Image Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO For MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg

  • For Image Object Detection: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined per line). If an image has not yet been labeled, then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX. For images which are known to not contain any bounding boxes, they should be labelled explictly as "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the BOUNDING_BOX. Sample rows: TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,

  • For Video Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it shuold be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,,

  • For Video Object Tracking: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using one of the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_IDs can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it. TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,,

  • For Text Extraction: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which either imports text in-line or as documents. Any given .JSONL file must be 100MB or smaller. The in-line .JSONL file contains, per line, a proto that wraps a TextSnippet proto (in json representation) followed by one or more AnnotationPayload protos (called annotations), which have display_name and text_extraction detail populated. The given text is expected to be annotated exhaustively, for example, if you look for animals and text contains "dolphin" that is not labeled, then "dolphin" is assumed to not be an animal. Any given text snippet content must be 10KB or smaller, and also be UTF-8 NFC encoded (ASCII already is). The document .JSONL file contains, per line, a proto that wraps a Document proto. The Document proto must have either document_text or input_config set. In document_text case, the Document proto may also contain the spatial information of the document, including layout, document dimension and page number. In input_config case, only PDF documents are supported now, and each document may be up to 2MB large. Currently, annotations on documents cannot be specified at import. Three sample CSV rows: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl Sample in-line JSON Lines file for entity extraction (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "document_text": {"content": "dog cat"} "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 3, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, }, { "text_segment": { "start_offset": 4, "end_offset": 7, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.4, "y": 0.1}, {"x": 0.4, "y": 0.3}, {"x": 0.8, "y": 0.3}, {"x": 0.8, "y": 0.1}, ], }, "text_segment_type": TOKEN, }

    ], "document_dimensions": { "width": 8.27, "height": 11.69, "unit": INCH, } "page_count": 1, }, "annotations": [ { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 0, "end_offset": 3}} }, { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 4, "end_offset": 7}} } ], }\n { "text_snippet": { "content": "This dog is good." }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 5, "end_offset": 8} } } ] } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }

  • For Text Classification: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, i.e. prefixed by "gs://", it will be treated as a GCS_FILE_PATH, else if the content is enclosed within double quotes (""), it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content excluding quotes is treated as to be imported text snippet. In both cases, the text snippet/file size must be within 128kB. Maximum 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood TRAIN,gs://folder/content.txt,SlowService TEST,"Typically always bad service there.",RudeService VALIDATE,"Stomach ache to go.",BadFood

  • For Text Sentiment: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content itself is treated as to be imported text snippet. In both cases, the text snippet must be up to 500 characters long. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 TRAIN,"I need this product so bad",3 TEST,"Thank you for this product.",4 VALIDATE,gs://folder/content.txt,2

  • For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or

[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source]

can be used. All inputs is concatenated into a single

[primary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_name]

For gcs_source:
  CSV file(s), where the first row of the first file is the header,
  containing unique column names. If the first row of a subsequent
  file is the same as the header, then it is also treated as a
  header. All other rows contain values for the corresponding
  columns.
  Each .CSV file by itself must be 10GB or smaller, and their total
  size must be 100GB or smaller.
  First three sample rows of a CSV file:
  "Id","First Name","Last Name","Dob","Addresses"

"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"

"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}

       For bigquery_source:
         An URI of a BigQuery table. The user data size of the BigQuery
         table must be 100GB or smaller.
       An imported table must have between 2 and 1,000 columns, inclusive,
       and between 1000 and 100,000,000 rows, inclusive. There are at most 5
       import data running in parallel.
Definitions:
ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED"
         Describes how the given example (file) should be used for model
         training. "UNASSIGNED" can be used when user has no preference.
GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png".
LABEL = A display name of an object on an image, video etc., e.g. "dog".
        Must be up to 32 characters long and can consist only of ASCII
        Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9.
        For each label an AnnotationSpec is created which display_name
        becomes the label; AnnotationSpecs are given back in predictions.
INSTANCE_ID = A positive integer that identifies a specific instance of a
              labeled entity on an example. Used e.g. to track two cars on
              a video while being able to tell apart which one is which.
BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,,
               A rectangle parallel to the frame of the example (image,
               video). If 4 vertices are given they are connected by edges
               in the order provided, if 2 are given they are recognized
               as diagonally opposite vertices of the rectangle.
VERTEX = COORDINATE,COORDINATE
         First coordinate is horizontal (x), the second is vertical (y).
COORDINATE = A float in 0 to 1 range, relative to total length of
             image or video in given dimension. For fractions the
             leading non-decimal 0 can be omitted (i.e. 0.3 = .3).
             Point 0,0 is in top left.
TIME_SEGMENT_START = TIME_OFFSET
                     Expresses a beginning, inclusive, of a time segment
                     within an example that has a time dimension
                     (e.g. video).
TIME_SEGMENT_END = TIME_OFFSET
                   Expresses an end, exclusive, of a time segment within
                   an example that has a time dimension (e.g. video).
TIME_OFFSET = A number of seconds as measured from the start of an
              example (e.g. video). Fractions are allowed, up to a
              microsecond precision. "inf" is allowed, and it means the end
              of the example.
TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
               double quotes ("").
SENTIMENT = An integer between 0 and
            Dataset.text_sentiment_dataset_metadata.sentiment_max
            (inclusive). Describes the ordinal of the sentiment - higher
            value means a more positive sentiment. All the values are
            completely relative, i.e. neither 0 needs to mean a negative or
            neutral sentiment nor sentiment_max needs to mean a positive one
            - it is just required that 0 is the least positive sentiment
            in the data, and sentiment_max is the  most positive one.
            The SENTIMENT shouldn't be confused with "score" or "magnitude"
            from the previous Natural Language Sentiment Analysis API.
            All SENTIMENT values between 0 and sentiment_max must be
            represented in the imported data. On prediction the same 0 to
            sentiment_max range will be used. The difference between
            neighboring sentiment values needs not to be uniform, e.g. 1 and
            2 may be similar whereas the difference between 2 and 3 may be
            huge.

Errors:
If any of the provided CSV files can't be parsed or if more than certain
percent of CSV rows cannot be processed then the operation fails and
nothing is imported. Regardless of overall success or failure the per-row
failures, up to a certain count cap, is listed in
Operation.metadata.partial_failures.

func (*InputConfig) Descriptor deprecated

func (*InputConfig) Descriptor() ([]byte, []int)

Deprecated: Use InputConfig.ProtoReflect.Descriptor instead.

func (*InputConfig) GetBigquerySource

func (x *InputConfig) GetBigquerySource() *BigQuerySource

func (*InputConfig) GetGcsSource

func (x *InputConfig) GetGcsSource() *GcsSource

func (*InputConfig) GetParams

func (x *InputConfig) GetParams() map[string]string

func (*InputConfig) GetSource

func (m *InputConfig) GetSource() isInputConfig_Source

func (*InputConfig) ProtoMessage

func (*InputConfig) ProtoMessage()

func (*InputConfig) ProtoReflect

func (x *InputConfig) ProtoReflect() protoreflect.Message

func (*InputConfig) Reset

func (x *InputConfig) Reset()

func (*InputConfig) String

func (x *InputConfig) String() string

type InputConfig_BigquerySource

type InputConfig_BigquerySource struct {
	// The BigQuery location for the input content.
	BigquerySource *BigQuerySource `protobuf:"bytes,3,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}

type InputConfig_GcsSource

type InputConfig_GcsSource struct {
	// The Google Cloud Storage location for the input content.
	// In ImportData, the gcs_source points to a csv with structure described in
	// the comment.
	GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}

type ListColumnSpecsRequest

type ListColumnSpecsRequest struct {

	// Required. The resource name of the table spec to list column specs from.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Mask specifying which fields to read.
	FieldMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"`
	// Filter expression, see go/filtering.
	Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"`
	// Requested page size. The server can return fewer results than requested.
	// If unspecified, the server will pick a default size.
	PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"`
	// A token identifying a page of results for the server to return.
	// Typically obtained from the
	// [ListColumnSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListColumnSpecsResponse.next_page_token] field of the previous
	// [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs] call.
	PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].

func (*ListColumnSpecsRequest) Descriptor deprecated

func (*ListColumnSpecsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListColumnSpecsRequest.ProtoReflect.Descriptor instead.

func (*ListColumnSpecsRequest) GetFieldMask

func (x *ListColumnSpecsRequest) GetFieldMask() *fieldmaskpb.FieldMask

func (*ListColumnSpecsRequest) GetFilter

func (x *ListColumnSpecsRequest) GetFilter() string

func (*ListColumnSpecsRequest) GetPageSize

func (x *ListColumnSpecsRequest) GetPageSize() int32

func (*ListColumnSpecsRequest) GetPageToken

func (x *ListColumnSpecsRequest) GetPageToken() string

func (*ListColumnSpecsRequest) GetParent

func (x *ListColumnSpecsRequest) GetParent() string

func (*ListColumnSpecsRequest) ProtoMessage

func (*ListColumnSpecsRequest) ProtoMessage()

func (*ListColumnSpecsRequest) ProtoReflect

func (x *ListColumnSpecsRequest) ProtoReflect() protoreflect.Message

func (*ListColumnSpecsRequest) Reset

func (x *ListColumnSpecsRequest) Reset()

func (*ListColumnSpecsRequest) String

func (x *ListColumnSpecsRequest) String() string

type ListColumnSpecsResponse

type ListColumnSpecsResponse struct {

	// The column specs read.
	ColumnSpecs []*ColumnSpec `protobuf:"bytes,1,rep,name=column_specs,json=columnSpecs,proto3" json:"column_specs,omitempty"`
	// A token to retrieve next page of results.
	// Pass to [ListColumnSpecsRequest.page_token][google.cloud.automl.v1beta1.ListColumnSpecsRequest.page_token] to obtain that page.
	NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
	// contains filtered or unexported fields
}

Response message for [AutoMl.ListColumnSpecs][google.cloud.automl.v1beta1.AutoMl.ListColumnSpecs].

func (*ListColumnSpecsResponse) Descriptor deprecated

func (*ListColumnSpecsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListColumnSpecsResponse.ProtoReflect.Descriptor instead.

func (*ListColumnSpecsResponse) GetColumnSpecs

func (x *ListColumnSpecsResponse) GetColumnSpecs() []*ColumnSpec

func (*ListColumnSpecsResponse) GetNextPageToken

func (x *ListColumnSpecsResponse) GetNextPageToken() string

func (*ListColumnSpecsResponse) ProtoMessage

func (*ListColumnSpecsResponse) ProtoMessage()

func (*ListColumnSpecsResponse) ProtoReflect

func (x *ListColumnSpecsResponse) ProtoReflect() protoreflect.Message

func (*ListColumnSpecsResponse) Reset

func (x *ListColumnSpecsResponse) Reset()

func (*ListColumnSpecsResponse) String

func (x *ListColumnSpecsResponse) String() string

type ListDatasetsRequest

type ListDatasetsRequest struct {

	// Required. The resource name of the project from which to list datasets.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// An expression for filtering the results of the request.
	//
	//   - `dataset_metadata` - for existence of the case (e.g.
	//     `image_classification_dataset_metadata:*`). Some examples of
	//     using the filter are:
	//
	//   - `translation_dataset_metadata:*` --> The dataset has
	//     `translation_dataset_metadata`.
	Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"`
	// Requested page size. Server may return fewer results than requested.
	// If unspecified, server will pick a default size.
	PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"`
	// A token identifying a page of results for the server to return
	// Typically obtained via
	// [ListDatasetsResponse.next_page_token][google.cloud.automl.v1beta1.ListDatasetsResponse.next_page_token] of the previous
	// [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets] call.
	PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].

func (*ListDatasetsRequest) Descriptor deprecated

func (*ListDatasetsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListDatasetsRequest.ProtoReflect.Descriptor instead.

func (*ListDatasetsRequest) GetFilter

func (x *ListDatasetsRequest) GetFilter() string

func (*ListDatasetsRequest) GetPageSize

func (x *ListDatasetsRequest) GetPageSize() int32

func (*ListDatasetsRequest) GetPageToken

func (x *ListDatasetsRequest) GetPageToken() string

func (*ListDatasetsRequest) GetParent

func (x *ListDatasetsRequest) GetParent() string

func (*ListDatasetsRequest) ProtoMessage

func (*ListDatasetsRequest) ProtoMessage()

func (*ListDatasetsRequest) ProtoReflect

func (x *ListDatasetsRequest) ProtoReflect() protoreflect.Message

func (*ListDatasetsRequest) Reset

func (x *ListDatasetsRequest) Reset()

func (*ListDatasetsRequest) String

func (x *ListDatasetsRequest) String() string

type ListDatasetsResponse

type ListDatasetsResponse struct {

	// The datasets read.
	Datasets []*Dataset `protobuf:"bytes,1,rep,name=datasets,proto3" json:"datasets,omitempty"`
	// A token to retrieve next page of results.
	// Pass to [ListDatasetsRequest.page_token][google.cloud.automl.v1beta1.ListDatasetsRequest.page_token] to obtain that page.
	NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
	// contains filtered or unexported fields
}

Response message for [AutoMl.ListDatasets][google.cloud.automl.v1beta1.AutoMl.ListDatasets].

func (*ListDatasetsResponse) Descriptor deprecated

func (*ListDatasetsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListDatasetsResponse.ProtoReflect.Descriptor instead.

func (*ListDatasetsResponse) GetDatasets

func (x *ListDatasetsResponse) GetDatasets() []*Dataset

func (*ListDatasetsResponse) GetNextPageToken

func (x *ListDatasetsResponse) GetNextPageToken() string

func (*ListDatasetsResponse) ProtoMessage

func (*ListDatasetsResponse) ProtoMessage()

func (*ListDatasetsResponse) ProtoReflect

func (x *ListDatasetsResponse) ProtoReflect() protoreflect.Message

func (*ListDatasetsResponse) Reset

func (x *ListDatasetsResponse) Reset()

func (*ListDatasetsResponse) String

func (x *ListDatasetsResponse) String() string

type ListModelEvaluationsRequest

type ListModelEvaluationsRequest struct {

	// Required. Resource name of the model to list the model evaluations for.
	// If modelId is set as "-", this will list model evaluations from across all
	// models of the parent location.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// An expression for filtering the results of the request.
	//
	//   - `annotation_spec_id` - for =, !=  or existence. See example below for
	//     the last.
	//
	// Some examples of using the filter are:
	//
	//   - `annotation_spec_id!=4` --> The model evaluation was done for
	//     annotation spec with ID different than 4.
	//   - `NOT annotation_spec_id:*` --> The model evaluation was done for
	//     aggregate of all annotation specs.
	Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"`
	// Requested page size.
	PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"`
	// A token identifying a page of results for the server to return.
	// Typically obtained via
	// [ListModelEvaluationsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelEvaluationsResponse.next_page_token] of the previous
	// [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] call.
	PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].

func (*ListModelEvaluationsRequest) Descriptor deprecated

func (*ListModelEvaluationsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListModelEvaluationsRequest.ProtoReflect.Descriptor instead.

func (*ListModelEvaluationsRequest) GetFilter

func (x *ListModelEvaluationsRequest) GetFilter() string

func (*ListModelEvaluationsRequest) GetPageSize

func (x *ListModelEvaluationsRequest) GetPageSize() int32

func (*ListModelEvaluationsRequest) GetPageToken

func (x *ListModelEvaluationsRequest) GetPageToken() string

func (*ListModelEvaluationsRequest) GetParent

func (x *ListModelEvaluationsRequest) GetParent() string

func (*ListModelEvaluationsRequest) ProtoMessage

func (*ListModelEvaluationsRequest) ProtoMessage()

func (*ListModelEvaluationsRequest) ProtoReflect

func (*ListModelEvaluationsRequest) Reset

func (x *ListModelEvaluationsRequest) Reset()

func (*ListModelEvaluationsRequest) String

func (x *ListModelEvaluationsRequest) String() string

type ListModelEvaluationsResponse

type ListModelEvaluationsResponse struct {

	// List of model evaluations in the requested page.
	ModelEvaluation []*ModelEvaluation `protobuf:"bytes,1,rep,name=model_evaluation,json=modelEvaluation,proto3" json:"model_evaluation,omitempty"`
	// A token to retrieve next page of results.
	// Pass to the [ListModelEvaluationsRequest.page_token][google.cloud.automl.v1beta1.ListModelEvaluationsRequest.page_token] field of a new
	// [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations] request to obtain that page.
	NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
	// contains filtered or unexported fields
}

Response message for [AutoMl.ListModelEvaluations][google.cloud.automl.v1beta1.AutoMl.ListModelEvaluations].

func (*ListModelEvaluationsResponse) Descriptor deprecated

func (*ListModelEvaluationsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListModelEvaluationsResponse.ProtoReflect.Descriptor instead.

func (*ListModelEvaluationsResponse) GetModelEvaluation

func (x *ListModelEvaluationsResponse) GetModelEvaluation() []*ModelEvaluation

func (*ListModelEvaluationsResponse) GetNextPageToken

func (x *ListModelEvaluationsResponse) GetNextPageToken() string

func (*ListModelEvaluationsResponse) ProtoMessage

func (*ListModelEvaluationsResponse) ProtoMessage()

func (*ListModelEvaluationsResponse) ProtoReflect

func (*ListModelEvaluationsResponse) Reset

func (x *ListModelEvaluationsResponse) Reset()

func (*ListModelEvaluationsResponse) String

type ListModelsRequest

type ListModelsRequest struct {

	// Required. Resource name of the project, from which to list the models.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// An expression for filtering the results of the request.
	//
	//   - `model_metadata` - for existence of the case (e.g.
	//     `video_classification_model_metadata:*`).
	//
	//   - `dataset_id` - for = or !=. Some examples of using the filter are:
	//
	//   - `image_classification_model_metadata:*` --> The model has
	//     `image_classification_model_metadata`.
	//
	//   - `dataset_id=5` --> The model was created from a dataset with ID 5.
	Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"`
	// Requested page size.
	PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"`
	// A token identifying a page of results for the server to return
	// Typically obtained via
	// [ListModelsResponse.next_page_token][google.cloud.automl.v1beta1.ListModelsResponse.next_page_token] of the previous
	// [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels] call.
	PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].

func (*ListModelsRequest) Descriptor deprecated

func (*ListModelsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListModelsRequest.ProtoReflect.Descriptor instead.

func (*ListModelsRequest) GetFilter

func (x *ListModelsRequest) GetFilter() string

func (*ListModelsRequest) GetPageSize

func (x *ListModelsRequest) GetPageSize() int32

func (*ListModelsRequest) GetPageToken

func (x *ListModelsRequest) GetPageToken() string

func (*ListModelsRequest) GetParent

func (x *ListModelsRequest) GetParent() string

func (*ListModelsRequest) ProtoMessage

func (*ListModelsRequest) ProtoMessage()

func (*ListModelsRequest) ProtoReflect

func (x *ListModelsRequest) ProtoReflect() protoreflect.Message

func (*ListModelsRequest) Reset

func (x *ListModelsRequest) Reset()

func (*ListModelsRequest) String

func (x *ListModelsRequest) String() string

type ListModelsResponse

type ListModelsResponse struct {

	// List of models in the requested page.
	Model []*Model `protobuf:"bytes,1,rep,name=model,proto3" json:"model,omitempty"`
	// A token to retrieve next page of results.
	// Pass to [ListModelsRequest.page_token][google.cloud.automl.v1beta1.ListModelsRequest.page_token] to obtain that page.
	NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
	// contains filtered or unexported fields
}

Response message for [AutoMl.ListModels][google.cloud.automl.v1beta1.AutoMl.ListModels].

func (*ListModelsResponse) Descriptor deprecated

func (*ListModelsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListModelsResponse.ProtoReflect.Descriptor instead.

func (*ListModelsResponse) GetModel

func (x *ListModelsResponse) GetModel() []*Model

func (*ListModelsResponse) GetNextPageToken

func (x *ListModelsResponse) GetNextPageToken() string

func (*ListModelsResponse) ProtoMessage

func (*ListModelsResponse) ProtoMessage()

func (*ListModelsResponse) ProtoReflect

func (x *ListModelsResponse) ProtoReflect() protoreflect.Message

func (*ListModelsResponse) Reset

func (x *ListModelsResponse) Reset()

func (*ListModelsResponse) String

func (x *ListModelsResponse) String() string

type ListTableSpecsRequest

type ListTableSpecsRequest struct {

	// Required. The resource name of the dataset to list table specs from.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Mask specifying which fields to read.
	FieldMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=field_mask,json=fieldMask,proto3" json:"field_mask,omitempty"`
	// Filter expression, see go/filtering.
	Filter string `protobuf:"bytes,3,opt,name=filter,proto3" json:"filter,omitempty"`
	// Requested page size. The server can return fewer results than requested.
	// If unspecified, the server will pick a default size.
	PageSize int32 `protobuf:"varint,4,opt,name=page_size,json=pageSize,proto3" json:"page_size,omitempty"`
	// A token identifying a page of results for the server to return.
	// Typically obtained from the
	// [ListTableSpecsResponse.next_page_token][google.cloud.automl.v1beta1.ListTableSpecsResponse.next_page_token] field of the previous
	// [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs] call.
	PageToken string `protobuf:"bytes,6,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].

func (*ListTableSpecsRequest) Descriptor deprecated

func (*ListTableSpecsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListTableSpecsRequest.ProtoReflect.Descriptor instead.

func (*ListTableSpecsRequest) GetFieldMask

func (x *ListTableSpecsRequest) GetFieldMask() *fieldmaskpb.FieldMask

func (*ListTableSpecsRequest) GetFilter

func (x *ListTableSpecsRequest) GetFilter() string

func (*ListTableSpecsRequest) GetPageSize

func (x *ListTableSpecsRequest) GetPageSize() int32

func (*ListTableSpecsRequest) GetPageToken

func (x *ListTableSpecsRequest) GetPageToken() string

func (*ListTableSpecsRequest) GetParent

func (x *ListTableSpecsRequest) GetParent() string

func (*ListTableSpecsRequest) ProtoMessage

func (*ListTableSpecsRequest) ProtoMessage()

func (*ListTableSpecsRequest) ProtoReflect

func (x *ListTableSpecsRequest) ProtoReflect() protoreflect.Message

func (*ListTableSpecsRequest) Reset

func (x *ListTableSpecsRequest) Reset()

func (*ListTableSpecsRequest) String

func (x *ListTableSpecsRequest) String() string

type ListTableSpecsResponse

type ListTableSpecsResponse struct {

	// The table specs read.
	TableSpecs []*TableSpec `protobuf:"bytes,1,rep,name=table_specs,json=tableSpecs,proto3" json:"table_specs,omitempty"`
	// A token to retrieve next page of results.
	// Pass to [ListTableSpecsRequest.page_token][google.cloud.automl.v1beta1.ListTableSpecsRequest.page_token] to obtain that page.
	NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
	// contains filtered or unexported fields
}

Response message for [AutoMl.ListTableSpecs][google.cloud.automl.v1beta1.AutoMl.ListTableSpecs].

func (*ListTableSpecsResponse) Descriptor deprecated

func (*ListTableSpecsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListTableSpecsResponse.ProtoReflect.Descriptor instead.

func (*ListTableSpecsResponse) GetNextPageToken

func (x *ListTableSpecsResponse) GetNextPageToken() string

func (*ListTableSpecsResponse) GetTableSpecs

func (x *ListTableSpecsResponse) GetTableSpecs() []*TableSpec

func (*ListTableSpecsResponse) ProtoMessage

func (*ListTableSpecsResponse) ProtoMessage()

func (*ListTableSpecsResponse) ProtoReflect

func (x *ListTableSpecsResponse) ProtoReflect() protoreflect.Message

func (*ListTableSpecsResponse) Reset

func (x *ListTableSpecsResponse) Reset()

func (*ListTableSpecsResponse) String

func (x *ListTableSpecsResponse) String() string

type Model

type Model struct {

	// Required.
	// The model metadata that is specific to the problem type.
	// Must match the metadata type of the dataset used to train the model.
	//
	// Types that are assignable to ModelMetadata:
	//
	//	*Model_TranslationModelMetadata
	//	*Model_ImageClassificationModelMetadata
	//	*Model_TextClassificationModelMetadata
	//	*Model_ImageObjectDetectionModelMetadata
	//	*Model_VideoClassificationModelMetadata
	//	*Model_VideoObjectTrackingModelMetadata
	//	*Model_TextExtractionModelMetadata
	//	*Model_TablesModelMetadata
	//	*Model_TextSentimentModelMetadata
	ModelMetadata isModel_ModelMetadata `protobuf_oneof:"model_metadata"`
	// Output only. Resource name of the model.
	// Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The name of the model to show in the interface. The name can be
	// up to 32 characters long and can consist only of ASCII Latin letters A-Z
	// and a-z, underscores
	// (_), and ASCII digits 0-9. It must start with a letter.
	DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Required. The resource ID of the dataset used to create the model. The dataset must
	// come from the same ancestor project and location.
	DatasetId string `protobuf:"bytes,3,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
	// Output only. Timestamp when the model training finished  and can be used for prediction.
	CreateTime *timestamppb.Timestamp `protobuf:"bytes,7,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
	// Output only. Timestamp when this model was last updated.
	UpdateTime *timestamppb.Timestamp `protobuf:"bytes,11,opt,name=update_time,json=updateTime,proto3" json:"update_time,omitempty"`
	// Output only. Deployment state of the model. A model can only serve
	// prediction requests after it gets deployed.
	DeploymentState Model_DeploymentState `` /* 162-byte string literal not displayed */
	// contains filtered or unexported fields
}

API proto representing a trained machine learning model.

func (*Model) Descriptor deprecated

func (*Model) Descriptor() ([]byte, []int)

Deprecated: Use Model.ProtoReflect.Descriptor instead.

func (*Model) GetCreateTime

func (x *Model) GetCreateTime() *timestamppb.Timestamp

func (*Model) GetDatasetId

func (x *Model) GetDatasetId() string

func (*Model) GetDeploymentState

func (x *Model) GetDeploymentState() Model_DeploymentState

func (*Model) GetDisplayName

func (x *Model) GetDisplayName() string

func (*Model) GetImageClassificationModelMetadata

func (x *Model) GetImageClassificationModelMetadata() *ImageClassificationModelMetadata

func (*Model) GetImageObjectDetectionModelMetadata

func (x *Model) GetImageObjectDetectionModelMetadata() *ImageObjectDetectionModelMetadata

func (*Model) GetModelMetadata

func (m *Model) GetModelMetadata() isModel_ModelMetadata

func (*Model) GetName

func (x *Model) GetName() string

func (*Model) GetTablesModelMetadata

func (x *Model) GetTablesModelMetadata() *TablesModelMetadata

func (*Model) GetTextClassificationModelMetadata

func (x *Model) GetTextClassificationModelMetadata() *TextClassificationModelMetadata

func (*Model) GetTextExtractionModelMetadata

func (x *Model) GetTextExtractionModelMetadata() *TextExtractionModelMetadata

func (*Model) GetTextSentimentModelMetadata

func (x *Model) GetTextSentimentModelMetadata() *TextSentimentModelMetadata

func (*Model) GetTranslationModelMetadata

func (x *Model) GetTranslationModelMetadata() *TranslationModelMetadata

func (*Model) GetUpdateTime

func (x *Model) GetUpdateTime() *timestamppb.Timestamp

func (*Model) GetVideoClassificationModelMetadata

func (x *Model) GetVideoClassificationModelMetadata() *VideoClassificationModelMetadata

func (*Model) GetVideoObjectTrackingModelMetadata

func (x *Model) GetVideoObjectTrackingModelMetadata() *VideoObjectTrackingModelMetadata

func (*Model) ProtoMessage

func (*Model) ProtoMessage()

func (*Model) ProtoReflect

func (x *Model) ProtoReflect() protoreflect.Message

func (*Model) Reset

func (x *Model) Reset()

func (*Model) String

func (x *Model) String() string

type ModelEvaluation

type ModelEvaluation struct {

	// Output only. Problem type specific evaluation metrics.
	//
	// Types that are assignable to Metrics:
	//
	//	*ModelEvaluation_ClassificationEvaluationMetrics
	//	*ModelEvaluation_RegressionEvaluationMetrics
	//	*ModelEvaluation_TranslationEvaluationMetrics
	//	*ModelEvaluation_ImageObjectDetectionEvaluationMetrics
	//	*ModelEvaluation_VideoObjectTrackingEvaluationMetrics
	//	*ModelEvaluation_TextSentimentEvaluationMetrics
	//	*ModelEvaluation_TextExtractionEvaluationMetrics
	Metrics isModelEvaluation_Metrics `protobuf_oneof:"metrics"`
	// Output only. Resource name of the model evaluation.
	// Format:
	//
	// `projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Output only. The ID of the annotation spec that the model evaluation applies to. The
	// The ID is empty for the overall model evaluation.
	// For Tables annotation specs in the dataset do not exist and this ID is
	// always not set, but for CLASSIFICATION
	//
	// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
	// the
	// [display_name][google.cloud.automl.v1beta1.ModelEvaluation.display_name]
	// field is used.
	AnnotationSpecId string `protobuf:"bytes,2,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// Output only. The value of
	// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name] at
	// the moment when the model was trained. Because this field returns a value
	// at model training time, for different models trained from the same dataset,
	// the values may differ, since display names could had been changed between
	// the two model's trainings.
	// For Tables CLASSIFICATION
	//
	// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
	// distinct values of the target column at the moment of the model evaluation
	// are populated here.
	// The display_name is empty for the overall model evaluation.
	DisplayName string `protobuf:"bytes,15,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. Timestamp when this model evaluation was created.
	CreateTime *timestamppb.Timestamp `protobuf:"bytes,5,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
	// Output only. The number of examples used for model evaluation, i.e. for
	// which ground truth from time of model creation is compared against the
	// predicted annotations created by the model.
	// For overall ModelEvaluation (i.e. with annotation_spec_id not set) this is
	// the total number of all examples used for evaluation.
	// Otherwise, this is the count of examples that according to the ground
	// truth were annotated by the
	//
	// [annotation_spec_id][google.cloud.automl.v1beta1.ModelEvaluation.annotation_spec_id].
	EvaluatedExampleCount int32 `` /* 127-byte string literal not displayed */
	// contains filtered or unexported fields
}

Evaluation results of a model.

func (*ModelEvaluation) Descriptor deprecated

func (*ModelEvaluation) Descriptor() ([]byte, []int)

Deprecated: Use ModelEvaluation.ProtoReflect.Descriptor instead.

func (*ModelEvaluation) GetAnnotationSpecId

func (x *ModelEvaluation) GetAnnotationSpecId() string

func (*ModelEvaluation) GetClassificationEvaluationMetrics

func (x *ModelEvaluation) GetClassificationEvaluationMetrics() *ClassificationEvaluationMetrics

func (*ModelEvaluation) GetCreateTime

func (x *ModelEvaluation) GetCreateTime() *timestamppb.Timestamp

func (*ModelEvaluation) GetDisplayName

func (x *ModelEvaluation) GetDisplayName() string

func (*ModelEvaluation) GetEvaluatedExampleCount

func (x *ModelEvaluation) GetEvaluatedExampleCount() int32

func (*ModelEvaluation) GetImageObjectDetectionEvaluationMetrics

func (x *ModelEvaluation) GetImageObjectDetectionEvaluationMetrics() *ImageObjectDetectionEvaluationMetrics

func (*ModelEvaluation) GetMetrics

func (m *ModelEvaluation) GetMetrics() isModelEvaluation_Metrics

func (*ModelEvaluation) GetName

func (x *ModelEvaluation) GetName() string

func (*ModelEvaluation) GetRegressionEvaluationMetrics

func (x *ModelEvaluation) GetRegressionEvaluationMetrics() *RegressionEvaluationMetrics

func (*ModelEvaluation) GetTextExtractionEvaluationMetrics

func (x *ModelEvaluation) GetTextExtractionEvaluationMetrics() *TextExtractionEvaluationMetrics

func (*ModelEvaluation) GetTextSentimentEvaluationMetrics

func (x *ModelEvaluation) GetTextSentimentEvaluationMetrics() *TextSentimentEvaluationMetrics

func (*ModelEvaluation) GetTranslationEvaluationMetrics

func (x *ModelEvaluation) GetTranslationEvaluationMetrics() *TranslationEvaluationMetrics

func (*ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics

func (x *ModelEvaluation) GetVideoObjectTrackingEvaluationMetrics() *VideoObjectTrackingEvaluationMetrics

func (*ModelEvaluation) ProtoMessage

func (*ModelEvaluation) ProtoMessage()

func (*ModelEvaluation) ProtoReflect

func (x *ModelEvaluation) ProtoReflect() protoreflect.Message

func (*ModelEvaluation) Reset

func (x *ModelEvaluation) Reset()

func (*ModelEvaluation) String

func (x *ModelEvaluation) String() string

type ModelEvaluation_ClassificationEvaluationMetrics

type ModelEvaluation_ClassificationEvaluationMetrics struct {
	// Model evaluation metrics for image, text, video and tables
	// classification.
	// Tables problem is considered a classification when the target column
	// is CATEGORY DataType.
	ClassificationEvaluationMetrics *ClassificationEvaluationMetrics `protobuf:"bytes,8,opt,name=classification_evaluation_metrics,json=classificationEvaluationMetrics,proto3,oneof"`
}

type ModelEvaluation_ImageObjectDetectionEvaluationMetrics

type ModelEvaluation_ImageObjectDetectionEvaluationMetrics struct {
	// Model evaluation metrics for image object detection.
	ImageObjectDetectionEvaluationMetrics *ImageObjectDetectionEvaluationMetrics `` /* 126-byte string literal not displayed */
}

type ModelEvaluation_RegressionEvaluationMetrics

type ModelEvaluation_RegressionEvaluationMetrics struct {
	// Model evaluation metrics for Tables regression.
	// Tables problem is considered a regression when the target column
	// has FLOAT64 DataType.
	RegressionEvaluationMetrics *RegressionEvaluationMetrics `protobuf:"bytes,24,opt,name=regression_evaluation_metrics,json=regressionEvaluationMetrics,proto3,oneof"`
}

type ModelEvaluation_TextExtractionEvaluationMetrics

type ModelEvaluation_TextExtractionEvaluationMetrics struct {
	// Evaluation metrics for text extraction models.
	TextExtractionEvaluationMetrics *TextExtractionEvaluationMetrics `protobuf:"bytes,13,opt,name=text_extraction_evaluation_metrics,json=textExtractionEvaluationMetrics,proto3,oneof"`
}

type ModelEvaluation_TextSentimentEvaluationMetrics

type ModelEvaluation_TextSentimentEvaluationMetrics struct {
	// Evaluation metrics for text sentiment models.
	TextSentimentEvaluationMetrics *TextSentimentEvaluationMetrics `protobuf:"bytes,11,opt,name=text_sentiment_evaluation_metrics,json=textSentimentEvaluationMetrics,proto3,oneof"`
}

type ModelEvaluation_TranslationEvaluationMetrics

type ModelEvaluation_TranslationEvaluationMetrics struct {
	// Model evaluation metrics for translation.
	TranslationEvaluationMetrics *TranslationEvaluationMetrics `protobuf:"bytes,9,opt,name=translation_evaluation_metrics,json=translationEvaluationMetrics,proto3,oneof"`
}

type ModelEvaluation_VideoObjectTrackingEvaluationMetrics

type ModelEvaluation_VideoObjectTrackingEvaluationMetrics struct {
	// Model evaluation metrics for video object tracking.
	VideoObjectTrackingEvaluationMetrics *VideoObjectTrackingEvaluationMetrics `protobuf:"bytes,14,opt,name=video_object_tracking_evaluation_metrics,json=videoObjectTrackingEvaluationMetrics,proto3,oneof"`
}

type ModelExportOutputConfig

type ModelExportOutputConfig struct {

	// Required. The destination of the output.
	//
	// Types that are assignable to Destination:
	//
	//	*ModelExportOutputConfig_GcsDestination
	//	*ModelExportOutputConfig_GcrDestination
	Destination isModelExportOutputConfig_Destination `protobuf_oneof:"destination"`
	// The format in which the model must be exported. The available, and default,
	// formats depend on the problem and model type (if given problem and type
	// combination doesn't have a format listed, it means its models are not
	// exportable):
	//
	//   - For Image Classification mobile-low-latency-1, mobile-versatile-1,
	//     mobile-high-accuracy-1:
	//     "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js",
	//     "docker".
	//
	//   - For Image Classification mobile-core-ml-low-latency-1,
	//     mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1:
	//     "core_ml" (default).
	//
	//   - For Image Object Detection mobile-low-latency-1, mobile-versatile-1,
	//     mobile-high-accuracy-1:
	//     "tflite", "tf_saved_model", "tf_js".
	//
	//   - For Video Classification cloud,
	//     "tf_saved_model".
	//
	//   - For Video Object Tracking cloud,
	//     "tf_saved_model".
	//
	//   - For Video Object Tracking mobile-versatile-1:
	//     "tflite", "edgetpu_tflite", "tf_saved_model", "docker".
	//
	//   - For Video Object Tracking mobile-coral-versatile-1:
	//     "tflite", "edgetpu_tflite", "docker".
	//
	//   - For Video Object Tracking mobile-coral-low-latency-1:
	//     "tflite", "edgetpu_tflite", "docker".
	//
	//   - For Video Object Tracking mobile-jetson-versatile-1:
	//     "tf_saved_model", "docker".
	//
	//   - For Tables:
	//     "docker".
	//
	// Formats description:
	//
	//   - tflite - Used for Android mobile devices.
	//   - edgetpu_tflite - Used for [Edge TPU](https://cloud.google.com/edge-tpu/)
	//     devices.
	//   - tf_saved_model - A tensorflow model in SavedModel format.
	//   - tf_js - A [TensorFlow.js](https://www.tensorflow.org/js) model that can
	//     be used in the browser and in Node.js using JavaScript.
	//   - docker - Used for Docker containers. Use the params field to customize
	//     the container. The container is verified to work correctly on
	//     ubuntu 16.04 operating system. See more at
	//     [containers
	//
	// quickstart](https:
	// //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
	// * core_ml - Used for iOS mobile devices.
	ModelFormat string `protobuf:"bytes,4,opt,name=model_format,json=modelFormat,proto3" json:"model_format,omitempty"`
	// Additional model-type and format specific parameters describing the
	// requirements for the to be exported model files, any string must be up to
	// 25000 characters long.
	//
	//   - For `docker` format:
	//     `cpu_architecture` - (string) "x86_64" (default).
	//     `gpu_architecture` - (string) "none" (default), "nvidia".
	Params map[string]string `` /* 153-byte string literal not displayed */
	// contains filtered or unexported fields
}

Output configuration for ModelExport Action.

func (*ModelExportOutputConfig) Descriptor deprecated

func (*ModelExportOutputConfig) Descriptor() ([]byte, []int)

Deprecated: Use ModelExportOutputConfig.ProtoReflect.Descriptor instead.

func (*ModelExportOutputConfig) GetDestination

func (m *ModelExportOutputConfig) GetDestination() isModelExportOutputConfig_Destination

func (*ModelExportOutputConfig) GetGcrDestination

func (x *ModelExportOutputConfig) GetGcrDestination() *GcrDestination

func (*ModelExportOutputConfig) GetGcsDestination

func (x *ModelExportOutputConfig) GetGcsDestination() *GcsDestination

func (*ModelExportOutputConfig) GetModelFormat

func (x *ModelExportOutputConfig) GetModelFormat() string

func (*ModelExportOutputConfig) GetParams

func (x *ModelExportOutputConfig) GetParams() map[string]string

func (*ModelExportOutputConfig) ProtoMessage

func (*ModelExportOutputConfig) ProtoMessage()

func (*ModelExportOutputConfig) ProtoReflect

func (x *ModelExportOutputConfig) ProtoReflect() protoreflect.Message

func (*ModelExportOutputConfig) Reset

func (x *ModelExportOutputConfig) Reset()

func (*ModelExportOutputConfig) String

func (x *ModelExportOutputConfig) String() string

type ModelExportOutputConfig_GcrDestination

type ModelExportOutputConfig_GcrDestination struct {
	// The GCR location where model image is to be pushed to. This location
	// may only be set for the following model formats:
	//
	//	"docker".
	//
	// The model image will be created under the given URI.
	GcrDestination *GcrDestination `protobuf:"bytes,3,opt,name=gcr_destination,json=gcrDestination,proto3,oneof"`
}

type ModelExportOutputConfig_GcsDestination

type ModelExportOutputConfig_GcsDestination struct {
	// The Google Cloud Storage location where the model is to be written to.
	// This location may only be set for the following model formats:
	//
	//	 "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
	//
	//	Under the directory given as the destination a new one with name
	//	"model-export-<model-display-name>-<timestamp-of-export-call>",
	//	where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format,
	//	will be created. Inside the model and any of its supporting files
	//	will be written.
	GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}

type Model_DeploymentState

type Model_DeploymentState int32

Deployment state of the model.

const (
	// Should not be used, an un-set enum has this value by default.
	Model_DEPLOYMENT_STATE_UNSPECIFIED Model_DeploymentState = 0
	// Model is deployed.
	Model_DEPLOYED Model_DeploymentState = 1
	// Model is not deployed.
	Model_UNDEPLOYED Model_DeploymentState = 2
)

func (Model_DeploymentState) Descriptor

func (Model_DeploymentState) Enum

func (Model_DeploymentState) EnumDescriptor deprecated

func (Model_DeploymentState) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_DeploymentState.Descriptor instead.

func (Model_DeploymentState) Number

func (Model_DeploymentState) String

func (x Model_DeploymentState) String() string

func (Model_DeploymentState) Type

type Model_ImageClassificationModelMetadata

type Model_ImageClassificationModelMetadata struct {
	// Metadata for image classification models.
	ImageClassificationModelMetadata *ImageClassificationModelMetadata `protobuf:"bytes,13,opt,name=image_classification_model_metadata,json=imageClassificationModelMetadata,proto3,oneof"`
}

type Model_ImageObjectDetectionModelMetadata

type Model_ImageObjectDetectionModelMetadata struct {
	// Metadata for image object detection models.
	ImageObjectDetectionModelMetadata *ImageObjectDetectionModelMetadata `protobuf:"bytes,20,opt,name=image_object_detection_model_metadata,json=imageObjectDetectionModelMetadata,proto3,oneof"`
}

type Model_TablesModelMetadata

type Model_TablesModelMetadata struct {
	// Metadata for Tables models.
	TablesModelMetadata *TablesModelMetadata `protobuf:"bytes,24,opt,name=tables_model_metadata,json=tablesModelMetadata,proto3,oneof"`
}

type Model_TextClassificationModelMetadata

type Model_TextClassificationModelMetadata struct {
	// Metadata for text classification models.
	TextClassificationModelMetadata *TextClassificationModelMetadata `protobuf:"bytes,14,opt,name=text_classification_model_metadata,json=textClassificationModelMetadata,proto3,oneof"`
}

type Model_TextExtractionModelMetadata

type Model_TextExtractionModelMetadata struct {
	// Metadata for text extraction models.
	TextExtractionModelMetadata *TextExtractionModelMetadata `protobuf:"bytes,19,opt,name=text_extraction_model_metadata,json=textExtractionModelMetadata,proto3,oneof"`
}

type Model_TextSentimentModelMetadata

type Model_TextSentimentModelMetadata struct {
	// Metadata for text sentiment models.
	TextSentimentModelMetadata *TextSentimentModelMetadata `protobuf:"bytes,22,opt,name=text_sentiment_model_metadata,json=textSentimentModelMetadata,proto3,oneof"`
}

type Model_TranslationModelMetadata

type Model_TranslationModelMetadata struct {
	// Metadata for translation models.
	TranslationModelMetadata *TranslationModelMetadata `protobuf:"bytes,15,opt,name=translation_model_metadata,json=translationModelMetadata,proto3,oneof"`
}

type Model_VideoClassificationModelMetadata

type Model_VideoClassificationModelMetadata struct {
	// Metadata for video classification models.
	VideoClassificationModelMetadata *VideoClassificationModelMetadata `protobuf:"bytes,23,opt,name=video_classification_model_metadata,json=videoClassificationModelMetadata,proto3,oneof"`
}

type Model_VideoObjectTrackingModelMetadata

type Model_VideoObjectTrackingModelMetadata struct {
	// Metadata for video object tracking models.
	VideoObjectTrackingModelMetadata *VideoObjectTrackingModelMetadata `protobuf:"bytes,21,opt,name=video_object_tracking_model_metadata,json=videoObjectTrackingModelMetadata,proto3,oneof"`
}

type NormalizedVertex

type NormalizedVertex struct {

	// Required. Horizontal coordinate.
	X float32 `protobuf:"fixed32,1,opt,name=x,proto3" json:"x,omitempty"`
	// Required. Vertical coordinate.
	Y float32 `protobuf:"fixed32,2,opt,name=y,proto3" json:"y,omitempty"`
	// contains filtered or unexported fields
}

A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.

func (*NormalizedVertex) Descriptor deprecated

func (*NormalizedVertex) Descriptor() ([]byte, []int)

Deprecated: Use NormalizedVertex.ProtoReflect.Descriptor instead.

func (*NormalizedVertex) GetX

func (x *NormalizedVertex) GetX() float32

func (*NormalizedVertex) GetY

func (x *NormalizedVertex) GetY() float32

func (*NormalizedVertex) ProtoMessage

func (*NormalizedVertex) ProtoMessage()

func (*NormalizedVertex) ProtoReflect

func (x *NormalizedVertex) ProtoReflect() protoreflect.Message

func (*NormalizedVertex) Reset

func (x *NormalizedVertex) Reset()

func (*NormalizedVertex) String

func (x *NormalizedVertex) String() string

type OperationMetadata

type OperationMetadata struct {

	// Ouptut only. Details of specific operation. Even if this field is empty,
	// the presence allows to distinguish different types of operations.
	//
	// Types that are assignable to Details:
	//
	//	*OperationMetadata_DeleteDetails
	//	*OperationMetadata_DeployModelDetails
	//	*OperationMetadata_UndeployModelDetails
	//	*OperationMetadata_CreateModelDetails
	//	*OperationMetadata_ImportDataDetails
	//	*OperationMetadata_BatchPredictDetails
	//	*OperationMetadata_ExportDataDetails
	//	*OperationMetadata_ExportModelDetails
	//	*OperationMetadata_ExportEvaluatedExamplesDetails
	Details isOperationMetadata_Details `protobuf_oneof:"details"`
	// Output only. Progress of operation. Range: [0, 100].
	// Not used currently.
	ProgressPercent int32 `protobuf:"varint,13,opt,name=progress_percent,json=progressPercent,proto3" json:"progress_percent,omitempty"`
	// Output only. Partial failures encountered.
	// E.g. single files that couldn't be read.
	// This field should never exceed 20 entries.
	// Status details field will contain standard GCP error details.
	PartialFailures []*status.Status `protobuf:"bytes,2,rep,name=partial_failures,json=partialFailures,proto3" json:"partial_failures,omitempty"`
	// Output only. Time when the operation was created.
	CreateTime *timestamppb.Timestamp `protobuf:"bytes,3,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
	// Output only. Time when the operation was updated for the last time.
	UpdateTime *timestamppb.Timestamp `protobuf:"bytes,4,opt,name=update_time,json=updateTime,proto3" json:"update_time,omitempty"`
	// contains filtered or unexported fields
}

Metadata used across all long running operations returned by AutoML API.

func (*OperationMetadata) Descriptor deprecated

func (*OperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use OperationMetadata.ProtoReflect.Descriptor instead.

func (*OperationMetadata) GetBatchPredictDetails

func (x *OperationMetadata) GetBatchPredictDetails() *BatchPredictOperationMetadata

func (*OperationMetadata) GetCreateModelDetails

func (x *OperationMetadata) GetCreateModelDetails() *CreateModelOperationMetadata

func (*OperationMetadata) GetCreateTime

func (x *OperationMetadata) GetCreateTime() *timestamppb.Timestamp

func (*OperationMetadata) GetDeleteDetails

func (x *OperationMetadata) GetDeleteDetails() *DeleteOperationMetadata

func (*OperationMetadata) GetDeployModelDetails

func (x *OperationMetadata) GetDeployModelDetails() *DeployModelOperationMetadata

func (*OperationMetadata) GetDetails

func (m *OperationMetadata) GetDetails() isOperationMetadata_Details

func (*OperationMetadata) GetExportDataDetails

func (x *OperationMetadata) GetExportDataDetails() *ExportDataOperationMetadata

func (*OperationMetadata) GetExportEvaluatedExamplesDetails

func (x *OperationMetadata) GetExportEvaluatedExamplesDetails() *ExportEvaluatedExamplesOperationMetadata

func (*OperationMetadata) GetExportModelDetails

func (x *OperationMetadata) GetExportModelDetails() *ExportModelOperationMetadata

func (*OperationMetadata) GetImportDataDetails

func (x *OperationMetadata) GetImportDataDetails() *ImportDataOperationMetadata

func (*OperationMetadata) GetPartialFailures

func (x *OperationMetadata) GetPartialFailures() []*status.Status

func (*OperationMetadata) GetProgressPercent

func (x *OperationMetadata) GetProgressPercent() int32

func (*OperationMetadata) GetUndeployModelDetails

func (x *OperationMetadata) GetUndeployModelDetails() *UndeployModelOperationMetadata

func (*OperationMetadata) GetUpdateTime

func (x *OperationMetadata) GetUpdateTime() *timestamppb.Timestamp

func (*OperationMetadata) ProtoMessage

func (*OperationMetadata) ProtoMessage()

func (*OperationMetadata) ProtoReflect

func (x *OperationMetadata) ProtoReflect() protoreflect.Message

func (*OperationMetadata) Reset

func (x *OperationMetadata) Reset()

func (*OperationMetadata) String

func (x *OperationMetadata) String() string

type OperationMetadata_BatchPredictDetails

type OperationMetadata_BatchPredictDetails struct {
	// Details of BatchPredict operation.
	BatchPredictDetails *BatchPredictOperationMetadata `protobuf:"bytes,16,opt,name=batch_predict_details,json=batchPredictDetails,proto3,oneof"`
}

type OperationMetadata_CreateModelDetails

type OperationMetadata_CreateModelDetails struct {
	// Details of CreateModel operation.
	CreateModelDetails *CreateModelOperationMetadata `protobuf:"bytes,10,opt,name=create_model_details,json=createModelDetails,proto3,oneof"`
}

type OperationMetadata_DeleteDetails

type OperationMetadata_DeleteDetails struct {
	// Details of a Delete operation.
	DeleteDetails *DeleteOperationMetadata `protobuf:"bytes,8,opt,name=delete_details,json=deleteDetails,proto3,oneof"`
}

type OperationMetadata_DeployModelDetails

type OperationMetadata_DeployModelDetails struct {
	// Details of a DeployModel operation.
	DeployModelDetails *DeployModelOperationMetadata `protobuf:"bytes,24,opt,name=deploy_model_details,json=deployModelDetails,proto3,oneof"`
}

type OperationMetadata_ExportDataDetails

type OperationMetadata_ExportDataDetails struct {
	// Details of ExportData operation.
	ExportDataDetails *ExportDataOperationMetadata `protobuf:"bytes,21,opt,name=export_data_details,json=exportDataDetails,proto3,oneof"`
}

type OperationMetadata_ExportEvaluatedExamplesDetails

type OperationMetadata_ExportEvaluatedExamplesDetails struct {
	// Details of ExportEvaluatedExamples operation.
	ExportEvaluatedExamplesDetails *ExportEvaluatedExamplesOperationMetadata `protobuf:"bytes,26,opt,name=export_evaluated_examples_details,json=exportEvaluatedExamplesDetails,proto3,oneof"`
}

type OperationMetadata_ExportModelDetails

type OperationMetadata_ExportModelDetails struct {
	// Details of ExportModel operation.
	ExportModelDetails *ExportModelOperationMetadata `protobuf:"bytes,22,opt,name=export_model_details,json=exportModelDetails,proto3,oneof"`
}

type OperationMetadata_ImportDataDetails

type OperationMetadata_ImportDataDetails struct {
	// Details of ImportData operation.
	ImportDataDetails *ImportDataOperationMetadata `protobuf:"bytes,15,opt,name=import_data_details,json=importDataDetails,proto3,oneof"`
}

type OperationMetadata_UndeployModelDetails

type OperationMetadata_UndeployModelDetails struct {
	// Details of an UndeployModel operation.
	UndeployModelDetails *UndeployModelOperationMetadata `protobuf:"bytes,25,opt,name=undeploy_model_details,json=undeployModelDetails,proto3,oneof"`
}

type OutputConfig

type OutputConfig struct {

	// Required. The destination of the output.
	//
	// Types that are assignable to Destination:
	//
	//	*OutputConfig_GcsDestination
	//	*OutputConfig_BigqueryDestination
	Destination isOutputConfig_Destination `protobuf_oneof:"destination"`
	// contains filtered or unexported fields
}
  • For Translation: CSV file `translation.csv`, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)

  • For Tables: Output depends on whether the dataset was imported from GCS or BigQuery. GCS case:

[gcs_destination][google.cloud.automl.v1beta1.OutputConfig.gcs_destination]

  must be set. Exported are CSV file(s) `tables_1.csv`,
  `tables_2.csv`,...,`tables_N.csv` with each having as header line
  the table's column names, and all other lines contain values for
  the header columns.
BigQuery case:

[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]

pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name

`export_data_<automl-dataset-display-name>_<timestamp-of-export-call>`

where <automl-dataset-display-name> will be made
BigQuery-dataset-name compatible (e.g. most special characters will
become underscores), and timestamp will be in
YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that
dataset a new table called `primary_table` will be created, and
filled with precisely the same data as this obtained on import.

func (*OutputConfig) Descriptor deprecated

func (*OutputConfig) Descriptor() ([]byte, []int)

Deprecated: Use OutputConfig.ProtoReflect.Descriptor instead.

func (*OutputConfig) GetBigqueryDestination

func (x *OutputConfig) GetBigqueryDestination() *BigQueryDestination

func (*OutputConfig) GetDestination

func (m *OutputConfig) GetDestination() isOutputConfig_Destination

func (*OutputConfig) GetGcsDestination

func (x *OutputConfig) GetGcsDestination() *GcsDestination

func (*OutputConfig) ProtoMessage

func (*OutputConfig) ProtoMessage()

func (*OutputConfig) ProtoReflect

func (x *OutputConfig) ProtoReflect() protoreflect.Message

func (*OutputConfig) Reset

func (x *OutputConfig) Reset()

func (*OutputConfig) String

func (x *OutputConfig) String() string

type OutputConfig_BigqueryDestination

type OutputConfig_BigqueryDestination struct {
	// The BigQuery location where the output is to be written to.
	BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}

type OutputConfig_GcsDestination

type OutputConfig_GcsDestination struct {
	// The Google Cloud Storage location where the output is to be written to.
	// For Image Object Detection, Text Extraction, Video Classification and
	// Tables, in the given directory a new directory will be created with name:
	// export_data-<dataset-display-name>-<timestamp-of-export-call> where
	// timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. All export
	// output will be written into that directory.
	GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}

type PredictRequest

type PredictRequest struct {

	// Required. Name of the model requested to serve the prediction.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. Payload to perform a prediction on. The payload must match the
	// problem type that the model was trained to solve.
	Payload *ExamplePayload `protobuf:"bytes,2,opt,name=payload,proto3" json:"payload,omitempty"`
	// Additional domain-specific parameters, any string must be up to 25000
	// characters long.
	//
	// *  For Image Classification:
	//
	//	  `score_threshold` - (float) A value from 0.0 to 1.0. When the model
	//	   makes predictions for an image, it will only produce results that have
	//	   at least this confidence score. The default is 0.5.
	//
	//	*  For Image Object Detection:
	//	  `score_threshold` - (float) When Model detects objects on the image,
	//	      it will only produce bounding boxes which have at least this
	//	      confidence score. Value in 0 to 1 range, default is 0.5.
	//	  `max_bounding_box_count` - (int64) No more than this number of bounding
	//	      boxes will be returned in the response. Default is 100, the
	//	      requested value may be limited by server.
	//   - For Tables:
	//     feature_imp<span>ortan</span>ce - (boolean) Whether feature importance
	//     should be populated in the returned TablesAnnotation.
	//     The default is false.
	Params map[string]string `` /* 153-byte string literal not displayed */
	// contains filtered or unexported fields
}

Request message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].

func (*PredictRequest) Descriptor deprecated

func (*PredictRequest) Descriptor() ([]byte, []int)

Deprecated: Use PredictRequest.ProtoReflect.Descriptor instead.

func (*PredictRequest) GetName

func (x *PredictRequest) GetName() string

func (*PredictRequest) GetParams

func (x *PredictRequest) GetParams() map[string]string

func (*PredictRequest) GetPayload

func (x *PredictRequest) GetPayload() *ExamplePayload

func (*PredictRequest) ProtoMessage

func (*PredictRequest) ProtoMessage()

func (*PredictRequest) ProtoReflect

func (x *PredictRequest) ProtoReflect() protoreflect.Message

func (*PredictRequest) Reset

func (x *PredictRequest) Reset()

func (*PredictRequest) String

func (x *PredictRequest) String() string

type PredictResponse

type PredictResponse struct {

	// Prediction result.
	// Translation and Text Sentiment will return precisely one payload.
	Payload []*AnnotationPayload `protobuf:"bytes,1,rep,name=payload,proto3" json:"payload,omitempty"`
	// The preprocessed example that AutoML actually makes prediction on.
	// Empty if AutoML does not preprocess the input example.
	//   - For Text Extraction:
	//     If the input is a .pdf file, the OCR'ed text will be provided in
	//     [document_text][google.cloud.automl.v1beta1.Document.document_text].
	PreprocessedInput *ExamplePayload `protobuf:"bytes,3,opt,name=preprocessed_input,json=preprocessedInput,proto3" json:"preprocessed_input,omitempty"`
	// Additional domain-specific prediction response metadata.
	//
	//   - For Image Object Detection:
	//     `max_bounding_box_count` - (int64) At most that many bounding boxes per
	//     image could have been returned.
	//
	//   - For Text Sentiment:
	//     `sentiment_score` - (float, deprecated) A value between -1 and 1,
	//     -1 maps to least positive sentiment, while 1 maps to the most positive
	//     one and the higher the score, the more positive the sentiment in the
	//     document is. Yet these values are relative to the training data, so
	//     e.g. if all data was positive then -1 will be also positive (though
	//     the least).
	//     The sentiment_score shouldn't be confused with "score" or "magnitude"
	//     from the previous Natural Language Sentiment Analysis API.
	Metadata map[string]string `` /* 157-byte string literal not displayed */
	// contains filtered or unexported fields
}

Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].

func (*PredictResponse) Descriptor deprecated

func (*PredictResponse) Descriptor() ([]byte, []int)

Deprecated: Use PredictResponse.ProtoReflect.Descriptor instead.

func (*PredictResponse) GetMetadata

func (x *PredictResponse) GetMetadata() map[string]string

func (*PredictResponse) GetPayload

func (x *PredictResponse) GetPayload() []*AnnotationPayload

func (*PredictResponse) GetPreprocessedInput

func (x *PredictResponse) GetPreprocessedInput() *ExamplePayload

func (*PredictResponse) ProtoMessage

func (*PredictResponse) ProtoMessage()

func (*PredictResponse) ProtoReflect

func (x *PredictResponse) ProtoReflect() protoreflect.Message

func (*PredictResponse) Reset

func (x *PredictResponse) Reset()

func (*PredictResponse) String

func (x *PredictResponse) String() string

type PredictionServiceClient

type PredictionServiceClient interface {
	// Perform an online prediction. The prediction result will be directly
	// returned in the response.
	// Available for following ML problems, and their expected request payloads:
	//   - Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes
	//     up to 30MB.
	//   - Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes
	//     up to 30MB.
	//   - Text Classification - TextSnippet, content up to 60,000 characters,
	//     UTF-8 encoded.
	//   - Text Extraction - TextSnippet, content up to 30,000 characters,
	//     UTF-8 NFC encoded.
	//   - Translation - TextSnippet, content up to 25,000 characters, UTF-8
	//     encoded.
	//   - Tables - Row, with column values matching the columns of the model,
	//     up to 5MB. Not available for FORECASTING
	//
	// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type].
	//   - Text Sentiment - TextSnippet, content up 500 characters, UTF-8
	//     encoded.
	Predict(ctx context.Context, in *PredictRequest, opts ...grpc.CallOption) (*PredictResponse, error)
	// Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch
	// prediction result won't be immediately available in the response. Instead,
	// a long running operation object is returned. User can poll the operation
	// result via [GetOperation][google.longrunning.Operations.GetOperation]
	// method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in
	// the [response][google.longrunning.Operation.response] field.
	// Available for following ML problems:
	// * Image Classification
	// * Image Object Detection
	// * Video Classification
	// * Video Object Tracking * Text Extraction
	// * Tables
	BatchPredict(ctx context.Context, in *BatchPredictRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
}

PredictionServiceClient is the client API for PredictionService service.

For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.

type PredictionServiceServer

type PredictionServiceServer interface {
	// Perform an online prediction. The prediction result will be directly
	// returned in the response.
	// Available for following ML problems, and their expected request payloads:
	//   - Image Classification - Image in .JPEG, .GIF or .PNG format, image_bytes
	//     up to 30MB.
	//   - Image Object Detection - Image in .JPEG, .GIF or .PNG format, image_bytes
	//     up to 30MB.
	//   - Text Classification - TextSnippet, content up to 60,000 characters,
	//     UTF-8 encoded.
	//   - Text Extraction - TextSnippet, content up to 30,000 characters,
	//     UTF-8 NFC encoded.
	//   - Translation - TextSnippet, content up to 25,000 characters, UTF-8
	//     encoded.
	//   - Tables - Row, with column values matching the columns of the model,
	//     up to 5MB. Not available for FORECASTING
	//
	// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type].
	//   - Text Sentiment - TextSnippet, content up 500 characters, UTF-8
	//     encoded.
	Predict(context.Context, *PredictRequest) (*PredictResponse, error)
	// Perform a batch prediction. Unlike the online [Predict][google.cloud.automl.v1beta1.PredictionService.Predict], batch
	// prediction result won't be immediately available in the response. Instead,
	// a long running operation object is returned. User can poll the operation
	// result via [GetOperation][google.longrunning.Operations.GetOperation]
	// method. Once the operation is done, [BatchPredictResult][google.cloud.automl.v1beta1.BatchPredictResult] is returned in
	// the [response][google.longrunning.Operation.response] field.
	// Available for following ML problems:
	// * Image Classification
	// * Image Object Detection
	// * Video Classification
	// * Video Object Tracking * Text Extraction
	// * Tables
	BatchPredict(context.Context, *BatchPredictRequest) (*longrunningpb.Operation, error)
}

PredictionServiceServer is the server API for PredictionService service.

type RegressionEvaluationMetrics

type RegressionEvaluationMetrics struct {

	// Output only. Root Mean Squared Error (RMSE).
	RootMeanSquaredError float32 `` /* 127-byte string literal not displayed */
	// Output only. Mean Absolute Error (MAE).
	MeanAbsoluteError float32 `protobuf:"fixed32,2,opt,name=mean_absolute_error,json=meanAbsoluteError,proto3" json:"mean_absolute_error,omitempty"`
	// Output only. Mean absolute percentage error. Only set if all ground truth
	// values are are positive.
	MeanAbsolutePercentageError float32 `` /* 148-byte string literal not displayed */
	// Output only. R squared.
	RSquared float32 `protobuf:"fixed32,4,opt,name=r_squared,json=rSquared,proto3" json:"r_squared,omitempty"`
	// Output only. Root mean squared log error.
	RootMeanSquaredLogError float32 `` /* 138-byte string literal not displayed */
	// contains filtered or unexported fields
}

Metrics for regression problems.

func (*RegressionEvaluationMetrics) Descriptor deprecated

func (*RegressionEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use RegressionEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*RegressionEvaluationMetrics) GetMeanAbsoluteError

func (x *RegressionEvaluationMetrics) GetMeanAbsoluteError() float32

func (*RegressionEvaluationMetrics) GetMeanAbsolutePercentageError

func (x *RegressionEvaluationMetrics) GetMeanAbsolutePercentageError() float32

func (*RegressionEvaluationMetrics) GetRSquared

func (x *RegressionEvaluationMetrics) GetRSquared() float32

func (*RegressionEvaluationMetrics) GetRootMeanSquaredError

func (x *RegressionEvaluationMetrics) GetRootMeanSquaredError() float32

func (*RegressionEvaluationMetrics) GetRootMeanSquaredLogError

func (x *RegressionEvaluationMetrics) GetRootMeanSquaredLogError() float32

func (*RegressionEvaluationMetrics) ProtoMessage

func (*RegressionEvaluationMetrics) ProtoMessage()

func (*RegressionEvaluationMetrics) ProtoReflect

func (*RegressionEvaluationMetrics) Reset

func (x *RegressionEvaluationMetrics) Reset()

func (*RegressionEvaluationMetrics) String

func (x *RegressionEvaluationMetrics) String() string

type Row

type Row struct {

	// The resource IDs of the column specs describing the columns of the row.
	// If set must contain, but possibly in a different order, all input
	// feature
	//
	// [column_spec_ids][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
	// of the Model this row is being passed to.
	// Note: The below `values` field must match order of this field, if this
	// field is set.
	ColumnSpecIds []string `protobuf:"bytes,2,rep,name=column_spec_ids,json=columnSpecIds,proto3" json:"column_spec_ids,omitempty"`
	// Required. The values of the row cells, given in the same order as the
	// column_spec_ids, or, if not set, then in the same order as input
	// feature
	//
	// [column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
	// of the Model this row is being passed to.
	Values []*structpb.Value `protobuf:"bytes,3,rep,name=values,proto3" json:"values,omitempty"`
	// contains filtered or unexported fields
}

A representation of a row in a relational table.

func (*Row) Descriptor deprecated

func (*Row) Descriptor() ([]byte, []int)

Deprecated: Use Row.ProtoReflect.Descriptor instead.

func (*Row) GetColumnSpecIds

func (x *Row) GetColumnSpecIds() []string

func (*Row) GetValues

func (x *Row) GetValues() []*structpb.Value

func (*Row) ProtoMessage

func (*Row) ProtoMessage()

func (*Row) ProtoReflect

func (x *Row) ProtoReflect() protoreflect.Message

func (*Row) Reset

func (x *Row) Reset()

func (*Row) String

func (x *Row) String() string

type StringStats

type StringStats struct {

	// The statistics of the top 20 unigrams, ordered by
	// [count][google.cloud.automl.v1beta1.StringStats.UnigramStats.count].
	TopUnigramStats []*StringStats_UnigramStats `protobuf:"bytes,1,rep,name=top_unigram_stats,json=topUnigramStats,proto3" json:"top_unigram_stats,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of STRING values.

func (*StringStats) Descriptor deprecated

func (*StringStats) Descriptor() ([]byte, []int)

Deprecated: Use StringStats.ProtoReflect.Descriptor instead.

func (*StringStats) GetTopUnigramStats

func (x *StringStats) GetTopUnigramStats() []*StringStats_UnigramStats

func (*StringStats) ProtoMessage

func (*StringStats) ProtoMessage()

func (*StringStats) ProtoReflect

func (x *StringStats) ProtoReflect() protoreflect.Message

func (*StringStats) Reset

func (x *StringStats) Reset()

func (*StringStats) String

func (x *StringStats) String() string

type StringStats_UnigramStats

type StringStats_UnigramStats struct {

	// The unigram.
	Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
	// The number of occurrences of this unigram in the series.
	Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"`
	// contains filtered or unexported fields
}

The statistics of a unigram.

func (*StringStats_UnigramStats) Descriptor deprecated

func (*StringStats_UnigramStats) Descriptor() ([]byte, []int)

Deprecated: Use StringStats_UnigramStats.ProtoReflect.Descriptor instead.

func (*StringStats_UnigramStats) GetCount

func (x *StringStats_UnigramStats) GetCount() int64

func (*StringStats_UnigramStats) GetValue

func (x *StringStats_UnigramStats) GetValue() string

func (*StringStats_UnigramStats) ProtoMessage

func (*StringStats_UnigramStats) ProtoMessage()

func (*StringStats_UnigramStats) ProtoReflect

func (x *StringStats_UnigramStats) ProtoReflect() protoreflect.Message

func (*StringStats_UnigramStats) Reset

func (x *StringStats_UnigramStats) Reset()

func (*StringStats_UnigramStats) String

func (x *StringStats_UnigramStats) String() string

type StructStats

type StructStats struct {

	// Map from a field name of the struct to data stats aggregated over series
	// of all data in that field across all the structs.
	FieldStats map[string]*DataStats `` /* 179-byte string literal not displayed */
	// contains filtered or unexported fields
}

The data statistics of a series of STRUCT values.

func (*StructStats) Descriptor deprecated

func (*StructStats) Descriptor() ([]byte, []int)

Deprecated: Use StructStats.ProtoReflect.Descriptor instead.

func (*StructStats) GetFieldStats

func (x *StructStats) GetFieldStats() map[string]*DataStats

func (*StructStats) ProtoMessage

func (*StructStats) ProtoMessage()

func (*StructStats) ProtoReflect

func (x *StructStats) ProtoReflect() protoreflect.Message

func (*StructStats) Reset

func (x *StructStats) Reset()

func (*StructStats) String

func (x *StructStats) String() string

type StructType

type StructType struct {

	// Unordered map of struct field names to their data types.
	// Fields cannot be added or removed via Update. Their names and
	// data types are still mutable.
	Fields map[string]*DataType `` /* 153-byte string literal not displayed */
	// contains filtered or unexported fields
}

`StructType` defines the DataType-s of a [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT] type.

func (*StructType) Descriptor deprecated

func (*StructType) Descriptor() ([]byte, []int)

Deprecated: Use StructType.ProtoReflect.Descriptor instead.

func (*StructType) GetFields

func (x *StructType) GetFields() map[string]*DataType

func (*StructType) ProtoMessage

func (*StructType) ProtoMessage()

func (*StructType) ProtoReflect

func (x *StructType) ProtoReflect() protoreflect.Message

func (*StructType) Reset

func (x *StructType) Reset()

func (*StructType) String

func (x *StructType) String() string

type TableSpec

type TableSpec struct {

	// Output only. The resource name of the table spec.
	// Form:
	//
	// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// column_spec_id of the time column. Only used if the parent dataset's
	// ml_use_column_spec_id is not set. Used to split rows into TRAIN, VALIDATE
	// and TEST sets such that oldest rows go to TRAIN set, newest to TEST, and
	// those in between to VALIDATE.
	// Required type: TIMESTAMP.
	// If both this column and ml_use_column are not set, then ML use of all rows
	// will be assigned by AutoML. NOTE: Updates of this field will instantly
	// affect any other users concurrently working with the dataset.
	TimeColumnSpecId string `protobuf:"bytes,2,opt,name=time_column_spec_id,json=timeColumnSpecId,proto3" json:"time_column_spec_id,omitempty"`
	// Output only. The number of rows (i.e. examples) in the table.
	RowCount int64 `protobuf:"varint,3,opt,name=row_count,json=rowCount,proto3" json:"row_count,omitempty"`
	// Output only. The number of valid rows (i.e. without values that don't match
	// DataType-s of their columns).
	ValidRowCount int64 `protobuf:"varint,4,opt,name=valid_row_count,json=validRowCount,proto3" json:"valid_row_count,omitempty"`
	// Output only. The number of columns of the table. That is, the number of
	// child ColumnSpec-s.
	ColumnCount int64 `protobuf:"varint,7,opt,name=column_count,json=columnCount,proto3" json:"column_count,omitempty"`
	// Output only. Input configs via which data currently residing in the table
	// had been imported.
	InputConfigs []*InputConfig `protobuf:"bytes,5,rep,name=input_configs,json=inputConfigs,proto3" json:"input_configs,omitempty"`
	// Used to perform consistent read-modify-write updates. If not set, a blind
	// "overwrite" update happens.
	Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"`
	// contains filtered or unexported fields
}

A specification of a relational table. The table's schema is represented via its child column specs. It is pre-populated as part of ImportData by schema inference algorithm, the version of which is a required parameter of ImportData InputConfig. Note: While working with a table, at times the schema may be inconsistent with the data in the table (e.g. string in a FLOAT64 column). The consistency validation is done upon creation of a model. Used by:

  • Tables

func (*TableSpec) Descriptor deprecated

func (*TableSpec) Descriptor() ([]byte, []int)

Deprecated: Use TableSpec.ProtoReflect.Descriptor instead.

func (*TableSpec) GetColumnCount

func (x *TableSpec) GetColumnCount() int64

func (*TableSpec) GetEtag

func (x *TableSpec) GetEtag() string

func (*TableSpec) GetInputConfigs

func (x *TableSpec) GetInputConfigs() []*InputConfig

func (*TableSpec) GetName

func (x *TableSpec) GetName() string

func (*TableSpec) GetRowCount

func (x *TableSpec) GetRowCount() int64

func (*TableSpec) GetTimeColumnSpecId

func (x *TableSpec) GetTimeColumnSpecId() string

func (*TableSpec) GetValidRowCount

func (x *TableSpec) GetValidRowCount() int64

func (*TableSpec) ProtoMessage

func (*TableSpec) ProtoMessage()

func (*TableSpec) ProtoReflect

func (x *TableSpec) ProtoReflect() protoreflect.Message

func (*TableSpec) Reset

func (x *TableSpec) Reset()

func (*TableSpec) String

func (x *TableSpec) String() string

type TablesAnnotation

type TablesAnnotation struct {

	// Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
	// value means greater confidence in the returned value.
	// For
	//
	// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
	// of FLOAT64 data type the score is not populated.
	Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
	// Output only. Only populated when
	//
	// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
	// has FLOAT64 data type. An interval in which the exactly correct target
	// value has 95% chance to be in.
	PredictionInterval *DoubleRange `protobuf:"bytes,4,opt,name=prediction_interval,json=predictionInterval,proto3" json:"prediction_interval,omitempty"`
	// The predicted value of the row's
	//
	// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
	// The value depends on the column's DataType:
	//
	//   - CATEGORY - the predicted (with the above confidence `score`) CATEGORY
	//     value.
	//
	// * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
	Value *structpb.Value `protobuf:"bytes,2,opt,name=value,proto3" json:"value,omitempty"`
	// Output only. Auxiliary information for each of the model's
	//
	// [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
	// with respect to this particular prediction.
	// If no other fields than
	//
	// [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
	// and
	//
	// [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
	// would be populated, then this whole field is not.
	TablesModelColumnInfo []*TablesModelColumnInfo `` /* 128-byte string literal not displayed */
	// Output only. Stores the prediction score for the baseline example, which
	// is defined as the example with all values set to their baseline values.
	// This is used as part of the Sampled Shapley explanation of the model's
	// prediction. This field is populated only when feature importance is
	// requested. For regression models, this holds the baseline prediction for
	// the baseline example. For classification models, this holds the baseline
	// prediction for the baseline example for the argmax class.
	BaselineScore float32 `protobuf:"fixed32,5,opt,name=baseline_score,json=baselineScore,proto3" json:"baseline_score,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation details specific to Tables.

func (*TablesAnnotation) Descriptor deprecated

func (*TablesAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use TablesAnnotation.ProtoReflect.Descriptor instead.

func (*TablesAnnotation) GetBaselineScore

func (x *TablesAnnotation) GetBaselineScore() float32

func (*TablesAnnotation) GetPredictionInterval

func (x *TablesAnnotation) GetPredictionInterval() *DoubleRange

func (*TablesAnnotation) GetScore

func (x *TablesAnnotation) GetScore() float32

func (*TablesAnnotation) GetTablesModelColumnInfo

func (x *TablesAnnotation) GetTablesModelColumnInfo() []*TablesModelColumnInfo

func (*TablesAnnotation) GetValue

func (x *TablesAnnotation) GetValue() *structpb.Value

func (*TablesAnnotation) ProtoMessage

func (*TablesAnnotation) ProtoMessage()

func (*TablesAnnotation) ProtoReflect

func (x *TablesAnnotation) ProtoReflect() protoreflect.Message

func (*TablesAnnotation) Reset

func (x *TablesAnnotation) Reset()

func (*TablesAnnotation) String

func (x *TablesAnnotation) String() string

type TablesDatasetMetadata

type TablesDatasetMetadata struct {

	// Output only. The table_spec_id of the primary table of this dataset.
	PrimaryTableSpecId string `protobuf:"bytes,1,opt,name=primary_table_spec_id,json=primaryTableSpecId,proto3" json:"primary_table_spec_id,omitempty"`
	// column_spec_id of the primary table's column that should be used as the
	// training & prediction target.
	// This column must be non-nullable and have one of following data types
	// (otherwise model creation will error):
	//
	// * CATEGORY
	//
	// * FLOAT64
	//
	// If the type is CATEGORY , only up to
	// 100 unique values may exist in that column across all rows.
	//
	// NOTE: Updates of this field will instantly affect any other users
	// concurrently working with the dataset.
	TargetColumnSpecId string `protobuf:"bytes,2,opt,name=target_column_spec_id,json=targetColumnSpecId,proto3" json:"target_column_spec_id,omitempty"`
	// column_spec_id of the primary table's column that should be used as the
	// weight column, i.e. the higher the value the more important the row will be
	// during model training.
	// Required type: FLOAT64.
	// Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
	//
	//	ignored for training.
	//
	// If not set all rows are assumed to have equal weight of 1.
	// NOTE: Updates of this field will instantly affect any other users
	// concurrently working with the dataset.
	WeightColumnSpecId string `protobuf:"bytes,3,opt,name=weight_column_spec_id,json=weightColumnSpecId,proto3" json:"weight_column_spec_id,omitempty"`
	// column_spec_id of the primary table column which specifies a possible ML
	// use of the row, i.e. the column will be used to split the rows into TRAIN,
	// VALIDATE and TEST sets.
	// Required type: STRING.
	// This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
	// among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
	// case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
	// that if a given ml use distribution makes it impossible to create a "good"
	// model, that call will error describing the issue.
	// If both this column_spec_id and primary table's time_column_spec_id are not
	// set, then all rows are treated as `UNASSIGNED`.
	// NOTE: Updates of this field will instantly affect any other users
	// concurrently working with the dataset.
	MlUseColumnSpecId string `protobuf:"bytes,4,opt,name=ml_use_column_spec_id,json=mlUseColumnSpecId,proto3" json:"ml_use_column_spec_id,omitempty"`
	// Output only. Correlations between
	//
	// [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
	// and other columns of the
	//
	// [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
	// Only set if the target column is set. Mapping from other column spec id to
	// its CorrelationStats with the target column.
	// This field may be stale, see the stats_update_time field for
	// for the timestamp at which these stats were last updated.
	TargetColumnCorrelations map[string]*CorrelationStats `` /* 223-byte string literal not displayed */
	// Output only. The most recent timestamp when target_column_correlations
	// field and all descendant ColumnSpec.data_stats and
	// ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
	// changes that happened to the dataset afterwards are not reflected in these
	// fields values. The regeneration happens in the background on a best effort
	// basis.
	StatsUpdateTime *timestamppb.Timestamp `protobuf:"bytes,7,opt,name=stats_update_time,json=statsUpdateTime,proto3" json:"stats_update_time,omitempty"`
	// contains filtered or unexported fields
}

Metadata for a dataset used for AutoML Tables.

func (*TablesDatasetMetadata) Descriptor deprecated

func (*TablesDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TablesDatasetMetadata.ProtoReflect.Descriptor instead.

func (*TablesDatasetMetadata) GetMlUseColumnSpecId

func (x *TablesDatasetMetadata) GetMlUseColumnSpecId() string

func (*TablesDatasetMetadata) GetPrimaryTableSpecId

func (x *TablesDatasetMetadata) GetPrimaryTableSpecId() string

func (*TablesDatasetMetadata) GetStatsUpdateTime

func (x *TablesDatasetMetadata) GetStatsUpdateTime() *timestamppb.Timestamp

func (*TablesDatasetMetadata) GetTargetColumnCorrelations

func (x *TablesDatasetMetadata) GetTargetColumnCorrelations() map[string]*CorrelationStats

func (*TablesDatasetMetadata) GetTargetColumnSpecId

func (x *TablesDatasetMetadata) GetTargetColumnSpecId() string

func (*TablesDatasetMetadata) GetWeightColumnSpecId

func (x *TablesDatasetMetadata) GetWeightColumnSpecId() string

func (*TablesDatasetMetadata) ProtoMessage

func (*TablesDatasetMetadata) ProtoMessage()

func (*TablesDatasetMetadata) ProtoReflect

func (x *TablesDatasetMetadata) ProtoReflect() protoreflect.Message

func (*TablesDatasetMetadata) Reset

func (x *TablesDatasetMetadata) Reset()

func (*TablesDatasetMetadata) String

func (x *TablesDatasetMetadata) String() string

type TablesModelColumnInfo

type TablesModelColumnInfo struct {

	// Output only. The name of the ColumnSpec describing the column. Not
	// populated when this proto is outputted to BigQuery.
	ColumnSpecName string `protobuf:"bytes,1,opt,name=column_spec_name,json=columnSpecName,proto3" json:"column_spec_name,omitempty"`
	// Output only. The display name of the column (same as the display_name of
	// its ColumnSpec).
	ColumnDisplayName string `protobuf:"bytes,2,opt,name=column_display_name,json=columnDisplayName,proto3" json:"column_display_name,omitempty"`
	// Output only. When given as part of a Model (always populated):
	// Measurement of how much model predictions correctness on the TEST data
	// depend on values in this column. A value between 0 and 1, higher means
	// higher influence. These values are normalized - for all input feature
	// columns of a given model they add to 1.
	//
	// When given back by Predict (populated iff
	// [feature_importance
	// param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
	// Predict (populated iff
	// [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
	// param is set):
	// Measurement of how impactful for the prediction returned for the given row
	// the value in this column was. Specifically, the feature importance
	// specifies the marginal contribution that the feature made to the prediction
	// score compared to the baseline score. These values are computed using the
	// Sampled Shapley method.
	FeatureImportance float32 `protobuf:"fixed32,3,opt,name=feature_importance,json=featureImportance,proto3" json:"feature_importance,omitempty"`
	// contains filtered or unexported fields
}

An information specific to given column and Tables Model, in context of the Model and the predictions created by it.

func (*TablesModelColumnInfo) Descriptor deprecated

func (*TablesModelColumnInfo) Descriptor() ([]byte, []int)

Deprecated: Use TablesModelColumnInfo.ProtoReflect.Descriptor instead.

func (*TablesModelColumnInfo) GetColumnDisplayName

func (x *TablesModelColumnInfo) GetColumnDisplayName() string

func (*TablesModelColumnInfo) GetColumnSpecName

func (x *TablesModelColumnInfo) GetColumnSpecName() string

func (*TablesModelColumnInfo) GetFeatureImportance

func (x *TablesModelColumnInfo) GetFeatureImportance() float32

func (*TablesModelColumnInfo) ProtoMessage

func (*TablesModelColumnInfo) ProtoMessage()

func (*TablesModelColumnInfo) ProtoReflect

func (x *TablesModelColumnInfo) ProtoReflect() protoreflect.Message

func (*TablesModelColumnInfo) Reset

func (x *TablesModelColumnInfo) Reset()

func (*TablesModelColumnInfo) String

func (x *TablesModelColumnInfo) String() string

type TablesModelMetadata

type TablesModelMetadata struct {

	// Additional optimization objective configuration. Required for
	// `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
	// otherwise unused.
	//
	// Types that are assignable to AdditionalOptimizationObjectiveConfig:
	//
	//	*TablesModelMetadata_OptimizationObjectiveRecallValue
	//	*TablesModelMetadata_OptimizationObjectivePrecisionValue
	AdditionalOptimizationObjectiveConfig isTablesModelMetadata_AdditionalOptimizationObjectiveConfig `protobuf_oneof:"additional_optimization_objective_config"`
	// Column spec of the dataset's primary table's column the model is
	// predicting. Snapshotted when model creation started.
	// Only 3 fields are used:
	// name - May be set on CreateModel, if it's not then the ColumnSpec
	//
	//	corresponding to the current target_column_spec_id of the dataset
	//	the model is trained from is used.
	//	If neither is set, CreateModel will error.
	//
	// display_name - Output only.
	// data_type - Output only.
	TargetColumnSpec *ColumnSpec `protobuf:"bytes,2,opt,name=target_column_spec,json=targetColumnSpec,proto3" json:"target_column_spec,omitempty"`
	// Column specs of the dataset's primary table's columns, on which
	// the model is trained and which are used as the input for predictions.
	// The
	//
	// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
	// as well as, according to dataset's state upon model creation,
	//
	// [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
	// and
	//
	// [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
	// must never be included here.
	//
	// Only 3 fields are used:
	//
	//   - name - May be set on CreateModel, if set only the columns specified are
	//     used, otherwise all primary table's columns (except the ones listed
	//     above) are used for the training and prediction input.
	//
	// * display_name - Output only.
	//
	// * data_type - Output only.
	InputFeatureColumnSpecs []*ColumnSpec `` /* 134-byte string literal not displayed */
	// Objective function the model is optimizing towards. The training process
	// creates a model that maximizes/minimizes the value of the objective
	// function over the validation set.
	//
	// The supported optimization objectives depend on the prediction type.
	// If the field is not set, a default objective function is used.
	//
	// CLASSIFICATION_BINARY:
	//
	//	"MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
	//	                              operating characteristic (ROC) curve.
	//	"MINIMIZE_LOG_LOSS" - Minimize log loss.
	//	"MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
	//	"MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
	//	                                recall value.
	//	"MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
	//	                                 precision value.
	//
	// CLASSIFICATION_MULTI_CLASS :
	//
	//	"MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
	//
	// REGRESSION:
	//
	//	"MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
	//	"MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
	//	"MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
	OptimizationObjective string `protobuf:"bytes,4,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"`
	// Output only. Auxiliary information for each of the
	// input_feature_column_specs with respect to this particular model.
	TablesModelColumnInfo []*TablesModelColumnInfo `` /* 128-byte string literal not displayed */
	// Required. The train budget of creating this model, expressed in milli node
	// hours i.e. 1,000 value in this field means 1 node hour.
	//
	// The training cost of the model will not exceed this budget. The final cost
	// will be attempted to be close to the budget, though may end up being (even)
	// noticeably smaller - at the backend's discretion. This especially may
	// happen when further model training ceases to provide any improvements.
	//
	// If the budget is set to a value known to be insufficient to train a
	// model for the given dataset, the training won't be attempted and
	// will error.
	//
	// The train budget must be between 1,000 and 72,000 milli node hours,
	// inclusive.
	TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */
	// Output only. The actual training cost of the model, expressed in milli
	// node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
	// to not exceed the train budget.
	TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */
	// Use the entire training budget. This disables the early stopping feature.
	// By default, the early stopping feature is enabled, which means that AutoML
	// Tables might stop training before the entire training budget has been used.
	DisableEarlyStopping bool `protobuf:"varint,12,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"`
	// contains filtered or unexported fields
}

Model metadata specific to AutoML Tables.

func (*TablesModelMetadata) Descriptor deprecated

func (*TablesModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TablesModelMetadata.ProtoReflect.Descriptor instead.

func (*TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig

func (m *TablesModelMetadata) GetAdditionalOptimizationObjectiveConfig() isTablesModelMetadata_AdditionalOptimizationObjectiveConfig

func (*TablesModelMetadata) GetDisableEarlyStopping

func (x *TablesModelMetadata) GetDisableEarlyStopping() bool

func (*TablesModelMetadata) GetInputFeatureColumnSpecs

func (x *TablesModelMetadata) GetInputFeatureColumnSpecs() []*ColumnSpec

func (*TablesModelMetadata) GetOptimizationObjective

func (x *TablesModelMetadata) GetOptimizationObjective() string

func (*TablesModelMetadata) GetOptimizationObjectivePrecisionValue

func (x *TablesModelMetadata) GetOptimizationObjectivePrecisionValue() float32

func (*TablesModelMetadata) GetOptimizationObjectiveRecallValue

func (x *TablesModelMetadata) GetOptimizationObjectiveRecallValue() float32

func (*TablesModelMetadata) GetTablesModelColumnInfo

func (x *TablesModelMetadata) GetTablesModelColumnInfo() []*TablesModelColumnInfo

func (*TablesModelMetadata) GetTargetColumnSpec

func (x *TablesModelMetadata) GetTargetColumnSpec() *ColumnSpec

func (*TablesModelMetadata) GetTrainBudgetMilliNodeHours

func (x *TablesModelMetadata) GetTrainBudgetMilliNodeHours() int64

func (*TablesModelMetadata) GetTrainCostMilliNodeHours

func (x *TablesModelMetadata) GetTrainCostMilliNodeHours() int64

func (*TablesModelMetadata) ProtoMessage

func (*TablesModelMetadata) ProtoMessage()

func (*TablesModelMetadata) ProtoReflect

func (x *TablesModelMetadata) ProtoReflect() protoreflect.Message

func (*TablesModelMetadata) Reset

func (x *TablesModelMetadata) Reset()

func (*TablesModelMetadata) String

func (x *TablesModelMetadata) String() string

type TablesModelMetadata_OptimizationObjectivePrecisionValue

type TablesModelMetadata_OptimizationObjectivePrecisionValue struct {
	// Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
	// Must be between 0 and 1, inclusive.
	OptimizationObjectivePrecisionValue float32 `protobuf:"fixed32,18,opt,name=optimization_objective_precision_value,json=optimizationObjectivePrecisionValue,proto3,oneof"`
}

type TablesModelMetadata_OptimizationObjectiveRecallValue

type TablesModelMetadata_OptimizationObjectiveRecallValue struct {
	// Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
	// Must be between 0 and 1, inclusive.
	OptimizationObjectiveRecallValue float32 `protobuf:"fixed32,17,opt,name=optimization_objective_recall_value,json=optimizationObjectiveRecallValue,proto3,oneof"`
}

type TextClassificationDatasetMetadata

type TextClassificationDatasetMetadata struct {

	// Required. Type of the classification problem.
	ClassificationType ClassificationType `` /* 168-byte string literal not displayed */
	// contains filtered or unexported fields
}

Dataset metadata for classification.

func (*TextClassificationDatasetMetadata) Descriptor deprecated

func (*TextClassificationDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextClassificationDatasetMetadata.ProtoReflect.Descriptor instead.

func (*TextClassificationDatasetMetadata) GetClassificationType

func (x *TextClassificationDatasetMetadata) GetClassificationType() ClassificationType

func (*TextClassificationDatasetMetadata) ProtoMessage

func (*TextClassificationDatasetMetadata) ProtoMessage()

func (*TextClassificationDatasetMetadata) ProtoReflect

func (*TextClassificationDatasetMetadata) Reset

func (*TextClassificationDatasetMetadata) String

type TextClassificationModelMetadata

type TextClassificationModelMetadata struct {

	// Output only. Classification type of the dataset used to train this model.
	ClassificationType ClassificationType `` /* 168-byte string literal not displayed */
	// contains filtered or unexported fields
}

Model metadata that is specific to text classification.

func (*TextClassificationModelMetadata) Descriptor deprecated

func (*TextClassificationModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextClassificationModelMetadata.ProtoReflect.Descriptor instead.

func (*TextClassificationModelMetadata) GetClassificationType

func (x *TextClassificationModelMetadata) GetClassificationType() ClassificationType

func (*TextClassificationModelMetadata) ProtoMessage

func (*TextClassificationModelMetadata) ProtoMessage()

func (*TextClassificationModelMetadata) ProtoReflect

func (*TextClassificationModelMetadata) Reset

func (*TextClassificationModelMetadata) String

type TextExtractionAnnotation

type TextExtractionAnnotation struct {

	// Required. Text extraction annotations can either be a text segment or a
	// text relation.
	//
	// Types that are assignable to Annotation:
	//
	//	*TextExtractionAnnotation_TextSegment
	Annotation isTextExtractionAnnotation_Annotation `protobuf_oneof:"annotation"`
	// Output only. A confidence estimate between 0.0 and 1.0. A higher value
	// means greater confidence in correctness of the annotation.
	Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
	// contains filtered or unexported fields
}

Annotation for identifying spans of text.

func (*TextExtractionAnnotation) Descriptor deprecated

func (*TextExtractionAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use TextExtractionAnnotation.ProtoReflect.Descriptor instead.

func (*TextExtractionAnnotation) GetAnnotation

func (m *TextExtractionAnnotation) GetAnnotation() isTextExtractionAnnotation_Annotation

func (*TextExtractionAnnotation) GetScore

func (x *TextExtractionAnnotation) GetScore() float32

func (*TextExtractionAnnotation) GetTextSegment

func (x *TextExtractionAnnotation) GetTextSegment() *TextSegment

func (*TextExtractionAnnotation) ProtoMessage

func (*TextExtractionAnnotation) ProtoMessage()

func (*TextExtractionAnnotation) ProtoReflect

func (x *TextExtractionAnnotation) ProtoReflect() protoreflect.Message

func (*TextExtractionAnnotation) Reset

func (x *TextExtractionAnnotation) Reset()

func (*TextExtractionAnnotation) String

func (x *TextExtractionAnnotation) String() string

type TextExtractionAnnotation_TextSegment

type TextExtractionAnnotation_TextSegment struct {
	// An entity annotation will set this, which is the part of the original
	// text to which the annotation pertains.
	TextSegment *TextSegment `protobuf:"bytes,3,opt,name=text_segment,json=textSegment,proto3,oneof"`
}

type TextExtractionDatasetMetadata

type TextExtractionDatasetMetadata struct {
	// contains filtered or unexported fields
}

Dataset metadata that is specific to text extraction

func (*TextExtractionDatasetMetadata) Descriptor deprecated

func (*TextExtractionDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextExtractionDatasetMetadata.ProtoReflect.Descriptor instead.

func (*TextExtractionDatasetMetadata) ProtoMessage

func (*TextExtractionDatasetMetadata) ProtoMessage()

func (*TextExtractionDatasetMetadata) ProtoReflect

func (*TextExtractionDatasetMetadata) Reset

func (x *TextExtractionDatasetMetadata) Reset()

func (*TextExtractionDatasetMetadata) String

type TextExtractionEvaluationMetrics

type TextExtractionEvaluationMetrics struct {

	// Output only. The Area under precision recall curve metric.
	AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"`
	// Output only. Metrics that have confidence thresholds.
	// Precision-recall curve can be derived from it.
	ConfidenceMetricsEntries []*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry `` /* 135-byte string literal not displayed */
	// contains filtered or unexported fields
}

Model evaluation metrics for text extraction problems.

func (*TextExtractionEvaluationMetrics) Descriptor deprecated

func (*TextExtractionEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use TextExtractionEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*TextExtractionEvaluationMetrics) GetAuPrc

func (*TextExtractionEvaluationMetrics) GetConfidenceMetricsEntries

func (*TextExtractionEvaluationMetrics) ProtoMessage

func (*TextExtractionEvaluationMetrics) ProtoMessage()

func (*TextExtractionEvaluationMetrics) ProtoReflect

func (*TextExtractionEvaluationMetrics) Reset

func (*TextExtractionEvaluationMetrics) String

type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry

type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry struct {

	// Output only. The confidence threshold value used to compute the metrics.
	// Only annotations with score of at least this threshold are considered to
	// be ones the model would return.
	ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
	// Output only. Recall under the given confidence threshold.
	Recall float32 `protobuf:"fixed32,3,opt,name=recall,proto3" json:"recall,omitempty"`
	// Output only. Precision under the given confidence threshold.
	Precision float32 `protobuf:"fixed32,4,opt,name=precision,proto3" json:"precision,omitempty"`
	// Output only. The harmonic mean of recall and precision.
	F1Score float32 `protobuf:"fixed32,5,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
	// contains filtered or unexported fields
}

Metrics for a single confidence threshold.

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Descriptor deprecated

Deprecated: Use TextExtractionEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) GetRecall

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) Reset

func (*TextExtractionEvaluationMetrics_ConfidenceMetricsEntry) String

type TextExtractionModelMetadata

type TextExtractionModelMetadata struct {

	// Indicates the scope of model use case.
	//
	// * `default`: Use to train a general text extraction model. Default value.
	//
	//   - `health_care`: Use to train a text extraction model that is tuned for
	//     healthcare applications.
	ModelHint string `protobuf:"bytes,3,opt,name=model_hint,json=modelHint,proto3" json:"model_hint,omitempty"`
	// contains filtered or unexported fields
}

Model metadata that is specific to text extraction.

func (*TextExtractionModelMetadata) Descriptor deprecated

func (*TextExtractionModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextExtractionModelMetadata.ProtoReflect.Descriptor instead.

func (*TextExtractionModelMetadata) GetModelHint

func (x *TextExtractionModelMetadata) GetModelHint() string

func (*TextExtractionModelMetadata) ProtoMessage

func (*TextExtractionModelMetadata) ProtoMessage()

func (*TextExtractionModelMetadata) ProtoReflect

func (*TextExtractionModelMetadata) Reset

func (x *TextExtractionModelMetadata) Reset()

func (*TextExtractionModelMetadata) String

func (x *TextExtractionModelMetadata) String() string

type TextSegment

type TextSegment struct {

	// Output only. The content of the TextSegment.
	Content string `protobuf:"bytes,3,opt,name=content,proto3" json:"content,omitempty"`
	// Required. Zero-based character index of the first character of the text
	// segment (counting characters from the beginning of the text).
	StartOffset int64 `protobuf:"varint,1,opt,name=start_offset,json=startOffset,proto3" json:"start_offset,omitempty"`
	// Required. Zero-based character index of the first character past the end of
	// the text segment (counting character from the beginning of the text).
	// The character at the end_offset is NOT included in the text segment.
	EndOffset int64 `protobuf:"varint,2,opt,name=end_offset,json=endOffset,proto3" json:"end_offset,omitempty"`
	// contains filtered or unexported fields
}

A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.

func (*TextSegment) Descriptor deprecated

func (*TextSegment) Descriptor() ([]byte, []int)

Deprecated: Use TextSegment.ProtoReflect.Descriptor instead.

func (*TextSegment) GetContent

func (x *TextSegment) GetContent() string

func (*TextSegment) GetEndOffset

func (x *TextSegment) GetEndOffset() int64

func (*TextSegment) GetStartOffset

func (x *TextSegment) GetStartOffset() int64

func (*TextSegment) ProtoMessage

func (*TextSegment) ProtoMessage()

func (*TextSegment) ProtoReflect

func (x *TextSegment) ProtoReflect() protoreflect.Message

func (*TextSegment) Reset

func (x *TextSegment) Reset()

func (*TextSegment) String

func (x *TextSegment) String() string

type TextSentimentAnnotation

type TextSentimentAnnotation struct {

	// Output only. The sentiment with the semantic, as given to the
	// [AutoMl.ImportData][google.cloud.automl.v1beta1.AutoMl.ImportData] when populating the dataset from which the model used
	// for the prediction had been trained.
	// The sentiment values are between 0 and
	// Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
	// with higher value meaning more positive sentiment. They are completely
	// relative, i.e. 0 means least positive sentiment and sentiment_max means
	// the most positive from the sentiments present in the train data. Therefore
	//
	//	e.g. if train data had only negative sentiment, then sentiment_max, would
	//
	// be still negative (although least negative).
	// The sentiment shouldn't be confused with "score" or "magnitude"
	// from the previous Natural Language Sentiment Analysis API.
	Sentiment int32 `protobuf:"varint,1,opt,name=sentiment,proto3" json:"sentiment,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation details specific to text sentiment.

func (*TextSentimentAnnotation) Descriptor deprecated

func (*TextSentimentAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use TextSentimentAnnotation.ProtoReflect.Descriptor instead.

func (*TextSentimentAnnotation) GetSentiment

func (x *TextSentimentAnnotation) GetSentiment() int32

func (*TextSentimentAnnotation) ProtoMessage

func (*TextSentimentAnnotation) ProtoMessage()

func (*TextSentimentAnnotation) ProtoReflect

func (x *TextSentimentAnnotation) ProtoReflect() protoreflect.Message

func (*TextSentimentAnnotation) Reset

func (x *TextSentimentAnnotation) Reset()

func (*TextSentimentAnnotation) String

func (x *TextSentimentAnnotation) String() string

type TextSentimentDatasetMetadata

type TextSentimentDatasetMetadata struct {

	// Required. A sentiment is expressed as an integer ordinal, where higher value
	// means a more positive sentiment. The range of sentiments that will be used
	// is between 0 and sentiment_max (inclusive on both ends), and all the values
	// in the range must be represented in the dataset before a model can be
	// created.
	// sentiment_max value must be between 1 and 10 (inclusive).
	SentimentMax int32 `protobuf:"varint,1,opt,name=sentiment_max,json=sentimentMax,proto3" json:"sentiment_max,omitempty"`
	// contains filtered or unexported fields
}

Dataset metadata for text sentiment.

func (*TextSentimentDatasetMetadata) Descriptor deprecated

func (*TextSentimentDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextSentimentDatasetMetadata.ProtoReflect.Descriptor instead.

func (*TextSentimentDatasetMetadata) GetSentimentMax

func (x *TextSentimentDatasetMetadata) GetSentimentMax() int32

func (*TextSentimentDatasetMetadata) ProtoMessage

func (*TextSentimentDatasetMetadata) ProtoMessage()

func (*TextSentimentDatasetMetadata) ProtoReflect

func (*TextSentimentDatasetMetadata) Reset

func (x *TextSentimentDatasetMetadata) Reset()

func (*TextSentimentDatasetMetadata) String

type TextSentimentEvaluationMetrics

type TextSentimentEvaluationMetrics struct {

	// Output only. Precision.
	Precision float32 `protobuf:"fixed32,1,opt,name=precision,proto3" json:"precision,omitempty"`
	// Output only. Recall.
	Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
	// Output only. The harmonic mean of recall and precision.
	F1Score float32 `protobuf:"fixed32,3,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
	// Output only. Mean absolute error. Only set for the overall model
	// evaluation, not for evaluation of a single annotation spec.
	MeanAbsoluteError float32 `protobuf:"fixed32,4,opt,name=mean_absolute_error,json=meanAbsoluteError,proto3" json:"mean_absolute_error,omitempty"`
	// Output only. Mean squared error. Only set for the overall model
	// evaluation, not for evaluation of a single annotation spec.
	MeanSquaredError float32 `protobuf:"fixed32,5,opt,name=mean_squared_error,json=meanSquaredError,proto3" json:"mean_squared_error,omitempty"`
	// Output only. Linear weighted kappa. Only set for the overall model
	// evaluation, not for evaluation of a single annotation spec.
	LinearKappa float32 `protobuf:"fixed32,6,opt,name=linear_kappa,json=linearKappa,proto3" json:"linear_kappa,omitempty"`
	// Output only. Quadratic weighted kappa. Only set for the overall model
	// evaluation, not for evaluation of a single annotation spec.
	QuadraticKappa float32 `protobuf:"fixed32,7,opt,name=quadratic_kappa,json=quadraticKappa,proto3" json:"quadratic_kappa,omitempty"`
	// Output only. Confusion matrix of the evaluation.
	// Only set for the overall model evaluation, not for evaluation of a single
	// annotation spec.
	ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,8,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"`
	// Output only. The annotation spec ids used for this evaluation.
	// Deprecated .
	//
	// Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/text_sentiment.proto.
	AnnotationSpecId []string `protobuf:"bytes,9,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// contains filtered or unexported fields
}

Model evaluation metrics for text sentiment problems.

func (*TextSentimentEvaluationMetrics) Descriptor deprecated

func (*TextSentimentEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use TextSentimentEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*TextSentimentEvaluationMetrics) GetAnnotationSpecId deprecated

func (x *TextSentimentEvaluationMetrics) GetAnnotationSpecId() []string

Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/text_sentiment.proto.

func (*TextSentimentEvaluationMetrics) GetConfusionMatrix

func (*TextSentimentEvaluationMetrics) GetF1Score

func (x *TextSentimentEvaluationMetrics) GetF1Score() float32

func (*TextSentimentEvaluationMetrics) GetLinearKappa

func (x *TextSentimentEvaluationMetrics) GetLinearKappa() float32

func (*TextSentimentEvaluationMetrics) GetMeanAbsoluteError

func (x *TextSentimentEvaluationMetrics) GetMeanAbsoluteError() float32

func (*TextSentimentEvaluationMetrics) GetMeanSquaredError

func (x *TextSentimentEvaluationMetrics) GetMeanSquaredError() float32

func (*TextSentimentEvaluationMetrics) GetPrecision

func (x *TextSentimentEvaluationMetrics) GetPrecision() float32

func (*TextSentimentEvaluationMetrics) GetQuadraticKappa

func (x *TextSentimentEvaluationMetrics) GetQuadraticKappa() float32

func (*TextSentimentEvaluationMetrics) GetRecall

func (x *TextSentimentEvaluationMetrics) GetRecall() float32

func (*TextSentimentEvaluationMetrics) ProtoMessage

func (*TextSentimentEvaluationMetrics) ProtoMessage()

func (*TextSentimentEvaluationMetrics) ProtoReflect

func (*TextSentimentEvaluationMetrics) Reset

func (x *TextSentimentEvaluationMetrics) Reset()

func (*TextSentimentEvaluationMetrics) String

type TextSentimentModelMetadata

type TextSentimentModelMetadata struct {
	// contains filtered or unexported fields
}

Model metadata that is specific to text sentiment.

func (*TextSentimentModelMetadata) Descriptor deprecated

func (*TextSentimentModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TextSentimentModelMetadata.ProtoReflect.Descriptor instead.

func (*TextSentimentModelMetadata) ProtoMessage

func (*TextSentimentModelMetadata) ProtoMessage()

func (*TextSentimentModelMetadata) ProtoReflect

func (*TextSentimentModelMetadata) Reset

func (x *TextSentimentModelMetadata) Reset()

func (*TextSentimentModelMetadata) String

func (x *TextSentimentModelMetadata) String() string

type TextSnippet

type TextSnippet struct {

	// Required. The content of the text snippet as a string. Up to 250000
	// characters long.
	Content string `protobuf:"bytes,1,opt,name=content,proto3" json:"content,omitempty"`
	// Optional. The format of [content][google.cloud.automl.v1beta1.TextSnippet.content]. Currently the only two allowed
	// values are "text/html" and "text/plain". If left blank, the format is
	// automatically determined from the type of the uploaded [content][google.cloud.automl.v1beta1.TextSnippet.content].
	MimeType string `protobuf:"bytes,2,opt,name=mime_type,json=mimeType,proto3" json:"mime_type,omitempty"`
	// Output only. HTTP URI where you can download the content.
	ContentUri string `protobuf:"bytes,4,opt,name=content_uri,json=contentUri,proto3" json:"content_uri,omitempty"`
	// contains filtered or unexported fields
}

A representation of a text snippet.

func (*TextSnippet) Descriptor deprecated

func (*TextSnippet) Descriptor() ([]byte, []int)

Deprecated: Use TextSnippet.ProtoReflect.Descriptor instead.

func (*TextSnippet) GetContent

func (x *TextSnippet) GetContent() string

func (*TextSnippet) GetContentUri

func (x *TextSnippet) GetContentUri() string

func (*TextSnippet) GetMimeType

func (x *TextSnippet) GetMimeType() string

func (*TextSnippet) ProtoMessage

func (*TextSnippet) ProtoMessage()

func (*TextSnippet) ProtoReflect

func (x *TextSnippet) ProtoReflect() protoreflect.Message

func (*TextSnippet) Reset

func (x *TextSnippet) Reset()

func (*TextSnippet) String

func (x *TextSnippet) String() string

type TimeSegment

type TimeSegment struct {

	// Start of the time segment (inclusive), represented as the duration since
	// the example start.
	StartTimeOffset *durationpb.Duration `protobuf:"bytes,1,opt,name=start_time_offset,json=startTimeOffset,proto3" json:"start_time_offset,omitempty"`
	// End of the time segment (exclusive), represented as the duration since the
	// example start.
	EndTimeOffset *durationpb.Duration `protobuf:"bytes,2,opt,name=end_time_offset,json=endTimeOffset,proto3" json:"end_time_offset,omitempty"`
	// contains filtered or unexported fields
}

A time period inside of an example that has a time dimension (e.g. video).

func (*TimeSegment) Descriptor deprecated

func (*TimeSegment) Descriptor() ([]byte, []int)

Deprecated: Use TimeSegment.ProtoReflect.Descriptor instead.

func (*TimeSegment) GetEndTimeOffset

func (x *TimeSegment) GetEndTimeOffset() *durationpb.Duration

func (*TimeSegment) GetStartTimeOffset

func (x *TimeSegment) GetStartTimeOffset() *durationpb.Duration

func (*TimeSegment) ProtoMessage

func (*TimeSegment) ProtoMessage()

func (*TimeSegment) ProtoReflect

func (x *TimeSegment) ProtoReflect() protoreflect.Message

func (*TimeSegment) Reset

func (x *TimeSegment) Reset()

func (*TimeSegment) String

func (x *TimeSegment) String() string

type TimestampStats

type TimestampStats struct {

	// The string key is the pre-defined granularity. Currently supported:
	// hour_of_day, day_of_week, month_of_year.
	// Granularities finer that the granularity of timestamp data are not
	// populated (e.g. if timestamps are at day granularity, then hour_of_day
	// is not populated).
	GranularStats map[string]*TimestampStats_GranularStats `` /* 188-byte string literal not displayed */
	// contains filtered or unexported fields
}

The data statistics of a series of TIMESTAMP values.

func (*TimestampStats) Descriptor deprecated

func (*TimestampStats) Descriptor() ([]byte, []int)

Deprecated: Use TimestampStats.ProtoReflect.Descriptor instead.

func (*TimestampStats) GetGranularStats

func (x *TimestampStats) GetGranularStats() map[string]*TimestampStats_GranularStats

func (*TimestampStats) ProtoMessage

func (*TimestampStats) ProtoMessage()

func (*TimestampStats) ProtoReflect

func (x *TimestampStats) ProtoReflect() protoreflect.Message

func (*TimestampStats) Reset

func (x *TimestampStats) Reset()

func (*TimestampStats) String

func (x *TimestampStats) String() string

type TimestampStats_GranularStats

type TimestampStats_GranularStats struct {

	// A map from granularity key to example count for that key.
	// E.g. for hour_of_day `13` means 1pm, or for month_of_year `5` means May).
	Buckets map[int32]int64 `` /* 157-byte string literal not displayed */
	// contains filtered or unexported fields
}

Stats split by a defined in context granularity.

func (*TimestampStats_GranularStats) Descriptor deprecated

func (*TimestampStats_GranularStats) Descriptor() ([]byte, []int)

Deprecated: Use TimestampStats_GranularStats.ProtoReflect.Descriptor instead.

func (*TimestampStats_GranularStats) GetBuckets

func (x *TimestampStats_GranularStats) GetBuckets() map[int32]int64

func (*TimestampStats_GranularStats) ProtoMessage

func (*TimestampStats_GranularStats) ProtoMessage()

func (*TimestampStats_GranularStats) ProtoReflect

func (*TimestampStats_GranularStats) Reset

func (x *TimestampStats_GranularStats) Reset()

func (*TimestampStats_GranularStats) String

type TranslationAnnotation

type TranslationAnnotation struct {

	// Output only . The translated content.
	TranslatedContent *TextSnippet `protobuf:"bytes,1,opt,name=translated_content,json=translatedContent,proto3" json:"translated_content,omitempty"`
	// contains filtered or unexported fields
}

Annotation details specific to translation.

func (*TranslationAnnotation) Descriptor deprecated

func (*TranslationAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use TranslationAnnotation.ProtoReflect.Descriptor instead.

func (*TranslationAnnotation) GetTranslatedContent

func (x *TranslationAnnotation) GetTranslatedContent() *TextSnippet

func (*TranslationAnnotation) ProtoMessage

func (*TranslationAnnotation) ProtoMessage()

func (*TranslationAnnotation) ProtoReflect

func (x *TranslationAnnotation) ProtoReflect() protoreflect.Message

func (*TranslationAnnotation) Reset

func (x *TranslationAnnotation) Reset()

func (*TranslationAnnotation) String

func (x *TranslationAnnotation) String() string

type TranslationDatasetMetadata

type TranslationDatasetMetadata struct {

	// Required. The BCP-47 language code of the source language.
	SourceLanguageCode string `protobuf:"bytes,1,opt,name=source_language_code,json=sourceLanguageCode,proto3" json:"source_language_code,omitempty"`
	// Required. The BCP-47 language code of the target language.
	TargetLanguageCode string `protobuf:"bytes,2,opt,name=target_language_code,json=targetLanguageCode,proto3" json:"target_language_code,omitempty"`
	// contains filtered or unexported fields
}

Dataset metadata that is specific to translation.

func (*TranslationDatasetMetadata) Descriptor deprecated

func (*TranslationDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TranslationDatasetMetadata.ProtoReflect.Descriptor instead.

func (*TranslationDatasetMetadata) GetSourceLanguageCode

func (x *TranslationDatasetMetadata) GetSourceLanguageCode() string

func (*TranslationDatasetMetadata) GetTargetLanguageCode

func (x *TranslationDatasetMetadata) GetTargetLanguageCode() string

func (*TranslationDatasetMetadata) ProtoMessage

func (*TranslationDatasetMetadata) ProtoMessage()

func (*TranslationDatasetMetadata) ProtoReflect

func (*TranslationDatasetMetadata) Reset

func (x *TranslationDatasetMetadata) Reset()

func (*TranslationDatasetMetadata) String

func (x *TranslationDatasetMetadata) String() string

type TranslationEvaluationMetrics

type TranslationEvaluationMetrics struct {

	// Output only. BLEU score.
	BleuScore float64 `protobuf:"fixed64,1,opt,name=bleu_score,json=bleuScore,proto3" json:"bleu_score,omitempty"`
	// Output only. BLEU score for base model.
	BaseBleuScore float64 `protobuf:"fixed64,2,opt,name=base_bleu_score,json=baseBleuScore,proto3" json:"base_bleu_score,omitempty"`
	// contains filtered or unexported fields
}

Evaluation metrics for the dataset.

func (*TranslationEvaluationMetrics) Descriptor deprecated

func (*TranslationEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use TranslationEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*TranslationEvaluationMetrics) GetBaseBleuScore

func (x *TranslationEvaluationMetrics) GetBaseBleuScore() float64

func (*TranslationEvaluationMetrics) GetBleuScore

func (x *TranslationEvaluationMetrics) GetBleuScore() float64

func (*TranslationEvaluationMetrics) ProtoMessage

func (*TranslationEvaluationMetrics) ProtoMessage()

func (*TranslationEvaluationMetrics) ProtoReflect

func (*TranslationEvaluationMetrics) Reset

func (x *TranslationEvaluationMetrics) Reset()

func (*TranslationEvaluationMetrics) String

type TranslationModelMetadata

type TranslationModelMetadata struct {

	// The resource name of the model to use as a baseline to train the custom
	// model. If unset, we use the default base model provided by Google
	// Translate. Format:
	// `projects/{project_id}/locations/{location_id}/models/{model_id}`
	BaseModel string `protobuf:"bytes,1,opt,name=base_model,json=baseModel,proto3" json:"base_model,omitempty"`
	// Output only. Inferred from the dataset.
	// The source languge (The BCP-47 language code) that is used for training.
	SourceLanguageCode string `protobuf:"bytes,2,opt,name=source_language_code,json=sourceLanguageCode,proto3" json:"source_language_code,omitempty"`
	// Output only. The target languge (The BCP-47 language code) that is used for
	// training.
	TargetLanguageCode string `protobuf:"bytes,3,opt,name=target_language_code,json=targetLanguageCode,proto3" json:"target_language_code,omitempty"`
	// contains filtered or unexported fields
}

Model metadata that is specific to translation.

func (*TranslationModelMetadata) Descriptor deprecated

func (*TranslationModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use TranslationModelMetadata.ProtoReflect.Descriptor instead.

func (*TranslationModelMetadata) GetBaseModel

func (x *TranslationModelMetadata) GetBaseModel() string

func (*TranslationModelMetadata) GetSourceLanguageCode

func (x *TranslationModelMetadata) GetSourceLanguageCode() string

func (*TranslationModelMetadata) GetTargetLanguageCode

func (x *TranslationModelMetadata) GetTargetLanguageCode() string

func (*TranslationModelMetadata) ProtoMessage

func (*TranslationModelMetadata) ProtoMessage()

func (*TranslationModelMetadata) ProtoReflect

func (x *TranslationModelMetadata) ProtoReflect() protoreflect.Message

func (*TranslationModelMetadata) Reset

func (x *TranslationModelMetadata) Reset()

func (*TranslationModelMetadata) String

func (x *TranslationModelMetadata) String() string

type TypeCode

type TypeCode int32

`TypeCode` is used as a part of DataType[google.cloud.automl.v1beta1.DataType].

const (
	// Not specified. Should not be used.
	TypeCode_TYPE_CODE_UNSPECIFIED TypeCode = 0
	// Encoded as `number`, or the strings `"NaN"`, `"Infinity"`, or
	// `"-Infinity"`.
	TypeCode_FLOAT64 TypeCode = 3
	// Must be between 0AD and 9999AD. Encoded as `string` according to
	// [time_format][google.cloud.automl.v1beta1.DataType.time_format], or, if
	// that format is not set, then in RFC 3339 `date-time` format, where
	// `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z).
	TypeCode_TIMESTAMP TypeCode = 4
	// Encoded as `string`.
	TypeCode_STRING TypeCode = 6
	// Encoded as `list`, where the list elements are represented according to
	//
	// [list_element_type][google.cloud.automl.v1beta1.DataType.list_element_type].
	TypeCode_ARRAY TypeCode = 8
	// Encoded as `struct`, where field values are represented according to
	// [struct_type][google.cloud.automl.v1beta1.DataType.struct_type].
	TypeCode_STRUCT TypeCode = 9
	// Values of this type are not further understood by AutoML,
	// e.g. AutoML is unable to tell the order of values (as it could with
	// FLOAT64), or is unable to say if one value contains another (as it
	// could with STRING).
	// Encoded as `string` (bytes should be base64-encoded, as described in RFC
	// 4648, section 4).
	TypeCode_CATEGORY TypeCode = 10
)

func (TypeCode) Descriptor

func (TypeCode) Descriptor() protoreflect.EnumDescriptor

func (TypeCode) Enum

func (x TypeCode) Enum() *TypeCode

func (TypeCode) EnumDescriptor deprecated

func (TypeCode) EnumDescriptor() ([]byte, []int)

Deprecated: Use TypeCode.Descriptor instead.

func (TypeCode) Number

func (x TypeCode) Number() protoreflect.EnumNumber

func (TypeCode) String

func (x TypeCode) String() string

func (TypeCode) Type

type UndeployModelOperationMetadata

type UndeployModelOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of UndeployModel operation.

func (*UndeployModelOperationMetadata) Descriptor deprecated

func (*UndeployModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use UndeployModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*UndeployModelOperationMetadata) ProtoMessage

func (*UndeployModelOperationMetadata) ProtoMessage()

func (*UndeployModelOperationMetadata) ProtoReflect

func (*UndeployModelOperationMetadata) Reset

func (x *UndeployModelOperationMetadata) Reset()

func (*UndeployModelOperationMetadata) String

type UndeployModelRequest

type UndeployModelRequest struct {

	// Required. Resource name of the model to undeploy.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.UndeployModel][google.cloud.automl.v1beta1.AutoMl.UndeployModel].

func (*UndeployModelRequest) Descriptor deprecated

func (*UndeployModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use UndeployModelRequest.ProtoReflect.Descriptor instead.

func (*UndeployModelRequest) GetName

func (x *UndeployModelRequest) GetName() string

func (*UndeployModelRequest) ProtoMessage

func (*UndeployModelRequest) ProtoMessage()

func (*UndeployModelRequest) ProtoReflect

func (x *UndeployModelRequest) ProtoReflect() protoreflect.Message

func (*UndeployModelRequest) Reset

func (x *UndeployModelRequest) Reset()

func (*UndeployModelRequest) String

func (x *UndeployModelRequest) String() string

type UnimplementedAutoMlServer

type UnimplementedAutoMlServer struct {
}

UnimplementedAutoMlServer can be embedded to have forward compatible implementations.

func (*UnimplementedAutoMlServer) CreateDataset

func (*UnimplementedAutoMlServer) CreateModel

func (*UnimplementedAutoMlServer) DeleteDataset

func (*UnimplementedAutoMlServer) DeleteModel

func (*UnimplementedAutoMlServer) DeployModel

func (*UnimplementedAutoMlServer) ExportData

func (*UnimplementedAutoMlServer) ExportEvaluatedExamples

func (*UnimplementedAutoMlServer) ExportModel

func (*UnimplementedAutoMlServer) GetAnnotationSpec

func (*UnimplementedAutoMlServer) GetColumnSpec

func (*UnimplementedAutoMlServer) GetDataset

func (*UnimplementedAutoMlServer) GetModel

func (*UnimplementedAutoMlServer) GetModelEvaluation

func (*UnimplementedAutoMlServer) GetTableSpec

func (*UnimplementedAutoMlServer) ImportData

func (*UnimplementedAutoMlServer) ListColumnSpecs

func (*UnimplementedAutoMlServer) ListDatasets

func (*UnimplementedAutoMlServer) ListModels

func (*UnimplementedAutoMlServer) ListTableSpecs

func (*UnimplementedAutoMlServer) UndeployModel

func (*UnimplementedAutoMlServer) UpdateColumnSpec

func (*UnimplementedAutoMlServer) UpdateDataset

func (*UnimplementedAutoMlServer) UpdateTableSpec

type UnimplementedPredictionServiceServer

type UnimplementedPredictionServiceServer struct {
}

UnimplementedPredictionServiceServer can be embedded to have forward compatible implementations.

func (*UnimplementedPredictionServiceServer) BatchPredict

func (*UnimplementedPredictionServiceServer) Predict

type UpdateColumnSpecRequest

type UpdateColumnSpecRequest struct {

	// Required. The column spec which replaces the resource on the server.
	ColumnSpec *ColumnSpec `protobuf:"bytes,1,opt,name=column_spec,json=columnSpec,proto3" json:"column_spec,omitempty"`
	// The update mask applies to the resource.
	UpdateMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.UpdateColumnSpec][google.cloud.automl.v1beta1.AutoMl.UpdateColumnSpec]

func (*UpdateColumnSpecRequest) Descriptor deprecated

func (*UpdateColumnSpecRequest) Descriptor() ([]byte, []int)

Deprecated: Use UpdateColumnSpecRequest.ProtoReflect.Descriptor instead.

func (*UpdateColumnSpecRequest) GetColumnSpec

func (x *UpdateColumnSpecRequest) GetColumnSpec() *ColumnSpec

func (*UpdateColumnSpecRequest) GetUpdateMask

func (x *UpdateColumnSpecRequest) GetUpdateMask() *fieldmaskpb.FieldMask

func (*UpdateColumnSpecRequest) ProtoMessage

func (*UpdateColumnSpecRequest) ProtoMessage()

func (*UpdateColumnSpecRequest) ProtoReflect

func (x *UpdateColumnSpecRequest) ProtoReflect() protoreflect.Message

func (*UpdateColumnSpecRequest) Reset

func (x *UpdateColumnSpecRequest) Reset()

func (*UpdateColumnSpecRequest) String

func (x *UpdateColumnSpecRequest) String() string

type UpdateDatasetRequest

type UpdateDatasetRequest struct {

	// Required. The dataset which replaces the resource on the server.
	Dataset *Dataset `protobuf:"bytes,1,opt,name=dataset,proto3" json:"dataset,omitempty"`
	// The update mask applies to the resource.
	UpdateMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.UpdateDataset][google.cloud.automl.v1beta1.AutoMl.UpdateDataset]

func (*UpdateDatasetRequest) Descriptor deprecated

func (*UpdateDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use UpdateDatasetRequest.ProtoReflect.Descriptor instead.

func (*UpdateDatasetRequest) GetDataset

func (x *UpdateDatasetRequest) GetDataset() *Dataset

func (*UpdateDatasetRequest) GetUpdateMask

func (x *UpdateDatasetRequest) GetUpdateMask() *fieldmaskpb.FieldMask

func (*UpdateDatasetRequest) ProtoMessage

func (*UpdateDatasetRequest) ProtoMessage()

func (*UpdateDatasetRequest) ProtoReflect

func (x *UpdateDatasetRequest) ProtoReflect() protoreflect.Message

func (*UpdateDatasetRequest) Reset

func (x *UpdateDatasetRequest) Reset()

func (*UpdateDatasetRequest) String

func (x *UpdateDatasetRequest) String() string

type UpdateTableSpecRequest

type UpdateTableSpecRequest struct {

	// Required. The table spec which replaces the resource on the server.
	TableSpec *TableSpec `protobuf:"bytes,1,opt,name=table_spec,json=tableSpec,proto3" json:"table_spec,omitempty"`
	// The update mask applies to the resource.
	UpdateMask *fieldmaskpb.FieldMask `protobuf:"bytes,2,opt,name=update_mask,json=updateMask,proto3" json:"update_mask,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.UpdateTableSpec][google.cloud.automl.v1beta1.AutoMl.UpdateTableSpec]

func (*UpdateTableSpecRequest) Descriptor deprecated

func (*UpdateTableSpecRequest) Descriptor() ([]byte, []int)

Deprecated: Use UpdateTableSpecRequest.ProtoReflect.Descriptor instead.

func (*UpdateTableSpecRequest) GetTableSpec

func (x *UpdateTableSpecRequest) GetTableSpec() *TableSpec

func (*UpdateTableSpecRequest) GetUpdateMask

func (x *UpdateTableSpecRequest) GetUpdateMask() *fieldmaskpb.FieldMask

func (*UpdateTableSpecRequest) ProtoMessage

func (*UpdateTableSpecRequest) ProtoMessage()

func (*UpdateTableSpecRequest) ProtoReflect

func (x *UpdateTableSpecRequest) ProtoReflect() protoreflect.Message

func (*UpdateTableSpecRequest) Reset

func (x *UpdateTableSpecRequest) Reset()

func (*UpdateTableSpecRequest) String

func (x *UpdateTableSpecRequest) String() string

type VideoClassificationAnnotation

type VideoClassificationAnnotation struct {

	// Output only. Expresses the type of video classification. Possible values:
	//
	//   - `segment` - Classification done on a specified by user
	//     time segment of a video. AnnotationSpec is answered to be present
	//     in that time segment, if it is present in any part of it. The video
	//     ML model evaluations are done only for this type of classification.
	//
	//   - `shot`- Shot-level classification.
	//     AutoML Video Intelligence determines the boundaries
	//     for each camera shot in the entire segment of the video that user
	//     specified in the request configuration. AutoML Video Intelligence
	//     then returns labels and their confidence scores for each detected
	//     shot, along with the start and end time of the shot.
	//     WARNING: Model evaluation is not done for this classification type,
	//     the quality of it depends on training data, but there are no
	//     metrics provided to describe that quality.
	//
	//   - `1s_interval` - AutoML Video Intelligence returns labels and their
	//     confidence scores for each second of the entire segment of the video
	//     that user specified in the request configuration.
	//     WARNING: Model evaluation is not done for this classification type,
	//     the quality of it depends on training data, but there are no
	//     metrics provided to describe that quality.
	Type string `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"`
	// Output only . The classification details of this annotation.
	ClassificationAnnotation *ClassificationAnnotation `` /* 133-byte string literal not displayed */
	// Output only . The time segment of the video to which the
	// annotation applies.
	TimeSegment *TimeSegment `protobuf:"bytes,3,opt,name=time_segment,json=timeSegment,proto3" json:"time_segment,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation details specific to video classification.

func (*VideoClassificationAnnotation) Descriptor deprecated

func (*VideoClassificationAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use VideoClassificationAnnotation.ProtoReflect.Descriptor instead.

func (*VideoClassificationAnnotation) GetClassificationAnnotation

func (x *VideoClassificationAnnotation) GetClassificationAnnotation() *ClassificationAnnotation

func (*VideoClassificationAnnotation) GetTimeSegment

func (x *VideoClassificationAnnotation) GetTimeSegment() *TimeSegment

func (*VideoClassificationAnnotation) GetType

func (*VideoClassificationAnnotation) ProtoMessage

func (*VideoClassificationAnnotation) ProtoMessage()

func (*VideoClassificationAnnotation) ProtoReflect

func (*VideoClassificationAnnotation) Reset

func (x *VideoClassificationAnnotation) Reset()

func (*VideoClassificationAnnotation) String

type VideoClassificationDatasetMetadata

type VideoClassificationDatasetMetadata struct {
	// contains filtered or unexported fields
}

Dataset metadata specific to video classification. All Video Classification datasets are treated as multi label.

func (*VideoClassificationDatasetMetadata) Descriptor deprecated

func (*VideoClassificationDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use VideoClassificationDatasetMetadata.ProtoReflect.Descriptor instead.

func (*VideoClassificationDatasetMetadata) ProtoMessage

func (*VideoClassificationDatasetMetadata) ProtoMessage()

func (*VideoClassificationDatasetMetadata) ProtoReflect

func (*VideoClassificationDatasetMetadata) Reset

func (*VideoClassificationDatasetMetadata) String

type VideoClassificationModelMetadata

type VideoClassificationModelMetadata struct {
	// contains filtered or unexported fields
}

Model metadata specific to video classification.

func (*VideoClassificationModelMetadata) Descriptor deprecated

func (*VideoClassificationModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use VideoClassificationModelMetadata.ProtoReflect.Descriptor instead.

func (*VideoClassificationModelMetadata) ProtoMessage

func (*VideoClassificationModelMetadata) ProtoMessage()

func (*VideoClassificationModelMetadata) ProtoReflect

func (*VideoClassificationModelMetadata) Reset

func (*VideoClassificationModelMetadata) String

type VideoObjectTrackingAnnotation

type VideoObjectTrackingAnnotation struct {

	// Optional. The instance of the object, expressed as a positive integer. Used to tell
	// apart objects of the same type (i.e. AnnotationSpec) when multiple are
	// present on a single example.
	// NOTE: Instance ID prediction quality is not a part of model evaluation and
	// is done as best effort. Especially in cases when an entity goes
	// off-screen for a longer time (minutes), when it comes back it may be given
	// a new instance ID.
	InstanceId string `protobuf:"bytes,1,opt,name=instance_id,json=instanceId,proto3" json:"instance_id,omitempty"`
	// Required. A time (frame) of a video to which this annotation pertains.
	// Represented as the duration since the video's start.
	TimeOffset *durationpb.Duration `protobuf:"bytes,2,opt,name=time_offset,json=timeOffset,proto3" json:"time_offset,omitempty"`
	// Required. The rectangle representing the object location on the frame (i.e.
	// at the time_offset of the video).
	BoundingBox *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_box,json=boundingBox,proto3" json:"bounding_box,omitempty"`
	// Output only. The confidence that this annotation is positive for the video at
	// the time_offset, value in [0, 1], higher means higher positivity
	// confidence. For annotations created by the user the score is 1. When
	// user approves an annotation, the original float score is kept (and not
	// changed to 1).
	Score float32 `protobuf:"fixed32,4,opt,name=score,proto3" json:"score,omitempty"`
	// contains filtered or unexported fields
}

Annotation details for video object tracking.

func (*VideoObjectTrackingAnnotation) Descriptor deprecated

func (*VideoObjectTrackingAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use VideoObjectTrackingAnnotation.ProtoReflect.Descriptor instead.

func (*VideoObjectTrackingAnnotation) GetBoundingBox

func (x *VideoObjectTrackingAnnotation) GetBoundingBox() *BoundingPoly

func (*VideoObjectTrackingAnnotation) GetInstanceId

func (x *VideoObjectTrackingAnnotation) GetInstanceId() string

func (*VideoObjectTrackingAnnotation) GetScore

func (x *VideoObjectTrackingAnnotation) GetScore() float32

func (*VideoObjectTrackingAnnotation) GetTimeOffset

func (*VideoObjectTrackingAnnotation) ProtoMessage

func (*VideoObjectTrackingAnnotation) ProtoMessage()

func (*VideoObjectTrackingAnnotation) ProtoReflect

func (*VideoObjectTrackingAnnotation) Reset

func (x *VideoObjectTrackingAnnotation) Reset()

func (*VideoObjectTrackingAnnotation) String

type VideoObjectTrackingDatasetMetadata

type VideoObjectTrackingDatasetMetadata struct {
	// contains filtered or unexported fields
}

Dataset metadata specific to video object tracking.

func (*VideoObjectTrackingDatasetMetadata) Descriptor deprecated

func (*VideoObjectTrackingDatasetMetadata) Descriptor() ([]byte, []int)

Deprecated: Use VideoObjectTrackingDatasetMetadata.ProtoReflect.Descriptor instead.

func (*VideoObjectTrackingDatasetMetadata) ProtoMessage

func (*VideoObjectTrackingDatasetMetadata) ProtoMessage()

func (*VideoObjectTrackingDatasetMetadata) ProtoReflect

func (*VideoObjectTrackingDatasetMetadata) Reset

func (*VideoObjectTrackingDatasetMetadata) String

type VideoObjectTrackingEvaluationMetrics

type VideoObjectTrackingEvaluationMetrics struct {

	// Output only. The number of video frames used to create this evaluation.
	EvaluatedFrameCount int32 `protobuf:"varint,1,opt,name=evaluated_frame_count,json=evaluatedFrameCount,proto3" json:"evaluated_frame_count,omitempty"`
	// Output only. The total number of bounding boxes (i.e. summed over all
	// frames) the ground truth used to create this evaluation had.
	EvaluatedBoundingBoxCount int32 `` /* 141-byte string literal not displayed */
	// Output only. The bounding boxes match metrics for each
	// Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
	// and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
	// pair.
	BoundingBoxMetricsEntries []*BoundingBoxMetricsEntry `` /* 140-byte string literal not displayed */
	// Output only. The single metric for bounding boxes evaluation:
	// the mean_average_precision averaged over all bounding_box_metrics_entries.
	BoundingBoxMeanAveragePrecision float32 `` /* 162-byte string literal not displayed */
	// contains filtered or unexported fields
}

Model evaluation metrics for video object tracking problems. Evaluates prediction quality of both labeled bounding boxes and labeled tracks (i.e. series of bounding boxes sharing same label and instance ID).

func (*VideoObjectTrackingEvaluationMetrics) Descriptor deprecated

func (*VideoObjectTrackingEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use VideoObjectTrackingEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision

func (x *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32

func (*VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries

func (x *VideoObjectTrackingEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry

func (*VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount

func (x *VideoObjectTrackingEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32

func (*VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount

func (x *VideoObjectTrackingEvaluationMetrics) GetEvaluatedFrameCount() int32

func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage

func (*VideoObjectTrackingEvaluationMetrics) ProtoMessage()

func (*VideoObjectTrackingEvaluationMetrics) ProtoReflect

func (*VideoObjectTrackingEvaluationMetrics) Reset

func (*VideoObjectTrackingEvaluationMetrics) String

type VideoObjectTrackingModelMetadata

type VideoObjectTrackingModelMetadata struct {
	// contains filtered or unexported fields
}

Model metadata specific to video object tracking.

func (*VideoObjectTrackingModelMetadata) Descriptor deprecated

func (*VideoObjectTrackingModelMetadata) Descriptor() ([]byte, []int)

Deprecated: Use VideoObjectTrackingModelMetadata.ProtoReflect.Descriptor instead.

func (*VideoObjectTrackingModelMetadata) ProtoMessage

func (*VideoObjectTrackingModelMetadata) ProtoMessage()

func (*VideoObjectTrackingModelMetadata) ProtoReflect

func (*VideoObjectTrackingModelMetadata) Reset

func (*VideoObjectTrackingModelMetadata) String

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL