Documentation ¶
Overview ¶
Package vdl implements the Vanadium Definition Language type and value system.
Concept: https://vanadium.github.io/concepts/rpc.html#vdl Specification: https://vanadium.github.io/designdocs/vdl-spec.html
VDL is an interface definition language designed to enable interoperation between clients and servers executing in heterogeneous environments. E.g. it enables a frontend written in Javascript running on a phone to communicate with a backend written in Go running on a server. VDL is compiled into an intermediate representation that is used to generate code in each target environment.
The concepts in VDL are similar to the concepts used in general-purpose languages to specify interfaces and communication protocols.
Index ¶
- Variables
- func Compatible(a, b *Type) bool
- func Convert(dst, src interface{}) error
- func ConvertReflect(dst, src reflect.Value) error
- func DecodeConvertedBytes(dec Decoder, fixedLen int, buf *[]byte) error
- func DeepEqual(a, b interface{}) bool
- func DeepEqualReflect(a, b reflect.Value) bool
- func EqualValue(a, b *Value) bool
- func Read(dec Decoder, v interface{}) error
- func ReadReflect(dec Decoder, rv reflect.Value) error
- func Register(wire interface{})
- func RegisterNative(toFn, fromFn interface{})
- func RegisterNativeAnyType(wireType interface{}, anyType interface{})
- func RegisterNativeConverter(wireType interface{}, converter NativeConverter)
- func RegisterNativeIsZero(native interface{})
- func SplitIdent(ident string) (pkgpath, name string)
- func Transcode(e Encoder, d Decoder) error
- func TypeToReflect(t *Type) reflect.Type
- func WrapInUnionInterface(rv reflect.Value) reflect.Value
- func Write(enc Encoder, v interface{}) error
- func WriteReflect(enc Encoder, rv reflect.Value) error
- type Decoder
- type Encoder
- type Equaler
- type Field
- type IsZeroer
- type Kind
- type NativeConverter
- type NativeIsZero
- type PendingArray
- type PendingEnum
- type PendingList
- type PendingMap
- type PendingNamed
- type PendingOptional
- type PendingSet
- type PendingStruct
- type PendingType
- type PendingUnion
- type ReadWriter
- type Reader
- type Type
- func ArrayType(arrayLen int, elem *Type) *Type
- func EnumType(labels ...string) *Type
- func ListType(elem *Type) *Type
- func MapType(key, elem *Type) *Type
- func NamedType(name string, base *Type) *Type
- func OptionalType(elem *Type) *Type
- func SetType(key *Type) *Type
- func StructType(fields ...Field) *Type
- func TypeFromReflect(rt reflect.Type) (*Type, error)
- func TypeOf(v interface{}) *Type
- func UnionType(fields ...Field) *Type
- func (t *Type) AssignableFrom(f *Value) bool
- func (t *Type) CanBeKey() bool
- func (t *Type) CanBeNamed() bool
- func (t *Type) CanBeNil() bool
- func (t *Type) CanBeOptional() bool
- func (t *Type) ContainsKind(mode WalkMode, kinds ...Kind) bool
- func (t *Type) ContainsType(mode WalkMode, types ...*Type) bool
- func (t *Type) Elem() *Type
- func (t *Type) EnumIndex(label string) int
- func (t *Type) EnumLabel(index int) string
- func (t *Type) Field(index int) Field
- func (t *Type) FieldByName(name string) (Field, int)
- func (t *Type) FieldIndexByName(name string) int
- func (t *Type) IsBytes() bool
- func (t *Type) IsPartOfCycle() bool
- func (t *Type) Key() *Type
- func (t *Type) Kind() Kind
- func (t *Type) Len() int
- func (t *Type) Name() string
- func (t *Type) NonOptional() *Type
- func (t *Type) NumEnumLabel() int
- func (t *Type) NumField() int
- func (t *Type) String() string
- func (t *Type) Unique() string
- func (t *Type) VDLIsZero() bool
- func (t *Type) VDLWrite(enc Encoder) error
- func (t *Type) Walk(mode WalkMode, fn func(*Type) bool) bool
- type TypeBuilder
- func (b *TypeBuilder) Array() PendingArray
- func (b *TypeBuilder) Build()
- func (b *TypeBuilder) Enum() PendingEnum
- func (b *TypeBuilder) List() PendingList
- func (b *TypeBuilder) Map() PendingMap
- func (b *TypeBuilder) Named(name string) PendingNamed
- func (b *TypeBuilder) Optional() PendingOptional
- func (b *TypeBuilder) Set() PendingSet
- func (b *TypeBuilder) Struct() PendingStruct
- func (b *TypeBuilder) Union() PendingUnion
- type TypeOrPending
- type Value
- func AnyValue(x *Value) *Value
- func BoolValue(tt *Type, x bool) *Value
- func BytesValue(tt *Type, x []byte) *Value
- func CopyValue(v *Value) *Value
- func EnumValue(tt *Type, index int) *Value
- func FloatValue(tt *Type, x float64) *Value
- func IntValue(tt *Type, x int64) *Value
- func NonNilZeroValue(t *Type) *Value
- func OptionalValue(x *Value) *Value
- func SortValuesAsString(values []*Value) []*Value
- func StringValue(tt *Type, x string) *Value
- func TypeObjectValue(x *Type) *Value
- func UintValue(tt *Type, x uint64) *Value
- func UnionValue(tt *Type, index int, x *Value) *Value
- func ValueFromReflect(rv reflect.Value) (*Value, error)
- func ValueOf(v interface{}) *Value
- func ZeroValue(t *Type) *Value
- func (v *Value) Assign(x *Value) *Value
- func (v *Value) AssignBool(x bool)
- func (v *Value) AssignBytes(x []byte)
- func (v *Value) AssignEnumIndex(index int)
- func (v *Value) AssignEnumLabel(label string)
- func (v *Value) AssignField(index int, value *Value)
- func (v *Value) AssignFloat(x float64)
- func (v *Value) AssignIndex(index int, elem *Value)
- func (v *Value) AssignInt(x int64)
- func (v *Value) AssignLen(n int)
- func (v *Value) AssignMapIndex(key, elem *Value)
- func (v *Value) AssignSetKey(key *Value)
- func (v *Value) AssignString(x string)
- func (v *Value) AssignTypeObject(x *Type)
- func (v *Value) AssignUint(x uint64)
- func (v *Value) Bool() bool
- func (v *Value) Bytes() []byte
- func (v *Value) ContainsKey(key *Value) bool
- func (vv *Value) Decoder() Decoder
- func (v *Value) DeleteMapIndex(key *Value)
- func (v *Value) DeleteSetKey(key *Value)
- func (v *Value) Elem() *Value
- func (v *Value) EnumIndex() int
- func (v *Value) EnumLabel() string
- func (v *Value) Float() float64
- func (v *Value) Index(index int) *Value
- func (v *Value) Int() int64
- func (v *Value) IsNil() bool
- func (v *Value) IsValid() bool
- func (v *Value) IsZero() bool
- func (v *Value) Keys() []*Value
- func (v *Value) Kind() Kind
- func (v *Value) Len() int
- func (v *Value) MapIndex(key *Value) *Value
- func (v *Value) NonOptional() *Value
- func (v *Value) RawString() string
- func (v *Value) String() string
- func (v *Value) StructField(index int) *Value
- func (v *Value) StructFieldByName(name string) *Value
- func (v *Value) Type() *Type
- func (v *Value) TypeObject() *Type
- func (v *Value) Uint() uint64
- func (v *Value) UnionField() (int, *Value)
- func (v *Value) VDLEqual(x interface{}) bool
- func (v *Value) VDLIsZero() bool
- func (vv *Value) VDLRead(dec Decoder) error
- func (vv *Value) VDLWrite(enc Encoder) error
- type WalkMode
- type WireError
- type WireRetryCode
- type Writer
Constants ¶
This section is empty.
Variables ¶
var ( AnyType = primitiveType(Any) BoolType = primitiveType(Bool) ByteType = primitiveType(Byte) Uint16Type = primitiveType(Uint16) Uint32Type = primitiveType(Uint32) Uint64Type = primitiveType(Uint64) Int8Type = primitiveType(Int8) Int16Type = primitiveType(Int16) Int32Type = primitiveType(Int32) Int64Type = primitiveType(Int64) Float32Type = primitiveType(Float32) Float64Type = primitiveType(Float64) StringType = primitiveType(String) TypeObjectType = primitiveType(TypeObject) )
Primitive types, the basis for all other types. All have empty names.
var ErrorType = OptionalType(NamedType("v.io/v23/vdl.WireError", StructType( Field{"Id", StringType}, Field{"RetryCode", NamedType("v.io/v23/vdl.WireRetryCode", EnumType("NoRetry", "RetryConnection", "RetryRefetch", "RetryBackoff"))}, Field{"Msg", StringType}, Field{"ParamList", ListType(AnyType)}, )))
ErrorType describes the built-in error type. TODO(bprosnitz) We should define these as built-ins (with name wireError and wireRetryCode).
var WireRetryCodeAll = [...]WireRetryCode{WireRetryCodeNoRetry, WireRetryCodeRetryConnection, WireRetryCodeRetryRefetch, WireRetryCodeRetryBackoff}
WireRetryCodeAll holds all labels for WireRetryCode.
Functions ¶
func Compatible ¶
Compatible returns true if types a and b are compatible with each other.
Compatibility is checked before every value conversion; it is the first-pass filter that disallows certain conversions. Values of incompatible types are never convertible, while values of compatible types might not be convertible. E.g. float32 and byte are compatible types, and float32(1.0) is convertible to/from byte(1), but float32(1.5) is not convertible to/from any byte value.
The reason we have a type compatibility check is to disallow invalid conversions that are hard to catch while converting values. E.g. conversions between values of []bool and []float32 are invalid, but this is hard to catch if both lists are empty.
Compatibility is reversible and transitive, except for the special Any type. Here are the rules:
o Any is compatible with all types. o Optional is ignored for all rules (e.g. ?int is treated as int). o Bool is only compatible with Bool. o TypeObject is only compatible with TypeObject. o Numbers are mutually compatible. o String and enum are mutually compatible. o Array and list are compatible if their elem types are compatible. o Sets are compatible if their key types are compatible. o Maps are compatible if their key and elem types are compatible. o Structs are compatible if all fields with the same name are compatible, and at least one field has the same name, or one of the types has no fields. o Unions are compatible if all fields with the same name are compatible, and at least one field has the same name.
Recursive types are checked for compatibility up to the first occurrence of a cycle in either type. This leaves open the possibility of "obvious" false positives where types are compatible but values are not; this is a tradeoff favoring a simpler implementation and better performance over exhaustive checking. This seems fine in practice since type compatibility is weaker than value convertibility, and since recursive types are not common.
func ConvertReflect ¶
ConvertReflect converts reflect values from src to dst.
func DecodeConvertedBytes ¶
DecodeConvertedBytes is a helper function for implementations of Decoder.DecodeBytes, to deal with cases where the decoder value is convertible to []byte. E.g. if the decoder value is []float64, we need to decode each element as a uint8, performing conversion checks.
Since this is meant to be used in the implementation of DecodeBytes, there is no outer call to StartValue/FinishValue.
func DeepEqual ¶
func DeepEqual(a, b interface{}) bool
DeepEqual is like reflect.DeepEqual, with the following differences:
- If a value is encountered that implements Equaler, we will use that for the comparison.
- If cyclic values are encountered, we require that the cyclic structure of the two values is the same.
func DeepEqualReflect ¶
DeepEqualReflect is the same as DeepEqual, but takes reflect.Value arguments.
func EqualValue ¶
EqualValue returns true iff a and b have the same type, and equal values.
TODO(toddw): The Value representation currently allows non-nil any, e.g. Value{Type:AnyType, Rep: ...}. We will soon remove this support. EqualValue does not distinguish non-nil any from the inner value.
func Read ¶
Read uses dec to decode a value into v, calling VDLRead methods and fast compiled readers when available, and using reflection otherwise. This is basically an all-purpose VDLRead implementation.
func ReadReflect ¶
ReadReflect is like Read, but takes a reflect.Value argument.
func Register ¶
func Register(wire interface{})
Register registers a type, identified by a value for that type. The type should be a type that will be sent over the wire. Subtypes are recursively registered. This creates a type name <-> reflect.Type bijective mapping.
Type registration is only required for VDL conversion into interface{} values, so that values of the correct type may be generated. Conversion into interface{} values for types that are not registered will fill in *vdl.Value into the interface{} value.
Panics if wire is not a valid wire type, or if the name<->type mapping is not bijective.
Register is not intended to be called by end users; calls are auto-generated for all types defined in *.vdl files.
func RegisterNative ¶
func RegisterNative(toFn, fromFn interface{})
RegisterNative registers conversion functions between a VDL wire type and a Go native type. This is typically used when there is a more idiomatic native representation for a given wire type; e.g. the VDL standard Time type is converted into the Go standard time.Time.
The signatures of the conversion functions is expected to be:
func ToNative(wire W, native *N) error func FromNative(wire *W, native N) error
The VDL conversion routines automatically apply these conversion functions, to avoid manual marshaling by the user. The "dst" values (i.e. native in ToNative, and wire in FromNative) are guaranteed to be an allocated zero value of the respective type.
As a special-case, RegisterNative is called by the verror package to register conversions between vdl.WireError and the standard Go error type. This is required for error conversions to work correctly.
RegisterNative is not intended to be called by end users; calls are auto-generated for types with native conversions in *.vdl files.
func RegisterNativeAnyType ¶ added in v0.1.17
func RegisterNativeAnyType(wireType interface{}, anyType interface{})
RegisterNativeAnyType registers the native type to use for when decoding into an any type from a registered wire type. This is required when the native type associated with the specified wire type is an interface and hence there is ambiguity as to which concrete type to use when decoding into an any.
As a special-case, RegisterNativeAnyType is called by the verror package to register conversions between vdl.WireError and the standard Go error type. This is required for error conversions to work correctly. It can also be used for any wire/native conversions that need to enforce a specific type when decoding into an any type.
RegisterNativeAnyType is not intended to be called by end users; calls are auto-generated for types with native conversions in *.vdl files.
func RegisterNativeConverter ¶ added in v0.1.17
func RegisterNativeConverter(wireType interface{}, converter NativeConverter)
RegisterNativeConverter registers a 'converter' that implements vdl.NativeConverer for converting to/from native types. This is a performance optimization since invoking the methods via the interface is much faster than doing so via reflect.Call. Typical usage is as follows. Note that the traditional native conversion functions and registrations are required to ensure valid conversions and this is purely a performance optimisation.
vdl.RegisterNativeConverter(Time{}, nativeConverter{}) type nativeConverter struct{} func (f nativeConverter) ToNative(wire, native interface{}) error { return TimeToNative(wire.(Time), native.(*time.Time)) } func (f nativeConverter) FromNative(wire, native interface{}) error { return TimeFromNative(wire.(*Time), native.(time.Time)) }
func RegisterNativeIsZero ¶ added in v0.1.17
func RegisterNativeIsZero(native interface{})
RegisterNativeIsZero registers the supplied native type as implementing vdl.NativeIsZero with the expected semantics. This is purely a performance optimization.
func SplitIdent ¶
SplitIdent splits the given identifier into its package path and local name.
a/b.Foo -> (a/b, Foo) a.b/c.Foo -> (a.b/c, Foo) Foo -> ("", Foo) a/b -> ("", a/b)
func TypeToReflect ¶
TypeToReflect returns the reflect.Type corresponding to t. We look up named types in our registry, and build the unnamed types that we can via the Go reflect package. Returns nil for types that can't be manufactured.
func WrapInUnionInterface ¶
WrapInUnionInterface returns a value of the union interface type that holds the union value rv. Returns an invalid reflect.Value if rv isn't a union value. Returns rv unchanged if its type is already the interface type.
Types ¶
type Decoder ¶
type Decoder interface { // StartValue must be called before decoding each value, for both scalar and // composite values. The want type is the type of value being decoded into, // used to check compatibility with the value in the decoder; use AnyType if // you don't know, or want to decode any type of value. Each call pushes the // type of the next value on to the stack. StartValue(want *Type) error // FinishValue must be called after decoding each value, for both scalar and // composite values. Each call pops the type of the top value off of the // stack. FinishValue() error // SkipValue skips the next value; logically it behaves as if a full sequence // of StartValue / ...Decode*... / FinishValue were called. It enables // optimizations when the caller doesn't care about the next value. SkipValue() error // IgnoreNextStartValue instructs the Decoder to ignore the next call to // StartValue. It is used to simplify implementations of VDLRead; e.g. a // caller might call StartValue to check for nil values, and subsequently call // StartValue again to read non-nil values. IgnoreNextStartValue is used to // ignore the second StartValue call. IgnoreNextStartValue() // NextEntry instructs the Decoder to move to the next element of an Array or // List, the next key of a Set, or the next (key,elem) pair of a Map. Returns // done=true when there are no remaining entries. NextEntry() (done bool, _ error) // NextField instructs the Decoder to move to the next field of a Struct or // Union. Returns the index of the next field, or -1 when there are no // remaining fields. You may call Decoder.Type().Field(index).Name to // retrieve the name of the struct or union field. NextField() (index int, _ error) // Type returns the type of the top value on the stack. Returns nil when the // stack is empty. The returned type is only Any or Optional iff the value is // nil; non-nil values are "auto-dereferenced" to their underlying elem value. Type() *Type // IsAny returns true iff the type of the top value on the stack was Any, // despite the "auto-dereference" behavior of non-nil values. IsAny() bool // IsOptional returns true iff the type of the top value on the stack was // Optional, despite the "auto-dereference" behavior of non-nil values. IsOptional() bool // IsNil returns true iff the top value on the stack is nil. It is equivalent // to Type() == AnyType || Type().Kind() == Optional. IsNil() bool // Index returns the index of the current entry or field of the top value on // the stack. Returns -1 if the top value is a scalar, or if NextEntry / // NextField has not been called. Index() int // LenHint returns the length of the top value on the stack, if it is // available. Returns -1 if the top value is a scalar, or if the length is // not available. LenHint() int // DecodeBool returns the top value on the stack as a bool. DecodeBool() (bool, error) // DecodeString returns the top value on the stack as a string. DecodeString() (string, error) // DecodeUint returns the top value on the stack as a uint, where the result // has bitlen bits. Errors are returned on loss of precision. DecodeUint(bitlen int) (uint64, error) // DecodeInt returns the top value on the stack as an int, where the result // has bitlen bits. Errors are returned on loss of precision. DecodeInt(bitlen int) (int64, error) // DecodeFloat returns the top value on the stack as a float, where the result // has bitlen bits. Errors are returned on loss of precision. DecodeFloat(bitlen int) (float64, error) // DecodeTypeObject returns the top value on the stack as a type. DecodeTypeObject() (*Type, error) // DecodeBytes decodes the top value on the stack as bytes, into x. If // fixedLen >= 0 the decoded bytes must be exactly that length, otherwise // there is no restriction on the number of decoded bytes. If cap(*x) is not // large enough to fit the decoded bytes, a new byte slice is assigned to *x. DecodeBytes(fixedLen int, x *[]byte) error // ReadValueBool behaves as if StartValue, DecodeBool, FinishValue were // called in sequence. Some decoders optimize this codepath. ReadValueBool() (bool, error) // ReadValueString behaves as if StartValue, DecodeString, FinishValue were // called in sequence. Some decoders optimize this codepath. ReadValueString() (string, error) // ReadValueUint behaves as if StartValue, DecodeUint, FinishValue were called // in sequence. Some decoders optimize this codepath. ReadValueUint(bitlen int) (uint64, error) // ReadValueInt behaves as if StartValue, DecodeInt, FinishValue were called // in sequence. Some decoders optimize this codepath. ReadValueInt(bitlen int) (int64, error) // ReadValueFloat behaves as if StartValue, DecodeFloat, FinishValue were // called in sequence. Some decoders optimize this codepath. ReadValueFloat(bitlen int) (float64, error) // ReadValueTypeObject behaves as if StartValue, DecodeTypeObject, FinishValue // were called in sequence. Some decoders optimize this codepath. ReadValueTypeObject() (*Type, error) // ReadValueBytes behaves as if StartValue, DecodeBytes, FinishValue were // called in sequence. Some decoders optimize this codepath. ReadValueBytes(fixedLen int, x *[]byte) error // NextEntryValueBool behaves as if NextEntry, StartValue, DecodeBool, // FinishValue were called in sequence. Some decoders optimize this codepath. NextEntryValueBool() (done bool, _ bool, _ error) // NextEntryValueString behaves as if NextEntry, StartValue, DecodeString, // FinishValue were called in sequence. Some decoders optimize this codepath. NextEntryValueString() (done bool, _ string, _ error) // NextEntryValueUint behaves as if NextEntry, StartValue, DecodeUint, // FinishValue were called in sequence. Some decoders optimize this codepath. NextEntryValueUint(bitlen int) (done bool, _ uint64, _ error) // NextEntryValueInt behaves as if NextEntry, StartValue, DecodeInt, // FinishValue were called in sequence. Some decoders optimize this codepath. NextEntryValueInt(bitlen int) (done bool, _ int64, _ error) // NextEntryValueFloat behaves as if NextEntry, StartValue, DecodeFloat, // FinishValue were called in sequence. Some decoders optimize this codepath. NextEntryValueFloat(bitlen int) (done bool, _ float64, _ error) // NextEntryValueTypeObject behaves as if NextEntry, StartValue, // DecodeTypeObject, FinishValue were called in sequence. Some decoders // optimize this codepath. NextEntryValueTypeObject() (done bool, _ *Type, _ error) }
Decoder defines the interface for a decoder of vdl values. The Decoder is passed as the argument to VDLRead. An example of an implementation of this interface is vom.Decoder.
The Decoder provides an API to read vdl values of all types in depth-first order. The ordering is based on the type of the value being read. E.g. given the following value:
type MyStruct struct { A []string B map[int64]bool C any } value := MyStruct{ A: {"abc", "def"}, B: {123: true, 456: false}, C: float32(1.5), }
The values will be read in the following order:
"abc" "def" (123, true) (456, false) 1.5
type Encoder ¶
type Encoder interface { // StartValue must be called before encoding each non-nil value, for both // scalar and composite values. The tt type cannot be Any or Optional; use // NilValue to encode nil values. StartValue(tt *Type) error // FinishValue must be called after encoding each non-nil value, for both // scalar and composite values. FinishValue() error // NilValue encodes a nil value. The tt type must be Any or Optional. NilValue(tt *Type) error // SetNextStartValueIsOptional instructs the encoder that the next call to // StartValue represents a value with an Optional type. SetNextStartValueIsOptional() // NextEntry instructs the Encoder to move to the next element of an Array or // List, the next key of a Set, or the next (key,elem) pair of a Map. Set // done=true when there are no remaining entries. NextEntry(done bool) error // NextField instructs the Encoder to move to the next field of a Struct or // Union. Set index to the index of the next field, or -1 when there are no // remaining fields. NextField(index int) error // SetLenHint sets the length of the List, Set or Map value. It may only be // called immediately after StartValue, before NextEntry has been called. Do // not call this method if the length is not known. SetLenHint(lenHint int) error // EncodeBool encodes a bool value. EncodeBool(value bool) error // EncodeString encodes a string value. EncodeString(value string) error // EncodeUint encodes a uint value. EncodeUint(value uint64) error // EncodeInt encodes an int value. EncodeInt(value int64) error // EncodeFloat encodes a float value. EncodeFloat(value float64) error // EncodeTypeObject encodes a type. EncodeTypeObject(value *Type) error // EncodeBytes encodes a bytes value; either an array or list of bytes. EncodeBytes(value []byte) error // WriteValueBool behaves as if StartValue, EncodeBool, FinishValue were // called in sequence. Some encoders optimize this codepath. WriteValueBool(tt *Type, value bool) error // WriteValueString behaves as if StartValue, EncodeString, FinishValue were // called in sequence. Some encoders optimize this codepath. WriteValueString(tt *Type, value string) error // WriteValueUint behaves as if StartValue, EncodeUint, FinishValue were // called in sequence. Some encoders optimize this codepath. WriteValueUint(tt *Type, value uint64) error // WriteValueInt behaves as if StartValue, EncodeInt, FinishValue were called // in sequence. Some encoders optimize this codepath. WriteValueInt(tt *Type, value int64) error // WriteValueFloat behaves as if StartValue, EncodeFloat, FinishValue were // called in sequence. Some encoders optimize this codepath. WriteValueFloat(tt *Type, value float64) error // WriteValueTypeObject behaves as if StartValue, EncodeTypeObject, // FinishValue were called in sequence. Some encoders optimize this codepath. WriteValueTypeObject(value *Type) error // WriteValueBytes behaves as if StartValue, EncodeBytes, FinishValue were // called in sequence. Some encoders optimize this codepath. WriteValueBytes(tt *Type, value []byte) error // NextEntryValueBool behaves as if NextEntry, StartValue, EncodeBool, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueBool(tt *Type, value bool) error // NextEntryValueString behaves as if NextEntry, StartValue, EncodeString, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueString(tt *Type, value string) error // NextEntryValueUint behaves as if NextEntry, StartValue, EncodeUint, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueUint(tt *Type, value uint64) error // NextEntryValueInt behaves as if NextEntry, StartValue, EncodeInt, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueInt(tt *Type, value int64) error // NextEntryValueFloat behaves as if NextEntry, StartValue, EncodeFloat, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueFloat(tt *Type, value float64) error // NextEntryValueTypeObject behaves as if NextEntry, StartValue, // EncodeTypeObject, FinishValue were called in sequence. Some encoders // optimize this codepath. NextEntryValueTypeObject(value *Type) error // NextEntryValueBytes behaves as if NextEntry, StartValue, EncodeBytes, // FinishValue were called in sequence. Some encoders optimize this codepath. NextEntryValueBytes(tt *Type, value []byte) error // NextFieldValueBool behaves as if NextEntry, StartValue, EncodeBool, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueBool(index int, tt *Type, value bool) error // NextFieldValueString behaves as if NextEntry, StartValue, EncodeString, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueString(index int, tt *Type, value string) error // NextFieldValueUint behaves as if NextEntry, StartValue, EncodeUint, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueUint(index int, tt *Type, value uint64) error // NextFieldValueInt behaves as if NextEntry, StartValue, EncodeInt, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueInt(index int, tt *Type, value int64) error // NextFieldValueFloat behaves as if NextEntry, StartValue, EncodeFloat, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueFloat(index int, tt *Type, value float64) error // NextFieldValueTypeObject behaves as if NextEntry, StartValue, // EncodeTypeObject, FinishValue were called in sequence. Some encoders // optimize this codepath. NextFieldValueTypeObject(index int, value *Type) error // NextFieldValueBytes behaves as if NextEntry, StartValue, EncodeBytes, // FinishValue were called in sequence. Some encoders optimize this codepath. NextFieldValueBytes(index int, tt *Type, value []byte) error }
Encoder defines the interface for an encoder of vdl values. The Encoder is passed as the argument to VDLWrite. An example of an implementation of this interface is vom.Encoder.
The Encoder provides an API to write vdl values of all types in depth-first order. The ordering is based on the type of the value being written; see Decoder for examples.
type Equaler ¶
type Equaler interface {
VDLEqual(v interface{}) bool
}
Equaler is the interface that wraps the VDLEqual method.
VDLEqual returns true iff the receiver that implements this method is equal to v. The semantics of the equality must abide by VDL equality rules. The caller of this method must ensure that the type of the receiver is the same as the type of v, and v is never nil.
type IsZeroer ¶
type IsZeroer interface {
VDLIsZero() bool
}
IsZeroer is the interface that wraps the VDLIsZero method.
VDLIsZero returns true iff the receiver that implements this method is the VDL zero value.
type Kind ¶
type Kind int
Kind represents the kind of type that a Type represents.
const ( // Variant kinds Any Kind = iota // any type Optional // value might not exist // Scalar kinds Bool // boolean Byte // 8 bit unsigned integer Uint16 // 16 bit unsigned integer Uint32 // 32 bit unsigned integer Uint64 // 64 bit unsigned integer Int8 // 8 bit signed integer Int16 // 16 bit signed integer Int32 // 32 bit signed integer Int64 // 64 bit signed integer Float32 // 32 bit IEEE 754 floating point Float64 // 64 bit IEEE 754 floating point String // unicode string (encoded as UTF-8 in memory) Enum // one of a set of labels TypeObject // type represented as a value // Composite kinds Array // fixed-length ordered sequence of elements List // variable-length ordered sequence of elements Set // unordered collection of distinct keys Map // unordered association between distinct keys and values Struct // conjunction of an ordered sequence of (name,type) fields Union // disjunction of an ordered sequence of (name,type) fields )
func (Kind) BitLen ¶
BitLen returns the number of bits in the representation of the kind; e.g. Int32 returns 32. Returns -1 for non-number kinds.
type NativeConverter ¶ added in v0.1.17
type NativeIsZero ¶ added in v0.1.17
type NativeIsZero interface {
IsZero() bool
}
NativeIsZero is an interface that native types can implement to test for a zero value. For example the zero value for time.Time is not time.Time{} since it may vary by time zone and it provides an IsZero method. Since such methods will not have been created with VDL in mind the use of this interface must be specifically enabled via the RegisterNativeIsZero function. If other conventions evolve to use a different signature to this then such interfaces may be easily added. This is an important optimization since in its absence the VDL implementation will, for the case where a native <-> wire conversion is registered, achieve the same effect by creating a wire representation of the native time and testing it for being zero (using reflect.Call).
type PendingArray ¶
type PendingArray interface { PendingType // AssignLen assigns the Array length. AssignLen(len int) PendingArray // AssignElem assigns the Array element type. AssignElem(elem TypeOrPending) PendingArray }
PendingArray represents an Array type that is being built.
type PendingEnum ¶
type PendingEnum interface { PendingType // AppendLabel appends an Enum label. Every Enum must have at least one // label, and each label must not be empty. AppendLabel(label string) PendingEnum }
PendingEnum represents an Enum type that is being built.
type PendingList ¶
type PendingList interface { PendingType // AssignElem assigns the List element type. AssignElem(elem TypeOrPending) PendingList }
PendingList represents a List type that is being built.
type PendingMap ¶
type PendingMap interface { PendingType // AssignKey assigns the Map key type. AssignKey(key TypeOrPending) PendingMap // AssignElem assigns the Map element type. AssignElem(elem TypeOrPending) PendingMap }
PendingMap represents a Map type that is being built.
type PendingNamed ¶
type PendingNamed interface { PendingType // AssignBase assigns the base type of the named type. The resulting built // type will have the same underlying structure as base, but with the given // name. AssignBase(base TypeOrPending) PendingNamed }
PendingNamed represents a named type that is being built. Given a base type you can build a new type with an identical underlying structure, but a different name.
type PendingOptional ¶
type PendingOptional interface { PendingType // AssignElem assigns the Optional elem type. AssignElem(elem TypeOrPending) PendingOptional }
PendingOptional represents an Optional type that is being built. Given a base type that is non-optional, you can build a new type that is optional.
type PendingSet ¶
type PendingSet interface { PendingType // AssignKey assigns the Set key type. AssignKey(key TypeOrPending) PendingSet }
PendingSet represents a Set type that is being built.
type PendingStruct ¶
type PendingStruct interface { PendingType // AppendField appends the Struct field with the given name and t. The name // must not be empty. The ordering of fields is preserved; different // orderings create different types. AppendField(name string, t TypeOrPending) PendingStruct // NumField returns the number of fields appended so far. NumField() int }
PendingStruct represents a Struct type that is being built.
type PendingType ¶
type PendingType interface { TypeOrPending // Built returns the final built and hash-consed type. Build must be called // on the TypeBuilder before Built is called on any pending type. If any // pending type has a build error, Built returns a nil type for all pending // types, and returns non-nil errors for at least one pending type. Built() (*Type, error) }
PendingType represents a type that's being built by the TypeBuilder.
type PendingUnion ¶
type PendingUnion interface { PendingType // AppendField appends the Union field with the given name and t. The name // must not be empty. The ordering of fields is preserved; different // orderings create different types. AppendField(name string, t TypeOrPending) PendingUnion // NumField returns the number of fields appended so far. NumField() int }
PendingUnion represents a Union type that is being built.
type ReadWriter ¶
ReadWriter is the interface that groups the VDLRead and VDLWrite methods.
type Reader ¶
Reader is the interface that wraps the VDLRead method.
VDLRead fills in the the receiver that implements this method from the Decoder. This method is auto-generated for all types defined in vdl. It may be implemented for regular Go types not defined in vdl, to customize the decoding.
type Type ¶
type Type struct {
// contains filtered or unexported fields
}
Type is the representation of a vanadium type. Types are hash-consed; each unique type is represented by exactly one *Type instance, so to test for type equality you just compare the *Type instances.
Not all methods apply to all kinds of types. Restrictions are noted in the documentation for each method. Calling a method inappropriate to the kind of type causes a run-time panic.
Cyclic types are supported; e.g. you can represent a tree via:
type Node struct { Val string Children []Node }
func ArrayType ¶
ArrayType is a helper using TypeBuilder to create a single Array type. Panics on all errors.
func EnumType ¶
EnumType is a helper using TypeBuilder to create a single Enum type. Panics on all errors.
func ListType ¶
ListType is a helper using TypeBuilder to create a single List type. Panics on all errors.
func MapType ¶
MapType is a helper using TypeBuilder to create a single Map type. Panics on all errors.
func NamedType ¶
NamedType is a helper using TypeBuilder to create a single named type based on another type. Panics on all errors.
func OptionalType ¶
OptionalType is a helper using TypeBuilder to create a single Optional type. Panics on all errors.
func SetType ¶
SetType is a helper using TypeBuilder to create a single Set type. Panics on all errors.
func StructType ¶
StructType is a helper using TypeBuilder to create a single Struct type. Panics on all errors.
func TypeFromReflect ¶
TypeFromReflect returns the type corresponding to rt. Not all reflect types have a valid type; reflect.Chan, reflect.Func and reflect.UnsafePointer are unsupported, as are maps with pointer keys, as well as structs with only unexported fields.
func TypeOf ¶
func TypeOf(v interface{}) *Type
TypeOf returns the type corresponding to v. It's a helper for calling TypeFromReflect, and panics on any errors.
func UnionType ¶
UnionType is a helper using TypeBuilder to create a single Union type. Panics on all errors.
func (*Type) AssignableFrom ¶
AssignableFrom returns true iff values of t may be assigned from f:
o Allowed if t and the type of f are identical. o Allowed if t is Any. o Allowed if t is Optional, and f is Any(nil).
The first rule establishes strict static typing. The second rule relaxes things for Any, which is dynamically typed. The third rule relaxes things further, to allow implicit conversions from Any(nil) to all Optional types.
func (*Type) CanBeKey ¶
CanBeKey returns true iff t can be used as a set or map key.
Any, List, Map, Optional, Set and TypeObject cannot be keys, nor can composite types that contain these types.
func (*Type) CanBeNamed ¶
CanBeNamed returns true iff t can be made into a named type.
Any and TypeObject cannot be named.
func (*Type) CanBeNil ¶
CanBeNil returns true iff values of t can be nil.
Any and Optional values can be nil.
func (*Type) CanBeOptional ¶
CanBeOptional returns true iff t can be made into an optional type.
Only named structs can be optional.
func (*Type) ContainsKind ¶
ContainsKind returns true iff t or subtypes of t match any of the kinds.
func (*Type) ContainsType ¶
ContainsType returns true iff t or subtypes of t match any of the types.
func (*Type) EnumIndex ¶
EnumIndex returns the Enum index for the given label. Returns -1 if the label doesn't exist.
func (*Type) EnumLabel ¶
EnumLabel returns the Enum label at the given index. It panics if the index is out of range.
func (*Type) FieldByName ¶
FieldByName returns a description of the Struct or Union field with the given name, and its index. Returns -1 if the name doesn't exist.
func (*Type) FieldIndexByName ¶
FieldIndexByName returns the index of the Struct or Union field with the given name. Returns -1 if the name doesn't exist.
func (*Type) IsPartOfCycle ¶
IsPartOfCycle returns true iff t is part of a cycle. Note that t is not considered to be part of a cycle if it merely contains another type that is part of a cycle; the type graph must cycle back through t to return true.
func (*Type) NonOptional ¶
NonOptional returns t.Elem() if t is Optional, otherwise returns t.
func (*Type) NumEnumLabel ¶
NumEnumLabel returns the number of labels in an Enum.
func (*Type) String ¶
String returns a human-readable description of type t. Do not rely on the output format; it may change without notice. See Unique for a format that is guaranteed never to change.
func (*Type) Unique ¶
Unique returns a unique representation of type t. Two types A and B are guaranteed to return the same unique string iff A is equal to B. The format is guaranteed to never change.
A typical use case is to hash the unique representation to produce globally-unique type ids.
func (*Type) VDLWrite ¶
VDLWrite uses enc to encode type t.
Unlike regular VDLWrite implementations, this handles the case where t contains a nil value, to make code generation simpler.
type TypeBuilder ¶
type TypeBuilder struct {
// contains filtered or unexported fields
}
TypeBuilder builds Types. There are two phases: 1) Create Pending* objects and describe each type, and 2) call Build. When Build is called, all types are created and may be retrieved by calling Built on the pending type. This two-phase building enables support for recursive types, and also makes it easy to construct a group of dependent types without determining their dependency ordering. The separation between Build and Built allows individual errors to be returned for each pending type, and easily associated with additional information for the pending type, e.g. position information in a compiler.
Each TypeBuilder instance enforces the rule that type names are unique; each named type must be represented by exactly one Type or PendingType object. E.g. you can't create an enum "Foo" and a struct "Foo" via the same TypeBuilder, nor can you create two structs named "Foo", even if they have the same fields. This rule simplifies the hash consing logic.
There is no enforcement of unique names across TypeBuilder instances; the val package allows different types with the same names. This allows support for a single named type with multiple versions, all handled within a single address space.
The zero TypeBuilder represents an empty builder.
func (*TypeBuilder) Array ¶
func (b *TypeBuilder) Array() PendingArray
Array returns PendingArray, used to describe an Array type.
func (*TypeBuilder) Build ¶
func (b *TypeBuilder) Build()
Build builds all pending types. Build must be called before Built may be called on each pending type to retrieve the final result.
Build guarantees that either all pending types are successfully built, or none of them are. I.e. all calls to Built will either return a non-nil Type and nil error, or nil Type. The pending type(s) that had build errors will return non-nil errors.
func (*TypeBuilder) Enum ¶
func (b *TypeBuilder) Enum() PendingEnum
Enum returns PendingEnum, used to describe an Enum type.
func (*TypeBuilder) List ¶
func (b *TypeBuilder) List() PendingList
List returns PendingList, used to describe a List type.
func (*TypeBuilder) Map ¶
func (b *TypeBuilder) Map() PendingMap
Map returns PendingMap, used to describe a Map type.
func (*TypeBuilder) Named ¶
func (b *TypeBuilder) Named(name string) PendingNamed
Named returns PendingNamed, used to describe a named type based on another type.
func (*TypeBuilder) Optional ¶
func (b *TypeBuilder) Optional() PendingOptional
Optional returns PendingOptional, used to describe an Optional type.
func (*TypeBuilder) Set ¶
func (b *TypeBuilder) Set() PendingSet
Set returns PendingSet, used to describe a Set type.
func (*TypeBuilder) Struct ¶
func (b *TypeBuilder) Struct() PendingStruct
Struct returns PendingStruct, used to describe a Struct type.
func (*TypeBuilder) Union ¶
func (b *TypeBuilder) Union() PendingUnion
Union returns PendingUnion, used to describe a Union type.
type TypeOrPending ¶
type TypeOrPending interface {
// contains filtered or unexported methods
}
TypeOrPending only allows *Type or Pending values; other values cause a compile-time error. It's used as the argument type for TypeBuilder methods, to allow either fully built *Type values or Pending values as subtypes.
type Value ¶
type Value struct {
// contains filtered or unexported fields
}
Value is the generic representation of any value expressible in vanadium. All values are typed.
Not all methods apply to all kinds of values. Restrictions are noted in the documentation for each method. Calling a method inappropriate to the kind of value causes a run-time panic.
Cyclic values are not supported. The zero Value is invalid; use Zero or one of the *Value helper functions to create a valid Value.
func AnyValue ¶
AnyValue is a convenience to create an Any value.
TODO(toddw): Remove this function when we disallow non-nil any.
func BoolValue ¶
BoolValue is a convenience to create a Bool value. If tt is nil, a value of BoolType is returned, otherwise requires tt must be of the Bool kind.
func BytesValue ¶
BytesValue is a convenience to create a []byte value. The bytes are copied. If tt is nil, a value of ListType(ByteType) is returned, otherwise tt.IsBytes must be true.
func EnumValue ¶
EnumValue is a convenience to create an Enum value. Requires that tt is of the Enum kind.
func FloatValue ¶
FloatValue is a convenience to create a Float32 or Float64 value. Requires that tt is one of those kinds.
func IntValue ¶
IntValue is a convenience to create a Int8, Int16, Int32 or Int64 value. Requires that tt is one of those kinds.
func NonNilZeroValue ¶
NonNilZeroValue returns a new Value of type t representing the non-nil zero value for t. It is is the same as ZeroValue, except if t is Optional, in which case it returns a Value representing the zero value of the elem type.
Panics if t == nil or t is Any.
func OptionalValue ¶
OptionalValue returns an optional value with elem assigned to x. Panics if the type of x cannot be made optional.
func SortValuesAsString ¶
SortValuesAsString sorts values by their String representation. The order of elements in values may be changed, and values is returned; no copy is made.
The ordering is guaranteed to be deterministic within a single executable, but may change across different versions of the code.
Typically used to get a deterministic ordering of set and map keys in tests. Do not depend on the ordering across versions of the code; it will change.
func StringValue ¶
StringValue is a convenience to create a String value. If tt is nil, a value of StringType is returned, otherwise requires tt must be of the String kind.
func TypeObjectValue ¶
TypeObjectValue is a convenience to create a TypeObject value.
func UintValue ¶
UintValue is a convenience to create a Byte, Uint16, Uint32 or Uint64 value. Requires that tt is one of those kinds.
func UnionValue ¶
UnionValue is a convenience to create a Union value. Requires that tt is of the Union kind.
func ValueFromReflect ¶
ValueFromReflect returns the value corresponding to rv.
func ValueOf ¶
func ValueOf(v interface{}) *Value
ValueOf returns the value corresponding to v. It's a helper for calling ValueFromReflect, and panics on any errors.
func ZeroValue ¶
ZeroValue returns a new Value of type t representing the zero value for t:
o Bool: false o Numbers: 0 o String: "" o Enum: label at index 0 o TypeObject: AnyType o List: empty collection o Set: empty collection o Map: empty collection o Array: zero values for all elems o Struct: zero values for all fields o Union: zero value of the type at index 0 o Any: nil value, representing nonexistence o Optional: nil value, representing nonexistence
Panics if t == nil.
func (*Value) Assign ¶
Assign the value v to x. If x is nil, v is set to its zero value. Panics if the type of v is not assignable from the type of x.
TODO(toddw): Remove this method when we disallow non-nil any.
func (*Value) AssignBool ¶
AssignBool assigns the underlying Bool to x.
func (*Value) AssignBytes ¶
AssignBytes assigns the underlying []byte or [N]byte to a copy of x. If the underlying value is []byte, the resulting v has len == len(x). If the underlying value is [N]byte, we require len(x) == N, otherwise panics.
func (*Value) AssignEnumIndex ¶
AssignEnumIndex assigns the underlying Enum to the label corresponding to index. Panics if the index is out of range.
func (*Value) AssignEnumLabel ¶
AssignEnumLabel assigns the underlying Enum to the label. Panics if the label doesn't exist in the Enum.
func (*Value) AssignField ¶
AssignField assigns the index'th field of the underlying Struct or Union to value. This chooses the field for union values; if the union value currently represents a different field, or the same field with a different value, it is overwritten. This doesn't affect other fields of struct values. Panics if the index is out of range, or if value isn't assignable to the Struct or Union field type.
func (*Value) AssignFloat ¶
AssignFloat assigns the underlying Float{32,64} to x.
func (*Value) AssignIndex ¶
AssignIndex assigns the index'th element of the underlying Array or List to elem. Panics if the index is out of range, or if elem isn't assignable to the Array or List element type.
func (*Value) AssignLen ¶
AssignLen assigns the length of the underlying List to n. Unlike Go slices, Lists do not have a separate notion of capacity.
func (*Value) AssignMapIndex ¶
AssignMapIndex assigns the value associated with key to elem in the underlying Map. Panics if key isn't assignable to the Map key type, or if elem isn't assignable to the Map elem type.
func (*Value) AssignSetKey ¶
AssignSetKey assigns key to the underlying Set. Panics if key isn't assignable to the Set key type.
func (*Value) AssignString ¶
AssignString assigns the underlying String to x.
func (*Value) AssignTypeObject ¶
AssignTypeObject assigns the underlying TypeObject to x. If x == nil we assign the zero TypeObject.
func (*Value) AssignUint ¶
AssignUint assigns the underlying Uint{16,32,64} or Byte to x.
func (*Value) Bytes ¶
Bytes returns the underlying value of a []byte or [N]byte. Mutations of the returned value are reflected in the underlying value.
func (*Value) ContainsKey ¶
ContainsKey returns true iff key is present in the underlying Set or Map.
func (*Value) DeleteMapIndex ¶
DeleteMapIndex deletes key from the underlying Map. Panics if the key isn't assignable to the Map key type.
func (*Value) DeleteSetKey ¶
DeleteSetKey deletes key from the underlying Set. Panics if key isn't assignable to the Set key type.
func (*Value) Elem ¶
Elem returns the element value contained in the underlying Any or Optional. Returns nil if v.IsNil() == true.
func (*Value) Index ¶
Index returns the index'th element of the underlying Array or List. Panics if the index is out of range.
func (*Value) IsValid ¶
IsValid returns true iff v is valid, where v == nil and v == new(Value) are invalid. Most other methods panic if called on an invalid Value.
func (*Value) Keys ¶
Keys returns all keys present in the underlying Set or Map. The returned keys are in an arbitrary order; do not rely on the ordering.
func (*Value) MapIndex ¶
MapIndex returns the value associated with the key in the underlying Map, or nil if the key is not found in the map. Panics if the key isn't assignable to the map's key type.
func (*Value) NonOptional ¶
NonOptional returns v.Elem() if v is non-nil Optional, otherwise returns v.
func (*Value) String ¶
String returns a human-readable representation of the value. To retrieve the underlying value of a String, use RawString.
func (*Value) StructField ¶
StructField returns the Struct field at the given index. Panics if the index is out of range.
func (*Value) StructFieldByName ¶
StructFieldByName returns the Struct field for the given name. Returns nil if the name given is not one of the struct's fields.
func (*Value) TypeObject ¶
TypeObject returns the underlying value of a TypeObject.
func (*Value) UnionField ¶
UnionField returns the field index and value from the underlying Union.
func (*Value) VDLIsZero ¶
VDLIsZero implements the vdl.IsZeroer interface. Returns true iff v represents any(nil).
TODO(toddw): Describe the subtle difference with IsZero().
type WalkMode ¶
type WalkMode int
WalkMode is the mode to perform a Walk through the type graph.
const ( // WalkAll indicates we should walk through all types in the type graph. WalkAll WalkMode = iota // WalkInline indicates we should only visit subtypes of array, struct and // union. Values of array, struct and union always include values of their // subtypes, thus the subtypes are considered to be inline. Values of // optional, list, set and map might not include values of their subtypes, and // are not considered to be inline. WalkInline )
type WireError ¶
type WireError struct { Id string // Error Id, used to uniquely identify each error. RetryCode WireRetryCode // Retry behavior suggested for the receiver. Msg string // Error message, may be empty. ParamList []*Value // Variadic parameters contained in the error. }
WireError is the wire representation for the built-in error type. Errors and exceptions in each programming environment are converted to this type to ensure wire compatibility. Generated code for each environment provides automatic conversions into idiomatic native representations.
func (WireError) VDLReflect ¶
type WireRetryCode ¶
type WireRetryCode int
WireRetryCode is the suggested retry behavior for the receiver of an error. If the receiver doesn't know how to handle the specific error, it should attempt the suggested retry behavior.
const ( WireRetryCodeNoRetry WireRetryCode = iota WireRetryCodeRetryConnection WireRetryCodeRetryRefetch WireRetryCodeRetryBackoff )
func WireRetryCodeFromString ¶
func WireRetryCodeFromString(label string) (x WireRetryCode, err error)
WireRetryCodeFromString creates a WireRetryCode from a string label.
func (WireRetryCode) String ¶
func (x WireRetryCode) String() string
String returns the string label of x.
func (WireRetryCode) VDLIsZero ¶
func (x WireRetryCode) VDLIsZero() bool
func (*WireRetryCode) VDLRead ¶
func (x *WireRetryCode) VDLRead(dec Decoder) error
func (WireRetryCode) VDLReflect ¶
func (WireRetryCode) VDLReflect(struct { Name string `vdl:"v.io/v23/vdl.WireRetryCode"` Enum struct{ NoRetry, RetryConnection, RetryRefetch, RetryBackoff string } })
func (WireRetryCode) VDLWrite ¶
func (x WireRetryCode) VDLWrite(enc Encoder) error
Source Files ¶
- bootstrapped.go
- coder.go
- compatible.go
- convert.go
- deep_equal.go
- doc.go
- perf_cache.go
- pipe.go
- pipe_fast.go
- reflect_reader.go
- reflect_type.go
- reflect_writer.go
- register.go
- register_native.go
- transcode.go
- type.go
- type_builder.go
- util.go
- value.go
- value_decoder.go
- value_encoder.go
- value_reader.go
- value_rep.go
- value_writer.go
- vdl.vdl.go
Directories ¶
Path | Synopsis |
---|---|
Package vdltest provides a variety of VDL types and values for testing.
|
Package vdltest provides a variety of VDL types and values for testing. |
internal/vdltestgen
Command vdltestgen generates types and values for the vdltest package.
|
Command vdltestgen generates types and values for the vdltest package. |