physic

package
v3.3.0+incompatible Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Nov 7, 2018 License: Apache-2.0 Imports: 4 Imported by: 0

Documentation

Overview

Package physic declares types for physical input, outputs and measurement units.

This includes temperature, humidity, pressure, tension, current, etc.

Index

Examples

Constants

This section is empty.

Variables

This section is empty.

Functions

This section is empty.

Types

type Angle

type Angle int64

Angle is the measurement of the difference in orientation between two vectors stored as an int64 nano radian.

A negative angle is valid.

The highest representable value is a bit over 500,000,000,000°.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(physic.Degree)
	fmt.Println(physic.Pi)
	fmt.Println(physic.Theta)
}
Output:

1.000°
180.0°
360.0°
const (
	NanoRadian  Angle = 1
	MicroRadian Angle = 1000 * NanoRadian
	MilliRadian Angle = 1000 * MicroRadian
	Radian      Angle = 1000 * MilliRadian

	// Theta is 2π. This is equivalent to 360°.
	Theta  Angle = 6283185307 * NanoRadian
	Pi     Angle = 3141592653 * NanoRadian
	Degree Angle = 17453293 * NanoRadian
)

func (Angle) String

func (a Angle) String() string

String returns the angle formatted as a string in degree.

type Distance

type Distance int64

Distance is a measurement of length stored as an int64 nano metre.

This is one of the base unit in the International System of Units.

The highest representable value is 9.2Gm.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(physic.Inch)
	fmt.Println(physic.Foot)
	fmt.Println(physic.Mile)
}
Output:

25.400mm
304.800mm
1.609km
const (
	NanoMetre  Distance = 1
	MicroMetre Distance = 1000 * NanoMetre
	MilliMetre Distance = 1000 * MicroMetre
	Metre      Distance = 1000 * MilliMetre
	KiloMetre  Distance = 1000 * Metre
	MegaMetre  Distance = 1000 * KiloMetre
	GigaMetre  Distance = 1000 * MegaMetre

	// Conversion between Metre and imperial units.
	Thou Distance = 25400 * NanoMetre
	Inch Distance = 1000 * Thou
	Foot Distance = 12 * Inch
	Yard Distance = 3 * Foot
	Mile Distance = 1760 * Yard
)

func (Distance) String

func (d Distance) String() string

String returns the distance formatted as a string in metre.

type ElectricCurrent

type ElectricCurrent int64

ElectricCurrent is a measurement of a flow of electric charge stored as an int64 nano Ampere.

This is one of the base unit in the International System of Units.

The highest representable value is 9.2GA.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10010 * physic.MilliAmpere)
	fmt.Println(10 * physic.Ampere)
	fmt.Println(-10 * physic.MilliAmpere)
}
Output:

10.010A
10A
-10mA
const (
	NanoAmpere  ElectricCurrent = 1
	MicroAmpere ElectricCurrent = 1000 * NanoAmpere
	MilliAmpere ElectricCurrent = 1000 * MicroAmpere
	Ampere      ElectricCurrent = 1000 * MilliAmpere
	KiloAmpere  ElectricCurrent = 1000 * Ampere
	MegaAmpere  ElectricCurrent = 1000 * KiloAmpere
	GigaAmpere  ElectricCurrent = 1000 * MegaAmpere
)

func (ElectricCurrent) String

func (e ElectricCurrent) String() string

String returns the current formatted as a string in Ampere.

type ElectricPotential

type ElectricPotential int64

ElectricPotential is a measurement of electric potential stored as an int64 nano Volt.

The highest representable value is 9.2GV.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10010 * physic.MilliVolt)
	fmt.Println(10 * physic.Volt)
	fmt.Println(-10 * physic.MilliVolt)
}
Output:

10.010V
10V
-10mV
const (
	// Volt is W/A, kg⋅m²/s³/A.
	NanoVolt  ElectricPotential = 1
	MicroVolt ElectricPotential = 1000 * NanoVolt
	MilliVolt ElectricPotential = 1000 * MicroVolt
	Volt      ElectricPotential = 1000 * MilliVolt
	KiloVolt  ElectricPotential = 1000 * Volt
	MegaVolt  ElectricPotential = 1000 * KiloVolt
	GigaVolt  ElectricPotential = 1000 * MegaVolt
)

func (ElectricPotential) String

func (e ElectricPotential) String() string

String returns the tension formatted as a string in Volt.

type ElectricResistance

type ElectricResistance int64

ElectricResistance is a measurement of the difficulty to pass an electric current through a conductor stored as an int64 nano Ohm.

The highest representable value is 9.2GΩ.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10010 * physic.MilliOhm)
	fmt.Println(10 * physic.Ohm)
	fmt.Println(24 * physic.MegaOhm)
}
Output:

10.010Ω
10Ω
24MΩ
const (
	// Ohm is V/A, kg⋅m²/s³/A².
	NanoOhm  ElectricResistance = 1
	MicroOhm ElectricResistance = 1000 * NanoOhm
	MilliOhm ElectricResistance = 1000 * MicroOhm
	Ohm      ElectricResistance = 1000 * MilliOhm
	KiloOhm  ElectricResistance = 1000 * Ohm
	MegaOhm  ElectricResistance = 1000 * KiloOhm
	GigaOhm  ElectricResistance = 1000 * MegaOhm
)

func (ElectricResistance) String

func (e ElectricResistance) String() string

String returns the resistance formatted as a string in Ohm.

type ElectricalCapacitance

type ElectricalCapacitance int64

ElectricalCapacitance is a measurement of capacitance stored as a pico farad.

The highest representable value is 9.2MF.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(1 * physic.Farad)
	fmt.Println(22 * physic.PicoFarad)
}
Output:

1F
22pF
const (
	// Farad is a unit of capacitance. kg⁻¹⋅m⁻²⋅s⁴A²
	PicoFarad  ElectricalCapacitance = 1
	NanoFarad  ElectricalCapacitance = 1000 * PicoFarad
	MicroFarad ElectricalCapacitance = 1000 * NanoFarad
	MilliFarad ElectricalCapacitance = 1000 * MicroFarad
	Farad      ElectricalCapacitance = 1000 * MilliFarad
	KiloFarad  ElectricalCapacitance = 1000 * Farad
	MegaFarad  ElectricalCapacitance = 1000 * KiloFarad
)

func (ElectricalCapacitance) String

func (c ElectricalCapacitance) String() string

String returns the energy formatted as a string in Farad.

type Energy

type Energy int64

Energy is a measurement of work stored as a nano joules.

The highest representable value is 9.2GJ.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(1 * physic.Joule)
}
Output:

1J
const (
	// Joule is a unit of work. kg⋅m²⋅s⁻²
	NanoJoule  Energy = 1
	MicroJoule Energy = 1000 * NanoJoule
	MilliJoule Energy = 1000 * MicroJoule
	Joule      Energy = 1000 * MilliJoule
	KiloJoule  Energy = 1000 * Joule
	MegaJoule  Energy = 1000 * KiloJoule
	GigaJoule  Energy = 1000 * MegaJoule
)

func (Energy) String

func (e Energy) String() string

String returns the energy formatted as a string in Joules.

type Env

type Env struct {
	Temperature Temperature
	Pressure    Pressure
	Humidity    RelativeHumidity
}

Env represents measurements from an environmental sensor.

type Force

type Force int64

Force is a measurement of interaction that will change the motion of an object stored as an int64 nano Newton.

A measurement of Force is a vector and has a direction but this unit only represents the magnitude. The orientation needs to be stored as a Quaternion independently.

The highest representable value is 9.2TN.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10 * physic.MilliNewton)
	fmt.Println(physic.EarthGravity)
	fmt.Println(physic.PoundForce)
}
Output:

10mN
9.807N
4.448kN
const (
	// Newton is kg⋅m/s².
	NanoNewton  Force = 1
	MicroNewton Force = 1000 * NanoNewton
	MilliNewton Force = 1000 * MicroNewton
	Newton      Force = 1000 * MilliNewton
	KiloNewton  Force = 1000 * Newton
	MegaNewton  Force = 1000 * KiloNewton
	GigaNewton  Force = 1000 * MegaNewton

	EarthGravity Force = 9806650 * MicroNewton

	// Conversion between Newton and imperial units.
	// Pound is both a unit of mass and weight (force). The suffix Force is added
	// to disambiguate the measurement it represents.
	PoundForce Force = 4448221615261 * NanoNewton
)

func (Force) String

func (f Force) String() string

String returns the force formatted as a string in Newton.

type Frequency

type Frequency int64

Frequency is a measurement of cycle per second, stored as an int32 micro Hertz.

The highest representable value is 9.2THz.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10 * physic.MilliHertz)
	fmt.Println(101010 * physic.MilliHertz)
	fmt.Println(10 * physic.MegaHertz)
}
Output:

10mHz
101.010Hz
10MHz
const (
	// Hertz is 1/s.
	MicroHertz Frequency = 1
	MilliHertz Frequency = 1000 * MicroHertz
	Hertz      Frequency = 1000 * MilliHertz
	KiloHertz  Frequency = 1000 * Hertz
	MegaHertz  Frequency = 1000 * KiloHertz
	GigaHertz  Frequency = 1000 * MegaHertz
	TeraHertz  Frequency = 1000 * GigaHertz
)

func PeriodToFrequency

func PeriodToFrequency(t time.Duration) Frequency

PeriodToFrequency returns the frequency for a period of this interval.

Example
package main

import (
	"fmt"
	"time"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(physic.PeriodToFrequency(time.Microsecond))
	fmt.Println(physic.PeriodToFrequency(time.Minute))
}
Output:

1MHz
16.666mHz

func (Frequency) Duration

func (f Frequency) Duration() time.Duration

Duration returns the duration of one cycle at this frequency.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(physic.MilliHertz.Duration())
	fmt.Println(physic.MegaHertz.Duration())
}
Output:

16m40s
1µs

func (Frequency) String

func (f Frequency) String() string

String returns the frequency formatted as a string in Hertz.

type LuminousFlux

type LuminousFlux int64

LuminousFlux is a measurement of total quantity of visible light energy emitted with wavelength power weighted by a luminosity function which represents a model of the human eye's response to different wavelengths. The CIE 1931 luminosity function is the standard for lumens.

LuminousFlux is stored as nano lumens.

The highest representable value is 9.2Glm.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(18282 * physic.Lumen)
}
Output:

18.282klm
const (
	// Lumen is a unit of luminous flux. cd⋅sr
	NanoLumen  LuminousFlux = 1
	MicroLumen LuminousFlux = 1000 * NanoLumen
	MilliLumen LuminousFlux = 1000 * MicroLumen
	Lumen      LuminousFlux = 1000 * MilliLumen
	KiloLumen  LuminousFlux = 1000 * Lumen
	MegaLumen  LuminousFlux = 1000 * KiloLumen
	GigaLumen  LuminousFlux = 1000 * MegaLumen
)

func (LuminousFlux) String

func (f LuminousFlux) String() string

String returns the energy formatted as a string in Lumens.

type LuminousIntensity

type LuminousIntensity int64

LuminousIntensity is a measurement of the quantity of visible light energy emitted per unit solid angle with wavelength power weighted by a luminosity function which represents the human eye's response to different wavelengths. The CIE 1931 luminosity function is the SI standard for candela.

LuminousIntensity is stored as nano candela.

This is one of the base unit in the International System of Units.

The highest representable value is 9.2Gcd.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(12 * physic.Candela)
}
Output:

12cd
const (
	// Candela is a unit of luminous intensity. cd
	NanoCandela  LuminousIntensity = 1
	MicroCandela LuminousIntensity = 1000 * NanoCandela
	MilliCandela LuminousIntensity = 1000 * MicroCandela
	Candela      LuminousIntensity = 1000 * MilliCandela
	KiloCandela  LuminousIntensity = 1000 * Candela
	MegaCandela  LuminousIntensity = 1000 * KiloCandela
	GigaCandela  LuminousIntensity = 1000 * MegaCandela
)

func (LuminousIntensity) String

func (l LuminousIntensity) String() string

String returns the energy formatted as a string in Candela.

type Mass

type Mass int64

Mass is a measurement of mass stored as an int64 nano gram.

This is one of the base unit in the International System of Units.

The highest representable value is 9.2Gg.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10 * physic.MilliGram)
	fmt.Println(physic.OunceMass)
	fmt.Println(physic.PoundMass)
	fmt.Println(physic.Slug)
}
Output:

10mg
28.350g
453.592g
14.594kg
const (
	NanoGram  Mass = 1
	MicroGram Mass = 1000 * NanoGram
	MilliGram Mass = 1000 * MicroGram
	Gram      Mass = 1000 * MilliGram
	KiloGram  Mass = 1000 * Gram
	MegaGram  Mass = 1000 * KiloGram
	GigaGram  Mass = 1000 * MegaGram
	Tonne     Mass = MegaGram

	// Conversion between Gram and imperial units.
	// Ounce is both a unit of mass, weight (force) or volume depending on
	// context. The suffix Mass is added to disambiguate the measurement it
	// represents.
	OunceMass Mass = 28349523125 * NanoGram
	// Pound is both a unit of mass and weight (force). The suffix Mass is added
	// to disambiguate the measurement it represents.
	PoundMass Mass = 16 * OunceMass
	Slug      Mass = 14593903 * MilliGram
)

func (Mass) String

func (m Mass) String() string

String returns the mass formatted as a string in gram.

type Power

type Power int64

Power is a measurement of power stored as a nano watts.

The highest representable value is 9.2GW.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(1 * physic.Watt)
	fmt.Println(16 * physic.MilliWatt)
	fmt.Println(1210 * physic.MegaWatt)
}
Output:

1W
16mW
1.210GW
const (
	// Watt is unit of power J/s, kg⋅m²⋅s⁻³
	NanoWatt  Power = 1
	MicroWatt Power = 1000 * NanoWatt
	MilliWatt Power = 1000 * MicroWatt
	Watt      Power = 1000 * MilliWatt
	KiloWatt  Power = 1000 * Watt
	MegaWatt  Power = 1000 * KiloWatt
	GigaWatt  Power = 1000 * MegaWatt
)

func (Power) String

func (p Power) String() string

String returns the power formatted as a string in watts.

type Pressure

type Pressure int64

Pressure is a measurement of force applied to a surface per unit area (stress) stored as an int64 nano Pascal.

The highest representable value is 9.2GPa.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(101010 * physic.Pascal)
	fmt.Println(101 * physic.KiloPascal)
}
Output:

101.010kPa
101kPa
const (
	// Pascal is N/m², kg/m/s².
	NanoPascal  Pressure = 1
	MicroPascal Pressure = 1000 * NanoPascal
	MilliPascal Pressure = 1000 * MicroPascal
	Pascal      Pressure = 1000 * MilliPascal
	KiloPascal  Pressure = 1000 * Pascal
	MegaPascal  Pressure = 1000 * KiloPascal
	GigaPascal  Pressure = 1000 * MegaPascal
)

func (Pressure) String

func (p Pressure) String() string

String returns the pressure formatted as a string in Pascal.

type RelativeHumidity

type RelativeHumidity int32

RelativeHumidity is a humidity level measurement stored as an int32 fixed point integer at a precision of 0.00001%rH.

Valid values are between 0% and 100%.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(506 * physic.MilliRH)
	fmt.Println(20 * physic.PercentRH)
}
Output:

50.6%rH
20%rH
const (
	TenthMicroRH RelativeHumidity = 1                 // 0.00001%rH
	MicroRH      RelativeHumidity = 10 * TenthMicroRH // 0.0001%rH
	MilliRH      RelativeHumidity = 1000 * MicroRH    // 0.1%rH
	PercentRH    RelativeHumidity = 10 * MilliRH      // 1%rH
)

func (RelativeHumidity) String

func (r RelativeHumidity) String() string

String returns the humidity formatted as a string.

type SenseEnv

type SenseEnv interface {
	conn.Resource

	// Sense returns the value read from the sensor. Unsupported metrics are not
	// modified.
	Sense(env *Env) error
	// SenseContinuous initiates a continuous sensing at the specified interval.
	//
	// It is important to call Halt() once done with the sensing, which will turn
	// the device off and will close the channel.
	SenseContinuous(interval time.Duration) (<-chan Env, error)
	// Precision returns this sensor's precision.
	//
	// The env values are set to the number of bits that are significant for each
	// items that this sensor can measure.
	//
	// Precision is not accuracy. The sensor may have absolute and relative
	// errors in its measurement, that are likely well above the reported
	// precision. Accuracy may be improved on some sensor by using oversampling,
	// or doing oversampling in software. Refer to its datasheet if available.
	Precision(env *Env)
}

SenseEnv represents an environmental sensor.

type Speed

type Speed int64

Speed is a measurement of magnitude of velocity stored as an int64 nano Metre per Second.

The highest representable value is 9.2Gm/s.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(10 * physic.MilliMetrePerSecond)
	fmt.Println(physic.LightSpeed)
	fmt.Println(physic.KilometrePerHour)
	fmt.Println(physic.MilePerHour)
	fmt.Println(physic.FootPerSecond)
}
Output:

10mm/s
299.792Mm/s
277.778mm/s
447.040mm/s
304.800mm/s
const (
	// MetrePerSecond is m/s.
	NanoMetrePerSecond  Speed = 1
	MicroMetrePerSecond Speed = 1000 * NanoMetrePerSecond
	MilliMetrePerSecond Speed = 1000 * MicroMetrePerSecond
	MetrePerSecond      Speed = 1000 * MilliMetrePerSecond
	KiloMetrePerSecond  Speed = 1000 * MetrePerSecond
	MegaMetrePerSecond  Speed = 1000 * KiloMetrePerSecond
	GigaMetrePerSecond  Speed = 1000 * MegaMetrePerSecond

	LightSpeed Speed = 299792458 * MetrePerSecond

	KilometrePerHour Speed = 277777778 * NanoMetrePerSecond
	MilePerHour      Speed = 447040 * MicroMetrePerSecond
	FootPerSecond    Speed = 304800 * MicroMetrePerSecond
)

func (Speed) String

func (s Speed) String() string

String returns the speed formatted as a string in m/s.

type Temperature

type Temperature int64

Temperature is a measurement of hotness stored as a nano kelvin.

Negative values are invalid.

The highest representable value is 9.2GK.

Example
package main

import (
	"fmt"

	"periph.io/x/periph/conn/physic"
)

func main() {
	fmt.Println(0 * physic.Kelvin)
	fmt.Println(23010*physic.MilliCelsius + physic.ZeroCelsius)
	fmt.Println(80*physic.Fahrenheit + physic.ZeroFahrenheit)
}
Output:

-273.150°C
23.010°C
26.666°C
const (
	NanoKelvin  Temperature = 1
	MicroKelvin Temperature = 1000 * NanoKelvin
	MilliKelvin Temperature = 1000 * MicroKelvin
	Kelvin      Temperature = 1000 * MilliKelvin
	KiloKelvin  Temperature = 1000 * Kelvin
	MegaKelvin  Temperature = 1000 * KiloKelvin
	GigaKelvin  Temperature = 1000 * MegaKelvin

	// Conversion between Kelvin and Celsius.
	ZeroCelsius  Temperature = 273150 * MilliKelvin
	MilliCelsius Temperature = MilliKelvin
	Celsius      Temperature = Kelvin

	// Conversion between Kelvin and Fahrenheit.
	ZeroFahrenheit  Temperature = 255372 * MilliKelvin
	MilliFahrenheit Temperature = 555555 * NanoKelvin
	Fahrenheit      Temperature = 555555555 * NanoKelvin
)

func (Temperature) String

func (t Temperature) String() string

String returns the temperature formatted as a string in °Celsius.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL