Documentation ¶
Index ¶
Constants ¶
View Source
const ( // InternalGroupName is the internal autoscaling group name. This is used for CRDs. InternalGroupName = "autoscaling.internal.knative.dev" // GroupName is the the public autoscaling group name. This is used for annotations, labels, etc. GroupName = "autoscaling.knative.dev" // ClassAnnotationKey is the annotation for the explicit class of autoscaler // that a particular resource has opted into. For example, // autoscaling.knative.dev/class: foo // This uses a different domain because unlike the resource, it is user-facing. ClassAnnotationKey = GroupName + "/class" // KPA is Knative Horizontal Pod Autoscaler KPA = "kpa.autoscaling.knative.dev" // HPA is Kubernetes Horizontal Pod Autoscaler HPA = "hpa.autoscaling.knative.dev" // MinScaleAnnotationKey is the annotation to specify the minimum number of Pods // the PodAutoscaler should provision. For example, // autoscaling.knative.dev/min-scale: "1" MinScaleAnnotationKey = GroupName + "/min-scale" // MaxScaleAnnotationKey is the annotation to specify the maximum number of Pods // the PodAutoscaler should provision. For example, // autoscaling.knative.dev/max-scale: "10" MaxScaleAnnotationKey = GroupName + "/max-scale" // InitialScaleAnnotationKey is the annotation to specify the initial scale of // a revision when a service is initially deployed. This number can be set to 0 iff // allow-zero-initial-scale of config-autoscaler is true. InitialScaleAnnotationKey = GroupName + "/initial-scale" // ScaleDownDelayAnnotationKey is the annotation to specify a scale down delay. ScaleDownDelayAnnotationKey = GroupName + "/scale-down-delay" // MetricAnnotationKey is the annotation to specify what metric the PodAutoscaler // should be scaled on. For example, // autoscaling.knative.dev/metric: cpu MetricAnnotationKey = GroupName + "/metric" // Concurrency is the number of requests in-flight at any given time. Concurrency = "concurrency" // CPU is the amount of the requested cpu actually being consumed by the Pod. CPU = "cpu" // Memory is the amount of the requested memory actually being consumed by the Pod. Memory = "memory" // RPS is the requests per second reaching the Pod. RPS = "rps" // TargetAnnotationKey is the annotation to specify what metric value the // PodAutoscaler should attempt to maintain. For example, // autoscaling.knative.dev/metric: cpu // autoscaling.knative.dev/target: "75" # target 75% cpu utilization // Or // autoscaling.knative.dev/metric: memory // autoscaling.knative.dev/target: "100" # target 100MiB memory usage TargetAnnotationKey = GroupName + "/target" // TargetMin is the minimum allowable target. // This can be less than 1 due to the fact that with small container // concurrencies and small target utilization values this can get // below 1. TargetMin = 0.01 // ScaleToZeroPodRetentionPeriodKey is the annotation to specify the minimum // time duration the last pod will not be scaled down, after autoscaler has // made the decision to scale to 0. // This is the per-revision setting compliment to the // scale-to-zero-pod-retention-period global setting. ScaleToZeroPodRetentionPeriodKey = GroupName + "/scale-to-zero-pod-retention-period" // MetricAggregationAlgorithmKey is the annotation that can be used for selection // of the algorithm to use for averaging metric data in the Autoscaler. // Since autoscalers are a pluggable concept, this field is only validated // for Revisions that are owned by Knative Pod Autoscaler. // The algorithm will apply to both panic and stagble windows. // NB: this is an Alpha feature and can be removed or modified // at any point. // Possible values for KPA are: // - empty/missing or "linear" — linear average over the whole // metric window (default); // - weightedExponential — weighted average with exponential decay. // KPA will compute the decay multiplier automatically based on the window size // and it is at least 0.2. This algorithm might not utilize all the values // in the window, due to their coefficients being infinitesimal. MetricAggregationAlgorithmKey = GroupName + "/metric-aggregation-algorithm" // MetricAggregationAlgorithmLinear is the linear aggregation algorithm with all weights // equal to 1. MetricAggregationAlgorithmLinear = "linear" // MetricAggregationAlgorithmWeightedExponential is the weighted aggregation algorithm // with exponentially decaying weights. MetricAggregationAlgorithmWeightedExponential = "weighted-exponential" // Note: use the Metric.AggregationAlgorithm() method as it will normalize the casing // and return MetricAggregationAlgorithmWeightedExponential MetricAggregationAlgorithmWeightedExponentialAlt = "weightedExponential" // WindowAnnotationKey is the annotation to specify the time // interval over which to calculate the average metric. Larger // values result in more smoothing. For example, // autoscaling.knative.dev/metric: concurrency // autoscaling.knative.dev/window: "2m" // Only the kpa.autoscaling.knative.dev class autoscaler supports // the window annotation. WindowAnnotationKey = GroupName + "/window" // WindowMin is the minimum allowable stable autoscaling // window. KPA-class autoscalers calculate the desired replica // count every 2 seconds (tick-interval in config-autoscaler) so // the closer the window gets to that value, the more likely data // points will be missed entirely by the panic window which is // smaller than the stable window. Anything less than 6 seconds // isn't going to work well. // // nolint:revive // False positive, Min means minimum, not minutes. WindowMin = 6 * time.Second // WindowMax is the maximum permitted stable autoscaling window. // This keeps the event horizon to a reasonable enough limit. WindowMax = 1 * time.Hour // TargetUtilizationPercentageKey is the annotation which specifies the // desired target resource utilization for the revision. // TargetUtilization is a percentage in the 1 <= TU <= 100 range. // This annotation takes precedence over the config map value. TargetUtilizationPercentageKey = GroupName + "/target-utilization-percentage" // TargetBurstCapacityKey specifies the desired burst capacity for the // revision. Possible values are: // -1 -- infinite; // 0 -- no TBC; // >0 -- actual TBC. // <0 && != -1 -- an error. TargetBurstCapacityKey = GroupName + "/target-burst-capacity" // PanicWindowPercentageAnnotationKey is the annotation to // specify the time interval over which to calculate the average // metric during a spike. Where a spike is defined as the metric // reaching panic level within the panic window (e.g. panic // mode). Lower values make panic mode more sensitive. Note: // Panic threshold can be overridden with the // PanicThresholdPercentageAnnotationKey. For example, // autoscaling.knative.dev/panic-window-percentage: "5.0" // autoscaling.knative.dev/panic-threshold-percentage: "150.0" // Only the kpa.autoscaling.knative.dev class autoscaler supports // the panic-window-percentage annotation. // Panic window is specified as a percentage to maintain the // autoscaler's algorithm behavior when only the stable window is // specified. The panic window will change along with the stable // window at the default percentage. PanicWindowPercentageAnnotationKey = GroupName + "/panic-window-percentage" // PanicWindowPercentageMin is the minimum allowable panic window // percentage. The autoscaler calculates desired replicas every 2 // seconds (tick-interval in config-autoscaler), so a panic // window less than 2 seconds will be missing data points. One // percent is a very small ratio and would require a stable // window of at least 3.4 minutes. Anything less doesn't make // sense. PanicWindowPercentageMin = 1.0 // PanicWindowPercentageMax is the maximum allowable panic window // percentage. The KPA autoscaler's panic feature allows the // autoscaler to be more responsive over a smaller time scale // when necessary. So the panic window cannot be larger than the // stable window. PanicWindowPercentageMax = 100.0 // PanicThresholdPercentageAnnotationKey is the annotation to specify // the level at what level panic mode will engage when reached within // in the panic window. The level is defined as a percentage of // the metric target. Lower values make panic mode more // sensitive. For example, // autoscaling.knative.dev/panic-window-percentage: "5.0" // autoscaling.knative.dev/panic-threshold-percentage: "150.0" // Only the kpa.autoscaling.knative.dev class autoscaler supports // the panicThresholdPercentage annotation PanicThresholdPercentageAnnotationKey = GroupName + "/panic-threshold-percentage" // PanicThresholdPercentageMin is the minimum allowable panic // threshold percentage. The KPA autoscaler's panic feature // allows the autoscaler to be more responsive over a smaller // time scale when necessary. To prevent flapping, during panic // mode the autoscaler never decreases the number of replicas. If // the panic threshold was as small as the stable target, the // autoscaler would always be panicking and the autoscaler would // never scale down. One hundred and ten percent is about the // smallest useful value. PanicThresholdPercentageMin = 110.0 // PanicThresholdPercentageMax is the counterpart to the PanicThresholdPercentageMin // but bounding from above. PanicThresholdPercentageMax = 1000.0 // ActivationScale is the minimum, non-zero value that a service should scale to. // For example, if ActivationScale = 2, when a service scaled from zero it would // scale up two replicas in this case. In essence, this allows one to set both a // min-scale value while also preserving the ability to scale to zero. // ActivationScale must be >= 2. ActivationScaleKey = GroupName + "/activation-scale" )
Variables ¶
View Source
var ( ClassAnnotation = kmap.KeyPriority{ ClassAnnotationKey, } InitialScaleAnnotation = kmap.KeyPriority{ InitialScaleAnnotationKey, GroupName + "/initialScale", } MaxScaleAnnotation = kmap.KeyPriority{ MaxScaleAnnotationKey, GroupName + "/maxScale", } MetricAnnotation = kmap.KeyPriority{ MetricAnnotationKey, } MetricAggregationAlgorithmAnnotation = kmap.KeyPriority{ MetricAggregationAlgorithmKey, GroupName + "/metricAggregationAlgorithm", } ActivationScale = kmap.KeyPriority{ ActivationScaleKey, } MinScaleAnnotation = kmap.KeyPriority{ MinScaleAnnotationKey, GroupName + "/minScale", } PanicThresholdPercentageAnnotation = kmap.KeyPriority{ PanicThresholdPercentageAnnotationKey, GroupName + "/panicThresholdPercentage", } PanicWindowPercentageAnnotation = kmap.KeyPriority{ PanicWindowPercentageAnnotationKey, GroupName + "/panicWindowPercentage", } ScaleDownDelayAnnotation = kmap.KeyPriority{ ScaleDownDelayAnnotationKey, GroupName + "/scaleDownDelay", } ScaleToZeroPodRetentionPeriodAnnotation = kmap.KeyPriority{ ScaleToZeroPodRetentionPeriodKey, GroupName + "/scaleToZeroPodRetentionPeriod", } TargetAnnotation = kmap.KeyPriority{ TargetAnnotationKey, } TargetBurstCapacityAnnotation = kmap.KeyPriority{ TargetBurstCapacityKey, GroupName + "/targetBurstCapacity", } TargetUtilizationPercentageAnnotation = kmap.KeyPriority{ TargetUtilizationPercentageKey, GroupName + "/targetUtilizationPercentage", } WindowAnnotation = kmap.KeyPriority{ WindowAnnotationKey, } )
Functions ¶
func ValidateAnnotations ¶ added in v0.6.0
func ValidateAnnotations(ctx context.Context, config *autoscalerconfig.Config, anns map[string]string) *apis.FieldError
ValidateAnnotations verifies the autoscaling annotations.
Types ¶
This section is empty.
Click to show internal directories.
Click to hide internal directories.