Experimental KEDA support for Knative Event Sources Autoscaling
Warning: Still under development. Not meant for production deployment.
Design
To enable KEDA Autoscaling of Knative Event Sources (and other components in the
future) there is a separate controller implemented, ie. no hard dependency in
Knative. This contoller si watching for CustomResourcesDefinitions
resources
in the cluster, if there is installed a new CRD which is supported by this
controller a new dynamic controller watching these resources is created.
Currently there is support for Kafka Source and AWS SQS Source. We also
have experimental support for RabbitMQ Broker and Redis Stream Source.
Annotations
User can enable and configure autoscaling on a particular Source or Broker by a
set of annotations.
metadata:
annotations:
autoscaling.knative.dev/class: keda.autoscaling.knative.dev
autoscaling.knative.dev/minScale: "0"
autoscaling.knative.dev/maxScale: "5"
keda.autoscaling.knative.dev/pollingInterval: "30"
keda.autoscaling.knative.dev/cooldownPeriod: "30"
# Kafka Source
keda.autoscaling.knative.dev/kafkaLagThreshold: "10"
# AWS SQS Source
keda.autoscaling.knative.dev/awsSqsQueueLength: "5"
# Redis Stream Source
keda.autoscaling.knative.dev/redisStreamPendingEntriesCount: "5"
autoscaling.knative.dev/class: keda.autoscaling.knative.dev
- needs to be
specified on a Source to enable KEDA autoscaling
autoscaling.knative.dev/minScale
- minimum number of replicas to scale down
to. Default: 0
autoscaling.knative.dev/maxScale
- maximum number of replicas to scale out
to. Default: 50
keda.autoscaling.knative.dev/pollingInterval
- interval in seconds KEDA uses
to poll metrics. Default: 30
keda.autoscaling.knative.dev/cooldownPeriod
- period of time in seconds KEDA
waits until it scales down. Default: 300
keda.autoscaling.knative.dev/kafkaLagThreshold
- only for Kafka Source,
refers to the stream is lagging on the current consumer group. Default: 10
keda.autoscaling.knative.dev/awsSqsQueueLength
- only for AWS SQS Source,
refers to the target value for ApproximateNumberOfMessages in the SQS Queue.
Default: 5
keda.autoscaling.knative.dev/rabbitMQQueueLength
- only for RabbitMQ broker,
refers to the target value for number of messages in a RabbitMQ brokers
trigger queue: 1
keda.autoscaling.knative.dev/redisStreamPendingEntriesCount
- only for Redis
Stream Source, refers to the target value for number of entries in the Pending
Entries List for the specified consumer group in the Redis Stream. Default:
5
HOW TO
Install KEDA v2
It is needed to install KEDA v2, which is using different namespace for it's
CRDs (keda.k8s.io
-> keda.sh
). KEDA v1 is not supported.
To install KEDA, please follow
installation instructions.
Confirm there are 2 pods running in keda
namespace:
$ kubectl get pods -n keda
NAME READY STATUS RESTARTS AGE
keda-metrics-apiserver-7cf7765dc8-k9lnc 1/1 Running 0 5m2s
keda-operator-55658855fc-rc9rb 1/1 Running 0 5m3s
Install eventing-autoscaler-keda
Controller
export KO_DOCKER_REPO=...
ko apply -f /config
Confirm there is 1 pod running in eventing-autoscaler-keda
namespace:
$ kubectl get pods -n eventing-autoscaler-keda
NAME READY STATUS RESTARTS AGE
controller-76fb8d6756-5f4vm 1/1 Running 0 21m
Example of Kafka Source autoscaled by KEDA
-
Set up Kafka Cluster, eg. use Strimzi operator
-
Install Knative Serving and Eventing
-
Install Knative Eventing
Kafka Source
-
Create KafkaSource
resource, with annotation
autoscaling.knative.dev/class: keda.autoscaling.knative.dev
. There are
other KEDA related annotations, see the example:
apiVersion: sources.knative.dev/v1alpha1
kind: KafkaSource
metadata:
name: kafka-source
namespace: default
annotations:
autoscaling.knative.dev/class: keda.autoscaling.knative.dev
autoscaling.knative.dev/minScale: "0"
autoscaling.knative.dev/maxScale: "5"
keda.autoscaling.knative.dev/pollingInterval: "30"
keda.autoscaling.knative.dev/cooldownPeriod: "30"
keda.autoscaling.knative.dev/kafkaLagThreshold: "10"
spec:
consumerGroup: knative-group
bootstrapServers:
- my-cluster-kafka-bootstrap.openshift-operators:9092
topics:
- test
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display
- Check that
ScaledObject
was created for this KafkaSource
:
$ kubectl get scaledobjects
NAME SCALETARGETKIND SCALETARGETNAME TRIGGERS AUTHENTICATION READY ACTIVE AGE
so-f87369e5-c320-4f44-b23a-8c535a523e3a apps/v1.Deployment kafkasource-kafka-source-f87369e5-c320-4f44-b23a-8c535a523e3a kafka True False 6m5s
Example of RabbitMQ Broker autoscaled by KEDA
-
Install Knative Serving and Eventing
-
Install
RabbitMQ Broker
-
Install a Broker / Trigger and sources as directed in the above guide.
-
Enable the autoscaler by applying the KEDA patch:
kubectl patch broker default --type merge --patch '{"metadata": {"annotations": {"autoscaling.knative.dev/class": "keda.autoscaling.knative.dev"}}}'
- Check that the scaled resources were created and are ready
vaikas-a01:eventing-autoscaler-keda vaikas$ kubectl get triggerauthentications
NAME PODIDENTITY SECRET ENV
default-trigger-auth default-broker-rabbit
vaikas-a01:eventing-autoscaler-keda vaikas$ kubectl get scaledobjects
NAME SCALETARGETKIND SCALETARGETNAME TRIGGERS AUTHENTICATION READY ACTIVE AGE
ping-trigger apps/v1.Deployment ping-trigger-dispatcher rabbitmq default-trigger-auth True True 14m