Documentation ¶
Index ¶
- Variables
- type AutoMlForecasting
- func (*AutoMlForecasting) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecasting) GetInputs() *AutoMlForecastingInputs
- func (x *AutoMlForecasting) GetMetadata() *AutoMlForecastingMetadata
- func (*AutoMlForecasting) ProtoMessage()
- func (x *AutoMlForecasting) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecasting) Reset()
- func (x *AutoMlForecasting) String() string
- type AutoMlForecastingInputs
- func (*AutoMlForecastingInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
- func (x *AutoMlForecastingInputs) GetForecastWindowEnd() int64
- func (x *AutoMlForecastingInputs) GetForecastWindowStart() int64
- func (x *AutoMlForecastingInputs) GetOptimizationObjective() string
- func (x *AutoMlForecastingInputs) GetPastHorizon() int64
- func (x *AutoMlForecastingInputs) GetPeriod() *AutoMlForecastingInputs_Period
- func (x *AutoMlForecastingInputs) GetQuantiles() []float64
- func (x *AutoMlForecastingInputs) GetStaticColumns() []string
- func (x *AutoMlForecastingInputs) GetTargetColumn() string
- func (x *AutoMlForecastingInputs) GetTimeColumn() string
- func (x *AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn() string
- func (x *AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns() []string
- func (x *AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns() []string
- func (x *AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours() int64
- func (x *AutoMlForecastingInputs) GetTransformations() []*AutoMlForecastingInputs_Transformation
- func (x *AutoMlForecastingInputs) GetValidationOptions() string
- func (x *AutoMlForecastingInputs) GetWeightColumn() string
- func (*AutoMlForecastingInputs) ProtoMessage()
- func (x *AutoMlForecastingInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs) Reset()
- func (x *AutoMlForecastingInputs) String() string
- type AutoMlForecastingInputs_Period
- func (*AutoMlForecastingInputs_Period) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Period) GetQuantity() int64
- func (x *AutoMlForecastingInputs_Period) GetUnit() string
- func (*AutoMlForecastingInputs_Period) ProtoMessage()
- func (x *AutoMlForecastingInputs_Period) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Period) Reset()
- func (x *AutoMlForecastingInputs_Period) String() string
- type AutoMlForecastingInputs_Transformation
- func (*AutoMlForecastingInputs_Transformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation) GetAuto() *AutoMlForecastingInputs_Transformation_AutoTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetCategorical() *AutoMlForecastingInputs_Transformation_CategoricalTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetNumeric() *AutoMlForecastingInputs_Transformation_NumericTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetRepeatedCategorical() *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetRepeatedNumeric() *AutoMlForecastingInputs_Transformation_NumericArrayTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetRepeatedText() *AutoMlForecastingInputs_Transformation_TextArrayTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetText() *AutoMlForecastingInputs_Transformation_TextTransformation
- func (x *AutoMlForecastingInputs_Transformation) GetTimestamp() *AutoMlForecastingInputs_Transformation_TimestampTransformation
- func (m *AutoMlForecastingInputs_Transformation) GetTransformationDetail() isAutoMlForecastingInputs_Transformation_TransformationDetail
- func (*AutoMlForecastingInputs_Transformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation) String() string
- type AutoMlForecastingInputs_Transformation_Auto
- type AutoMlForecastingInputs_Transformation_AutoTransformation
- func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName() string
- func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) String() string
- type AutoMlForecastingInputs_Transformation_Categorical
- type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation
- func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
- func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String() string
- type AutoMlForecastingInputs_Transformation_CategoricalTransformation
- func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName() string
- func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) String() string
- type AutoMlForecastingInputs_Transformation_Numeric
- type AutoMlForecastingInputs_Transformation_NumericArrayTransformation
- func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName() string
- func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
- func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String() string
- type AutoMlForecastingInputs_Transformation_NumericTransformation
- func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName() string
- func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
- func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) String() string
- type AutoMlForecastingInputs_Transformation_RepeatedCategorical
- type AutoMlForecastingInputs_Transformation_RepeatedNumeric
- type AutoMlForecastingInputs_Transformation_RepeatedText
- type AutoMlForecastingInputs_Transformation_Text
- type AutoMlForecastingInputs_Transformation_TextArrayTransformation
- func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName() string
- func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) String() string
- type AutoMlForecastingInputs_Transformation_TextTransformation
- func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName() string
- func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_TextTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_TextTransformation) String() string
- type AutoMlForecastingInputs_Transformation_Timestamp
- type AutoMlForecastingInputs_Transformation_TimestampTransformation
- func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName() string
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat() string
- func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage()
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset()
- func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) String() string
- type AutoMlForecastingMetadata
- func (*AutoMlForecastingMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlForecastingMetadata) GetTrainCostMilliNodeHours() int64
- func (*AutoMlForecastingMetadata) ProtoMessage()
- func (x *AutoMlForecastingMetadata) ProtoReflect() protoreflect.Message
- func (x *AutoMlForecastingMetadata) Reset()
- func (x *AutoMlForecastingMetadata) String() string
- type AutoMlImageClassification
- func (*AutoMlImageClassification) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageClassification) GetInputs() *AutoMlImageClassificationInputs
- func (x *AutoMlImageClassification) GetMetadata() *AutoMlImageClassificationMetadata
- func (*AutoMlImageClassification) ProtoMessage()
- func (x *AutoMlImageClassification) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageClassification) Reset()
- func (x *AutoMlImageClassification) String() string
- type AutoMlImageClassificationInputs
- func (*AutoMlImageClassificationInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageClassificationInputs) GetBaseModelId() string
- func (x *AutoMlImageClassificationInputs) GetBudgetMilliNodeHours() int64
- func (x *AutoMlImageClassificationInputs) GetDisableEarlyStopping() bool
- func (x *AutoMlImageClassificationInputs) GetModelType() AutoMlImageClassificationInputs_ModelType
- func (x *AutoMlImageClassificationInputs) GetMultiLabel() bool
- func (*AutoMlImageClassificationInputs) ProtoMessage()
- func (x *AutoMlImageClassificationInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageClassificationInputs) Reset()
- func (x *AutoMlImageClassificationInputs) String() string
- type AutoMlImageClassificationInputs_ModelType
- func (AutoMlImageClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageClassificationInputs_ModelType) Enum() *AutoMlImageClassificationInputs_ModelType
- func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageClassificationInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlImageClassificationInputs_ModelType) String() string
- func (AutoMlImageClassificationInputs_ModelType) Type() protoreflect.EnumType
- type AutoMlImageClassificationMetadata
- func (*AutoMlImageClassificationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageClassificationMetadata) GetCostMilliNodeHours() int64
- func (x *AutoMlImageClassificationMetadata) GetSuccessfulStopReason() AutoMlImageClassificationMetadata_SuccessfulStopReason
- func (*AutoMlImageClassificationMetadata) ProtoMessage()
- func (x *AutoMlImageClassificationMetadata) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageClassificationMetadata) Reset()
- func (x *AutoMlImageClassificationMetadata) String() string
- type AutoMlImageClassificationMetadata_SuccessfulStopReason
- func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Enum() *AutoMlImageClassificationMetadata_SuccessfulStopReason
- func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
- func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) String() string
- func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
- type AutoMlImageObjectDetection
- func (*AutoMlImageObjectDetection) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageObjectDetection) GetInputs() *AutoMlImageObjectDetectionInputs
- func (x *AutoMlImageObjectDetection) GetMetadata() *AutoMlImageObjectDetectionMetadata
- func (*AutoMlImageObjectDetection) ProtoMessage()
- func (x *AutoMlImageObjectDetection) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageObjectDetection) Reset()
- func (x *AutoMlImageObjectDetection) String() string
- type AutoMlImageObjectDetectionInputs
- func (*AutoMlImageObjectDetectionInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours() int64
- func (x *AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping() bool
- func (x *AutoMlImageObjectDetectionInputs) GetModelType() AutoMlImageObjectDetectionInputs_ModelType
- func (*AutoMlImageObjectDetectionInputs) ProtoMessage()
- func (x *AutoMlImageObjectDetectionInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageObjectDetectionInputs) Reset()
- func (x *AutoMlImageObjectDetectionInputs) String() string
- type AutoMlImageObjectDetectionInputs_ModelType
- func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageObjectDetectionInputs_ModelType) Enum() *AutoMlImageObjectDetectionInputs_ModelType
- func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageObjectDetectionInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlImageObjectDetectionInputs_ModelType) String() string
- func (AutoMlImageObjectDetectionInputs_ModelType) Type() protoreflect.EnumType
- type AutoMlImageObjectDetectionMetadata
- func (*AutoMlImageObjectDetectionMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours() int64
- func (x *AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason() AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
- func (*AutoMlImageObjectDetectionMetadata) ProtoMessage()
- func (x *AutoMlImageObjectDetectionMetadata) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageObjectDetectionMetadata) Reset()
- func (x *AutoMlImageObjectDetectionMetadata) String() string
- type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
- func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Enum() *AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
- func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
- func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String() string
- func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
- type AutoMlImageSegmentation
- func (*AutoMlImageSegmentation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageSegmentation) GetInputs() *AutoMlImageSegmentationInputs
- func (x *AutoMlImageSegmentation) GetMetadata() *AutoMlImageSegmentationMetadata
- func (*AutoMlImageSegmentation) ProtoMessage()
- func (x *AutoMlImageSegmentation) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageSegmentation) Reset()
- func (x *AutoMlImageSegmentation) String() string
- type AutoMlImageSegmentationInputs
- func (*AutoMlImageSegmentationInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageSegmentationInputs) GetBaseModelId() string
- func (x *AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours() int64
- func (x *AutoMlImageSegmentationInputs) GetModelType() AutoMlImageSegmentationInputs_ModelType
- func (*AutoMlImageSegmentationInputs) ProtoMessage()
- func (x *AutoMlImageSegmentationInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageSegmentationInputs) Reset()
- func (x *AutoMlImageSegmentationInputs) String() string
- type AutoMlImageSegmentationInputs_ModelType
- func (AutoMlImageSegmentationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageSegmentationInputs_ModelType) Enum() *AutoMlImageSegmentationInputs_ModelType
- func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageSegmentationInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlImageSegmentationInputs_ModelType) String() string
- func (AutoMlImageSegmentationInputs_ModelType) Type() protoreflect.EnumType
- type AutoMlImageSegmentationMetadata
- func (*AutoMlImageSegmentationMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlImageSegmentationMetadata) GetCostMilliNodeHours() int64
- func (x *AutoMlImageSegmentationMetadata) GetSuccessfulStopReason() AutoMlImageSegmentationMetadata_SuccessfulStopReason
- func (*AutoMlImageSegmentationMetadata) ProtoMessage()
- func (x *AutoMlImageSegmentationMetadata) ProtoReflect() protoreflect.Message
- func (x *AutoMlImageSegmentationMetadata) Reset()
- func (x *AutoMlImageSegmentationMetadata) String() string
- type AutoMlImageSegmentationMetadata_SuccessfulStopReason
- func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Enum() *AutoMlImageSegmentationMetadata_SuccessfulStopReason
- func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
- func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) String() string
- func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
- type AutoMlTables
- func (*AutoMlTables) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTables) GetInputs() *AutoMlTablesInputs
- func (x *AutoMlTables) GetMetadata() *AutoMlTablesMetadata
- func (*AutoMlTables) ProtoMessage()
- func (x *AutoMlTables) ProtoReflect() protoreflect.Message
- func (x *AutoMlTables) Reset()
- func (x *AutoMlTables) String() string
- type AutoMlTablesInputs
- func (*AutoMlTablesInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs) GetAdditionalExperiments() []string
- func (m *AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig() isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig
- func (x *AutoMlTablesInputs) GetDisableEarlyStopping() bool
- func (x *AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
- func (x *AutoMlTablesInputs) GetOptimizationObjective() string
- func (x *AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue() float32
- func (x *AutoMlTablesInputs) GetOptimizationObjectiveRecallValue() float32
- func (x *AutoMlTablesInputs) GetPredictionType() string
- func (x *AutoMlTablesInputs) GetTargetColumn() string
- func (x *AutoMlTablesInputs) GetTrainBudgetMilliNodeHours() int64
- func (x *AutoMlTablesInputs) GetTransformations() []*AutoMlTablesInputs_Transformation
- func (x *AutoMlTablesInputs) GetWeightColumnName() string
- func (*AutoMlTablesInputs) ProtoMessage()
- func (x *AutoMlTablesInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs) Reset()
- func (x *AutoMlTablesInputs) String() string
- type AutoMlTablesInputs_OptimizationObjectivePrecisionValue
- type AutoMlTablesInputs_OptimizationObjectiveRecallValue
- type AutoMlTablesInputs_Transformation
- func (*AutoMlTablesInputs_Transformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation) GetAuto() *AutoMlTablesInputs_Transformation_AutoTransformation
- func (x *AutoMlTablesInputs_Transformation) GetCategorical() *AutoMlTablesInputs_Transformation_CategoricalTransformation
- func (x *AutoMlTablesInputs_Transformation) GetNumeric() *AutoMlTablesInputs_Transformation_NumericTransformation
- func (x *AutoMlTablesInputs_Transformation) GetRepeatedCategorical() *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation
- func (x *AutoMlTablesInputs_Transformation) GetRepeatedNumeric() *AutoMlTablesInputs_Transformation_NumericArrayTransformation
- func (x *AutoMlTablesInputs_Transformation) GetRepeatedText() *AutoMlTablesInputs_Transformation_TextArrayTransformation
- func (x *AutoMlTablesInputs_Transformation) GetText() *AutoMlTablesInputs_Transformation_TextTransformation
- func (x *AutoMlTablesInputs_Transformation) GetTimestamp() *AutoMlTablesInputs_Transformation_TimestampTransformation
- func (m *AutoMlTablesInputs_Transformation) GetTransformationDetail() isAutoMlTablesInputs_Transformation_TransformationDetail
- func (*AutoMlTablesInputs_Transformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation) Reset()
- func (x *AutoMlTablesInputs_Transformation) String() string
- type AutoMlTablesInputs_Transformation_Auto
- type AutoMlTablesInputs_Transformation_AutoTransformation
- func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName() string
- func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_AutoTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_AutoTransformation) String() string
- type AutoMlTablesInputs_Transformation_Categorical
- type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation
- func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
- func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String() string
- type AutoMlTablesInputs_Transformation_CategoricalTransformation
- func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName() string
- func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) String() string
- type AutoMlTablesInputs_Transformation_Numeric
- type AutoMlTablesInputs_Transformation_NumericArrayTransformation
- func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName() string
- func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
- func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) String() string
- type AutoMlTablesInputs_Transformation_NumericTransformation
- func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName() string
- func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
- func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_NumericTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_NumericTransformation) String() string
- type AutoMlTablesInputs_Transformation_RepeatedCategorical
- type AutoMlTablesInputs_Transformation_RepeatedNumeric
- type AutoMlTablesInputs_Transformation_RepeatedText
- type AutoMlTablesInputs_Transformation_Text
- type AutoMlTablesInputs_Transformation_TextArrayTransformation
- func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName() string
- func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) String() string
- type AutoMlTablesInputs_Transformation_TextTransformation
- func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName() string
- func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_TextTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_TextTransformation) String() string
- type AutoMlTablesInputs_Transformation_Timestamp
- type AutoMlTablesInputs_Transformation_TimestampTransformation
- func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName() string
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat() string
- func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage()
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) Reset()
- func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) String() string
- type AutoMlTablesMetadata
- func (*AutoMlTablesMetadata) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTablesMetadata) GetTrainCostMilliNodeHours() int64
- func (*AutoMlTablesMetadata) ProtoMessage()
- func (x *AutoMlTablesMetadata) ProtoReflect() protoreflect.Message
- func (x *AutoMlTablesMetadata) Reset()
- func (x *AutoMlTablesMetadata) String() string
- type AutoMlTextClassification
- func (*AutoMlTextClassification) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTextClassification) GetInputs() *AutoMlTextClassificationInputs
- func (*AutoMlTextClassification) ProtoMessage()
- func (x *AutoMlTextClassification) ProtoReflect() protoreflect.Message
- func (x *AutoMlTextClassification) Reset()
- func (x *AutoMlTextClassification) String() string
- type AutoMlTextClassificationInputs
- func (*AutoMlTextClassificationInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTextClassificationInputs) GetMultiLabel() bool
- func (*AutoMlTextClassificationInputs) ProtoMessage()
- func (x *AutoMlTextClassificationInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlTextClassificationInputs) Reset()
- func (x *AutoMlTextClassificationInputs) String() string
- type AutoMlTextExtraction
- func (*AutoMlTextExtraction) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTextExtraction) GetInputs() *AutoMlTextExtractionInputs
- func (*AutoMlTextExtraction) ProtoMessage()
- func (x *AutoMlTextExtraction) ProtoReflect() protoreflect.Message
- func (x *AutoMlTextExtraction) Reset()
- func (x *AutoMlTextExtraction) String() string
- type AutoMlTextExtractionInputs
- type AutoMlTextSentiment
- func (*AutoMlTextSentiment) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTextSentiment) GetInputs() *AutoMlTextSentimentInputs
- func (*AutoMlTextSentiment) ProtoMessage()
- func (x *AutoMlTextSentiment) ProtoReflect() protoreflect.Message
- func (x *AutoMlTextSentiment) Reset()
- func (x *AutoMlTextSentiment) String() string
- type AutoMlTextSentimentInputs
- func (*AutoMlTextSentimentInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlTextSentimentInputs) GetSentimentMax() int32
- func (*AutoMlTextSentimentInputs) ProtoMessage()
- func (x *AutoMlTextSentimentInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlTextSentimentInputs) Reset()
- func (x *AutoMlTextSentimentInputs) String() string
- type AutoMlVideoActionRecognition
- func (*AutoMlVideoActionRecognition) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoActionRecognition) GetInputs() *AutoMlVideoActionRecognitionInputs
- func (*AutoMlVideoActionRecognition) ProtoMessage()
- func (x *AutoMlVideoActionRecognition) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoActionRecognition) Reset()
- func (x *AutoMlVideoActionRecognition) String() string
- type AutoMlVideoActionRecognitionInputs
- func (*AutoMlVideoActionRecognitionInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoActionRecognitionInputs) GetModelType() AutoMlVideoActionRecognitionInputs_ModelType
- func (*AutoMlVideoActionRecognitionInputs) ProtoMessage()
- func (x *AutoMlVideoActionRecognitionInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoActionRecognitionInputs) Reset()
- func (x *AutoMlVideoActionRecognitionInputs) String() string
- type AutoMlVideoActionRecognitionInputs_ModelType
- func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlVideoActionRecognitionInputs_ModelType) Enum() *AutoMlVideoActionRecognitionInputs_ModelType
- func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlVideoActionRecognitionInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlVideoActionRecognitionInputs_ModelType) String() string
- func (AutoMlVideoActionRecognitionInputs_ModelType) Type() protoreflect.EnumType
- type AutoMlVideoClassification
- func (*AutoMlVideoClassification) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoClassification) GetInputs() *AutoMlVideoClassificationInputs
- func (*AutoMlVideoClassification) ProtoMessage()
- func (x *AutoMlVideoClassification) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoClassification) Reset()
- func (x *AutoMlVideoClassification) String() string
- type AutoMlVideoClassificationInputs
- func (*AutoMlVideoClassificationInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoClassificationInputs) GetModelType() AutoMlVideoClassificationInputs_ModelType
- func (*AutoMlVideoClassificationInputs) ProtoMessage()
- func (x *AutoMlVideoClassificationInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoClassificationInputs) Reset()
- func (x *AutoMlVideoClassificationInputs) String() string
- type AutoMlVideoClassificationInputs_ModelType
- func (AutoMlVideoClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlVideoClassificationInputs_ModelType) Enum() *AutoMlVideoClassificationInputs_ModelType
- func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlVideoClassificationInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlVideoClassificationInputs_ModelType) String() string
- func (AutoMlVideoClassificationInputs_ModelType) Type() protoreflect.EnumType
- type AutoMlVideoObjectTracking
- func (*AutoMlVideoObjectTracking) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoObjectTracking) GetInputs() *AutoMlVideoObjectTrackingInputs
- func (*AutoMlVideoObjectTracking) ProtoMessage()
- func (x *AutoMlVideoObjectTracking) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoObjectTracking) Reset()
- func (x *AutoMlVideoObjectTracking) String() string
- type AutoMlVideoObjectTrackingInputs
- func (*AutoMlVideoObjectTrackingInputs) Descriptor() ([]byte, []int)deprecated
- func (x *AutoMlVideoObjectTrackingInputs) GetModelType() AutoMlVideoObjectTrackingInputs_ModelType
- func (*AutoMlVideoObjectTrackingInputs) ProtoMessage()
- func (x *AutoMlVideoObjectTrackingInputs) ProtoReflect() protoreflect.Message
- func (x *AutoMlVideoObjectTrackingInputs) Reset()
- func (x *AutoMlVideoObjectTrackingInputs) String() string
- type AutoMlVideoObjectTrackingInputs_ModelType
- func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
- func (x AutoMlVideoObjectTrackingInputs_ModelType) Enum() *AutoMlVideoObjectTrackingInputs_ModelType
- func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor() ([]byte, []int)deprecated
- func (x AutoMlVideoObjectTrackingInputs_ModelType) Number() protoreflect.EnumNumber
- func (x AutoMlVideoObjectTrackingInputs_ModelType) String() string
- func (AutoMlVideoObjectTrackingInputs_ModelType) Type() protoreflect.EnumType
- type ExportEvaluatedDataItemsConfig
- func (*ExportEvaluatedDataItemsConfig) Descriptor() ([]byte, []int)deprecated
- func (x *ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri() string
- func (x *ExportEvaluatedDataItemsConfig) GetOverrideExistingTable() bool
- func (*ExportEvaluatedDataItemsConfig) ProtoMessage()
- func (x *ExportEvaluatedDataItemsConfig) ProtoReflect() protoreflect.Message
- func (x *ExportEvaluatedDataItemsConfig) Reset()
- func (x *ExportEvaluatedDataItemsConfig) String() string
Constants ¶
This section is empty.
Variables ¶
var ( AutoMlImageClassificationInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD", 2: "MOBILE_TF_LOW_LATENCY_1", 3: "MOBILE_TF_VERSATILE_1", 4: "MOBILE_TF_HIGH_ACCURACY_1", } AutoMlImageClassificationInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD": 1, "MOBILE_TF_LOW_LATENCY_1": 2, "MOBILE_TF_VERSATILE_1": 3, "MOBILE_TF_HIGH_ACCURACY_1": 4, } )
Enum value maps for AutoMlImageClassificationInputs_ModelType.
var ( AutoMlImageClassificationMetadata_SuccessfulStopReason_name = map[int32]string{ 0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED", 1: "BUDGET_REACHED", 2: "MODEL_CONVERGED", } AutoMlImageClassificationMetadata_SuccessfulStopReason_value = map[string]int32{ "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0, "BUDGET_REACHED": 1, "MODEL_CONVERGED": 2, } )
Enum value maps for AutoMlImageClassificationMetadata_SuccessfulStopReason.
var ( AutoMlImageObjectDetectionInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD_HIGH_ACCURACY_1", 2: "CLOUD_LOW_LATENCY_1", 3: "MOBILE_TF_LOW_LATENCY_1", 4: "MOBILE_TF_VERSATILE_1", 5: "MOBILE_TF_HIGH_ACCURACY_1", } AutoMlImageObjectDetectionInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD_HIGH_ACCURACY_1": 1, "CLOUD_LOW_LATENCY_1": 2, "MOBILE_TF_LOW_LATENCY_1": 3, "MOBILE_TF_VERSATILE_1": 4, "MOBILE_TF_HIGH_ACCURACY_1": 5, } )
Enum value maps for AutoMlImageObjectDetectionInputs_ModelType.
var ( AutoMlImageObjectDetectionMetadata_SuccessfulStopReason_name = map[int32]string{ 0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED", 1: "BUDGET_REACHED", 2: "MODEL_CONVERGED", } AutoMlImageObjectDetectionMetadata_SuccessfulStopReason_value = map[string]int32{ "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0, "BUDGET_REACHED": 1, "MODEL_CONVERGED": 2, } )
Enum value maps for AutoMlImageObjectDetectionMetadata_SuccessfulStopReason.
var ( AutoMlImageSegmentationInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD_HIGH_ACCURACY_1", 2: "CLOUD_LOW_ACCURACY_1", 3: "MOBILE_TF_LOW_LATENCY_1", } AutoMlImageSegmentationInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD_HIGH_ACCURACY_1": 1, "CLOUD_LOW_ACCURACY_1": 2, "MOBILE_TF_LOW_LATENCY_1": 3, } )
Enum value maps for AutoMlImageSegmentationInputs_ModelType.
var ( AutoMlImageSegmentationMetadata_SuccessfulStopReason_name = map[int32]string{ 0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED", 1: "BUDGET_REACHED", 2: "MODEL_CONVERGED", } AutoMlImageSegmentationMetadata_SuccessfulStopReason_value = map[string]int32{ "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0, "BUDGET_REACHED": 1, "MODEL_CONVERGED": 2, } )
Enum value maps for AutoMlImageSegmentationMetadata_SuccessfulStopReason.
var ( AutoMlVideoActionRecognitionInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD", 2: "MOBILE_VERSATILE_1", 3: "MOBILE_JETSON_VERSATILE_1", 4: "MOBILE_CORAL_VERSATILE_1", } AutoMlVideoActionRecognitionInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD": 1, "MOBILE_VERSATILE_1": 2, "MOBILE_JETSON_VERSATILE_1": 3, "MOBILE_CORAL_VERSATILE_1": 4, } )
Enum value maps for AutoMlVideoActionRecognitionInputs_ModelType.
var ( AutoMlVideoClassificationInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD", 2: "MOBILE_VERSATILE_1", 3: "MOBILE_JETSON_VERSATILE_1", } AutoMlVideoClassificationInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD": 1, "MOBILE_VERSATILE_1": 2, "MOBILE_JETSON_VERSATILE_1": 3, } )
Enum value maps for AutoMlVideoClassificationInputs_ModelType.
var ( AutoMlVideoObjectTrackingInputs_ModelType_name = map[int32]string{ 0: "MODEL_TYPE_UNSPECIFIED", 1: "CLOUD", 2: "MOBILE_VERSATILE_1", 3: "MOBILE_CORAL_VERSATILE_1", 4: "MOBILE_CORAL_LOW_LATENCY_1", 5: "MOBILE_JETSON_VERSATILE_1", 6: "MOBILE_JETSON_LOW_LATENCY_1", } AutoMlVideoObjectTrackingInputs_ModelType_value = map[string]int32{ "MODEL_TYPE_UNSPECIFIED": 0, "CLOUD": 1, "MOBILE_VERSATILE_1": 2, "MOBILE_CORAL_VERSATILE_1": 3, "MOBILE_CORAL_LOW_LATENCY_1": 4, "MOBILE_JETSON_VERSATILE_1": 5, "MOBILE_JETSON_LOW_LATENCY_1": 6, } )
Enum value maps for AutoMlVideoObjectTrackingInputs_ModelType.
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_object_detection_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_segmentation_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_tables_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_extraction_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_sentiment_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_time_series_forecasting_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_action_recognition_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_object_tracking_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_export_evaluated_data_items_config_proto protoreflect.FileDescriptor
Functions ¶
This section is empty.
Types ¶
type AutoMlForecasting ¶
type AutoMlForecasting struct { // The input parameters of this TrainingJob. Inputs *AutoMlForecastingInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // The metadata information. Metadata *AutoMlForecastingMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Forecasting Model.
func (*AutoMlForecasting) Descriptor
deprecated
func (*AutoMlForecasting) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecasting.ProtoReflect.Descriptor instead.
func (*AutoMlForecasting) GetInputs ¶
func (x *AutoMlForecasting) GetInputs() *AutoMlForecastingInputs
func (*AutoMlForecasting) GetMetadata ¶
func (x *AutoMlForecasting) GetMetadata() *AutoMlForecastingMetadata
func (*AutoMlForecasting) ProtoMessage ¶
func (*AutoMlForecasting) ProtoMessage()
func (*AutoMlForecasting) ProtoReflect ¶
func (x *AutoMlForecasting) ProtoReflect() protoreflect.Message
func (*AutoMlForecasting) Reset ¶
func (x *AutoMlForecasting) Reset()
func (*AutoMlForecasting) String ¶
func (x *AutoMlForecasting) String() string
type AutoMlForecastingInputs ¶
type AutoMlForecastingInputs struct { // The name of the column that the model is to predict. TargetColumn string `protobuf:"bytes,1,opt,name=target_column,json=targetColumn,proto3" json:"target_column,omitempty"` // The name of the column that identifies the time series. TimeSeriesIdentifierColumn string `` /* 143-byte string literal not displayed */ // The name of the column that identifies time order in the time series. TimeColumn string `protobuf:"bytes,3,opt,name=time_column,json=timeColumn,proto3" json:"time_column,omitempty"` // Each transformation will apply transform function to given input column. // And the result will be used for training. // When creating transformation for BigQuery Struct column, the column should // be flattened using "." as the delimiter. Transformations []*AutoMlForecastingInputs_Transformation `protobuf:"bytes,4,rep,name=transformations,proto3" json:"transformations,omitempty"` // Objective function the model is optimizing towards. The training process // creates a model that optimizes the value of the objective // function over the validation set. // // The supported optimization objectives: // "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). // "minimize-mae" - Minimize mean-absolute error (MAE). // "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). // "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). // "minimize-wape-mae" - Minimize the combination of weighted absolute // percentage error (WAPE) and mean-absolute-error (MAE). // "minimize-quantile-loss" - Minimize the quantile loss at the quantiles // defined in `quantiles`. OptimizationObjective string `protobuf:"bytes,5,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"` // Required. The train budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. // // The training cost of the model will not exceed this budget. The final cost // will be attempted to be close to the budget, though may end up being (even) // noticeably smaller - at the backend's discretion. This especially may // happen when further model training ceases to provide any improvements. // // If the budget is set to a value known to be insufficient to train a // model for the given dataset, the training won't be attempted and // will error. // // The train budget must be between 1,000 and 72,000 milli node hours, // inclusive. TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */ // Column name that should be used as the weight column. // Higher values in this column give more importance to the row // during model training. The column must have numeric values between 0 and // 10000 inclusively; 0 means the row is ignored for training. If weight // column field is not set, then all rows are assumed to have equal weight // of 1. WeightColumn string `protobuf:"bytes,7,opt,name=weight_column,json=weightColumn,proto3" json:"weight_column,omitempty"` // Column names that should be used as static columns. // The value of these columns are static per time series. StaticColumns []string `protobuf:"bytes,8,rep,name=static_columns,json=staticColumns,proto3" json:"static_columns,omitempty"` // Column names that should be used as time variant past only columns. // This column contains information for the given entity (identified by the // time_series_identifier_column) that is known for the past but not the // future (e.g. population of a city in a given year, or weather on a given // day). TimeVariantPastOnlyColumns []string `` /* 145-byte string literal not displayed */ // Column names that should be used as time variant past and future columns. // This column contains information for the given entity (identified by the // key column) that is known for the past and the future TimeVariantPastAndFutureColumns []string `` /* 163-byte string literal not displayed */ // Expected difference in time granularity between rows in the data. If it is // not set, the period is inferred from data. Period *AutoMlForecastingInputs_Period `protobuf:"bytes,11,opt,name=period,proto3" json:"period,omitempty"` // The number of periods offset into the future as the start of the forecast // window (the window of future values to predict, relative to the present.), // where each period is one unit of granularity as defined by the `period` // field above. Default to 0. Inclusive. ForecastWindowStart int64 `protobuf:"varint,12,opt,name=forecast_window_start,json=forecastWindowStart,proto3" json:"forecast_window_start,omitempty"` // The number of periods offset into the future as the end of the forecast // window (the window of future values to predict, relative to the present.), // where each period is one unit of granularity as defined by the `period` // field above. Inclusive. ForecastWindowEnd int64 `protobuf:"varint,13,opt,name=forecast_window_end,json=forecastWindowEnd,proto3" json:"forecast_window_end,omitempty"` // The number of periods offset into the past to restrict past sequence, where // each period is one unit of granularity as defined by the `period`. Default // value 0 means that it lets algorithm to define the value. Inclusive. PastHorizon int64 `protobuf:"varint,14,opt,name=past_horizon,json=pastHorizon,proto3" json:"past_horizon,omitempty"` // Configuration for exporting test set predictions to a BigQuery table. If // this configuration is absent, then the export is not performed. ExportEvaluatedDataItemsConfig *ExportEvaluatedDataItemsConfig `` /* 158-byte string literal not displayed */ // Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to // 5 quantiles are allowed of values between 0 and 1, exclusive. Required if // the value of optimization_objective is minimize-quantile-loss. Represents // the percent quantiles to use for that objective. Quantiles must be unique. Quantiles []float64 `protobuf:"fixed64,16,rep,packed,name=quantiles,proto3" json:"quantiles,omitempty"` // Validation options for the data validation component. The available options // are: // "fail-pipeline" - default, will validate against the validation and // fail the pipeline if it fails. // "ignore-validation" - ignore the results of the validation and continue ValidationOptions string `protobuf:"bytes,17,opt,name=validation_options,json=validationOptions,proto3" json:"validation_options,omitempty"` // contains filtered or unexported fields }
func (*AutoMlForecastingInputs) Descriptor
deprecated
func (*AutoMlForecastingInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig ¶
func (x *AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
func (*AutoMlForecastingInputs) GetForecastWindowEnd ¶
func (x *AutoMlForecastingInputs) GetForecastWindowEnd() int64
func (*AutoMlForecastingInputs) GetForecastWindowStart ¶
func (x *AutoMlForecastingInputs) GetForecastWindowStart() int64
func (*AutoMlForecastingInputs) GetOptimizationObjective ¶
func (x *AutoMlForecastingInputs) GetOptimizationObjective() string
func (*AutoMlForecastingInputs) GetPastHorizon ¶
func (x *AutoMlForecastingInputs) GetPastHorizon() int64
func (*AutoMlForecastingInputs) GetPeriod ¶
func (x *AutoMlForecastingInputs) GetPeriod() *AutoMlForecastingInputs_Period
func (*AutoMlForecastingInputs) GetQuantiles ¶
func (x *AutoMlForecastingInputs) GetQuantiles() []float64
func (*AutoMlForecastingInputs) GetStaticColumns ¶
func (x *AutoMlForecastingInputs) GetStaticColumns() []string
func (*AutoMlForecastingInputs) GetTargetColumn ¶
func (x *AutoMlForecastingInputs) GetTargetColumn() string
func (*AutoMlForecastingInputs) GetTimeColumn ¶
func (x *AutoMlForecastingInputs) GetTimeColumn() string
func (*AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn ¶
func (x *AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn() string
func (*AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns ¶
func (x *AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns() []string
func (*AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns ¶
func (x *AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns() []string
func (*AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours ¶
func (x *AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours() int64
func (*AutoMlForecastingInputs) GetTransformations ¶
func (x *AutoMlForecastingInputs) GetTransformations() []*AutoMlForecastingInputs_Transformation
func (*AutoMlForecastingInputs) GetValidationOptions ¶
func (x *AutoMlForecastingInputs) GetValidationOptions() string
func (*AutoMlForecastingInputs) GetWeightColumn ¶
func (x *AutoMlForecastingInputs) GetWeightColumn() string
func (*AutoMlForecastingInputs) ProtoMessage ¶
func (*AutoMlForecastingInputs) ProtoMessage()
func (*AutoMlForecastingInputs) ProtoReflect ¶
func (x *AutoMlForecastingInputs) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs) Reset ¶
func (x *AutoMlForecastingInputs) Reset()
func (*AutoMlForecastingInputs) String ¶
func (x *AutoMlForecastingInputs) String() string
type AutoMlForecastingInputs_Period ¶
type AutoMlForecastingInputs_Period struct { // The time granularity unit of this time period. // The supported unit are: // "minute" // "hour" // "day" // "week" // "month" // "year" Unit string `protobuf:"bytes,1,opt,name=unit,proto3" json:"unit,omitempty"` // The number of units per period, e.g. 3 weeks or 2 months. Quantity int64 `protobuf:"varint,2,opt,name=quantity,proto3" json:"quantity,omitempty"` // contains filtered or unexported fields }
A duration of time expressed in time granularity units.
func (*AutoMlForecastingInputs_Period) Descriptor
deprecated
func (*AutoMlForecastingInputs_Period) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Period.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Period) GetQuantity ¶
func (x *AutoMlForecastingInputs_Period) GetQuantity() int64
func (*AutoMlForecastingInputs_Period) GetUnit ¶
func (x *AutoMlForecastingInputs_Period) GetUnit() string
func (*AutoMlForecastingInputs_Period) ProtoMessage ¶
func (*AutoMlForecastingInputs_Period) ProtoMessage()
func (*AutoMlForecastingInputs_Period) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Period) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Period) Reset ¶
func (x *AutoMlForecastingInputs_Period) Reset()
func (*AutoMlForecastingInputs_Period) String ¶
func (x *AutoMlForecastingInputs_Period) String() string
type AutoMlForecastingInputs_Transformation ¶
type AutoMlForecastingInputs_Transformation struct { // The transformation that the training pipeline will apply to the input // columns. // // Types that are assignable to TransformationDetail: // *AutoMlForecastingInputs_Transformation_Auto // *AutoMlForecastingInputs_Transformation_Numeric // *AutoMlForecastingInputs_Transformation_Categorical // *AutoMlForecastingInputs_Transformation_Timestamp // *AutoMlForecastingInputs_Transformation_Text // *AutoMlForecastingInputs_Transformation_RepeatedNumeric // *AutoMlForecastingInputs_Transformation_RepeatedCategorical // *AutoMlForecastingInputs_Transformation_RepeatedText TransformationDetail isAutoMlForecastingInputs_Transformation_TransformationDetail `protobuf_oneof:"transformation_detail"` // contains filtered or unexported fields }
func (*AutoMlForecastingInputs_Transformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation) GetCategorical ¶
func (x *AutoMlForecastingInputs_Transformation) GetCategorical() *AutoMlForecastingInputs_Transformation_CategoricalTransformation
func (*AutoMlForecastingInputs_Transformation) GetNumeric ¶
func (x *AutoMlForecastingInputs_Transformation) GetNumeric() *AutoMlForecastingInputs_Transformation_NumericTransformation
func (*AutoMlForecastingInputs_Transformation) GetRepeatedCategorical ¶
func (x *AutoMlForecastingInputs_Transformation) GetRepeatedCategorical() *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation
func (*AutoMlForecastingInputs_Transformation) GetRepeatedNumeric ¶
func (x *AutoMlForecastingInputs_Transformation) GetRepeatedNumeric() *AutoMlForecastingInputs_Transformation_NumericArrayTransformation
func (*AutoMlForecastingInputs_Transformation) GetRepeatedText ¶
func (x *AutoMlForecastingInputs_Transformation) GetRepeatedText() *AutoMlForecastingInputs_Transformation_TextArrayTransformation
func (*AutoMlForecastingInputs_Transformation) GetTimestamp ¶
func (x *AutoMlForecastingInputs_Transformation) GetTimestamp() *AutoMlForecastingInputs_Transformation_TimestampTransformation
func (*AutoMlForecastingInputs_Transformation) GetTransformationDetail ¶
func (m *AutoMlForecastingInputs_Transformation) GetTransformationDetail() isAutoMlForecastingInputs_Transformation_TransformationDetail
func (*AutoMlForecastingInputs_Transformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation) Reset()
func (*AutoMlForecastingInputs_Transformation) String ¶
func (x *AutoMlForecastingInputs_Transformation) String() string
type AutoMlForecastingInputs_Transformation_Auto ¶
type AutoMlForecastingInputs_Transformation_Auto struct {
Auto *AutoMlForecastingInputs_Transformation_AutoTransformation `protobuf:"bytes,1,opt,name=auto,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_AutoTransformation ¶
type AutoMlForecastingInputs_Transformation_AutoTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will infer the proper transformation based on the statistic of dataset.
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_AutoTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_AutoTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) String() string
type AutoMlForecastingInputs_Transformation_Categorical ¶
type AutoMlForecastingInputs_Transformation_Categorical struct {
Categorical *AutoMlForecastingInputs_Transformation_CategoricalTransformation `protobuf:"bytes,3,opt,name=categorical,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation ¶
type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Treats the column as categorical array and performs following transformation functions. * For each element in the array, convert the category name to a dictionary
lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.
* Empty arrays treated as an embedding of zeroes.
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_CategoricalTransformation ¶
type AutoMlForecastingInputs_Transformation_CategoricalTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling,
tense, and so on. - Convert the category name to a dictionary lookup index and generate an embedding for each index. - Categories that appear less than 5 times in the training dataset are treated as the "unknown" category. The "unknown" category gets its own special lookup index and resulting embedding.
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_CategoricalTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) String() string
type AutoMlForecastingInputs_Transformation_Numeric ¶
type AutoMlForecastingInputs_Transformation_Numeric struct {
Numeric *AutoMlForecastingInputs_Transformation_NumericTransformation `protobuf:"bytes,2,opt,name=numeric,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_NumericArrayTransformation ¶
type AutoMlForecastingInputs_Transformation_NumericArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Treats the column as numerical array and performs following transformation functions.
- All transformations for Numerical types applied to the average of the all elements.
- The average of empty arrays is treated as zero.
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_NumericArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_NumericTransformation ¶
type AutoMlForecastingInputs_Transformation_NumericTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions.
- The value converted to float32.
- The z_score of the value.
- log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- A boolean value that indicates whether the value is valid.
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_NumericTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_NumericTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) String() string
type AutoMlForecastingInputs_Transformation_RepeatedCategorical ¶
type AutoMlForecastingInputs_Transformation_RepeatedCategorical struct {
RepeatedCategorical *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation `protobuf:"bytes,7,opt,name=repeated_categorical,json=repeatedCategorical,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_RepeatedNumeric ¶
type AutoMlForecastingInputs_Transformation_RepeatedNumeric struct {
RepeatedNumeric *AutoMlForecastingInputs_Transformation_NumericArrayTransformation `protobuf:"bytes,6,opt,name=repeated_numeric,json=repeatedNumeric,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_RepeatedText ¶
type AutoMlForecastingInputs_Transformation_RepeatedText struct {
RepeatedText *AutoMlForecastingInputs_Transformation_TextArrayTransformation `protobuf:"bytes,8,opt,name=repeated_text,json=repeatedText,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_Text ¶
type AutoMlForecastingInputs_Transformation_Text struct {
Text *AutoMlForecastingInputs_Transformation_TextTransformation `protobuf:"bytes,5,opt,name=text,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_TextArrayTransformation ¶
type AutoMlForecastingInputs_Transformation_TextArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Treats the column as text array and performs following transformation functions. * Concatenate all text values in the array into a single text value using
a space (" ") as a delimiter, and then treat the result as a single text value. Apply the transformations for Text columns.
* Empty arrays treated as an empty text.
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_TextArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_TextTransformation ¶
type AutoMlForecastingInputs_Transformation_TextTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so
on.
* Tokenize text to words. Convert each words to a dictionary lookup index
and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.
* Tokenization is based on unicode script boundaries. * Missing values get their own lookup index and resulting embedding. * Stop-words receive no special treatment and are not removed.
func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_TextTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_TextTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_TextTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_TextTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_TextTransformation) String() string
type AutoMlForecastingInputs_Transformation_Timestamp ¶
type AutoMlForecastingInputs_Transformation_Timestamp struct {
Timestamp *AutoMlForecastingInputs_Transformation_TimestampTransformation `protobuf:"bytes,4,opt,name=timestamp,proto3,oneof"`
}
type AutoMlForecastingInputs_Transformation_TimestampTransformation ¶
type AutoMlForecastingInputs_Transformation_TimestampTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // The format in which that time field is expressed. The time_format must // either be one of: // * `unix-seconds` // * `unix-milliseconds` // * `unix-microseconds` // * `unix-nanoseconds` // (for respectively number of seconds, milliseconds, microseconds and // nanoseconds since start of the Unix epoch); // or be written in `strftime` syntax. If time_format is not set, then the // default format is RFC 3339 `date-time` format, where // `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) TimeFormat string `protobuf:"bytes,2,opt,name=time_format,json=timeFormat,proto3" json:"time_format,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,3,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions.
- Apply the transformation functions for Numerical columns.
- Determine the year, month, day,and weekday. Treat each value from the
- timestamp as a Categorical column.
- Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed.
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor
deprecated
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingInputs_Transformation_TimestampTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName() string
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat() string
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage ¶
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage()
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset()
func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) String ¶
func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) String() string
type AutoMlForecastingMetadata ¶
type AutoMlForecastingMetadata struct { // Output only. The actual training cost of the model, expressed in milli // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed // to not exceed the train budget. TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */ // contains filtered or unexported fields }
Model metadata specific to AutoML Forecasting.
func (*AutoMlForecastingMetadata) Descriptor
deprecated
func (*AutoMlForecastingMetadata) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlForecastingMetadata.ProtoReflect.Descriptor instead.
func (*AutoMlForecastingMetadata) GetTrainCostMilliNodeHours ¶
func (x *AutoMlForecastingMetadata) GetTrainCostMilliNodeHours() int64
func (*AutoMlForecastingMetadata) ProtoMessage ¶
func (*AutoMlForecastingMetadata) ProtoMessage()
func (*AutoMlForecastingMetadata) ProtoReflect ¶
func (x *AutoMlForecastingMetadata) ProtoReflect() protoreflect.Message
func (*AutoMlForecastingMetadata) Reset ¶
func (x *AutoMlForecastingMetadata) Reset()
func (*AutoMlForecastingMetadata) String ¶
func (x *AutoMlForecastingMetadata) String() string
type AutoMlImageClassification ¶
type AutoMlImageClassification struct { // The input parameters of this TrainingJob. Inputs *AutoMlImageClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // The metadata information. Metadata *AutoMlImageClassificationMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Image Classification Model.
func (*AutoMlImageClassification) Descriptor
deprecated
func (*AutoMlImageClassification) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageClassification.ProtoReflect.Descriptor instead.
func (*AutoMlImageClassification) GetInputs ¶
func (x *AutoMlImageClassification) GetInputs() *AutoMlImageClassificationInputs
func (*AutoMlImageClassification) GetMetadata ¶
func (x *AutoMlImageClassification) GetMetadata() *AutoMlImageClassificationMetadata
func (*AutoMlImageClassification) ProtoMessage ¶
func (*AutoMlImageClassification) ProtoMessage()
func (*AutoMlImageClassification) ProtoReflect ¶
func (x *AutoMlImageClassification) ProtoReflect() protoreflect.Message
func (*AutoMlImageClassification) Reset ¶
func (x *AutoMlImageClassification) Reset()
func (*AutoMlImageClassification) String ¶
func (x *AutoMlImageClassification) String() string
type AutoMlImageClassificationInputs ¶
type AutoMlImageClassificationInputs struct { ModelType AutoMlImageClassificationInputs_ModelType `` /* 193-byte string literal not displayed */ // The ID of the `base` model. If it is specified, the new model will be // trained based on the `base` model. Otherwise, the new model will be // trained from scratch. The `base` model must be in the same // Project and Location as the new Model to train, and have the same // modelType. BaseModelId string `protobuf:"bytes,2,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"` // The training budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. The actual // metadata.costMilliNodeHours will be equal or less than this value. // If further model training ceases to provide any improvements, it will // stop without using the full budget and the metadata.successfulStopReason // will be `model-converged`. // Note, node_hour = actual_hour * number_of_nodes_involved. // For modelType `cloud`(default), the budget must be between 8,000 // and 800,000 milli node hours, inclusive. The default value is 192,000 // which represents one day in wall time, considering 8 nodes are used. // For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`, // `mobile-tf-high-accuracy-1`, the training budget must be between // 1,000 and 100,000 milli node hours, inclusive. // The default value is 24,000 which represents one day in wall time on a // single node that is used. BudgetMilliNodeHours int64 `` /* 126-byte string literal not displayed */ // Use the entire training budget. This disables the early stopping feature. // When false the early stopping feature is enabled, which means that // AutoML Image Classification might stop training before the entire // training budget has been used. DisableEarlyStopping bool `protobuf:"varint,4,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"` // If false, a single-label (multi-class) Model will be trained (i.e. // assuming that for each image just up to one annotation may be // applicable). If true, a multi-label Model will be trained (i.e. // assuming that for each image multiple annotations may be applicable). MultiLabel bool `protobuf:"varint,5,opt,name=multi_label,json=multiLabel,proto3" json:"multi_label,omitempty"` // contains filtered or unexported fields }
func (*AutoMlImageClassificationInputs) Descriptor
deprecated
func (*AutoMlImageClassificationInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageClassificationInputs.ProtoReflect.Descriptor instead.
func (*AutoMlImageClassificationInputs) GetBaseModelId ¶
func (x *AutoMlImageClassificationInputs) GetBaseModelId() string
func (*AutoMlImageClassificationInputs) GetBudgetMilliNodeHours ¶
func (x *AutoMlImageClassificationInputs) GetBudgetMilliNodeHours() int64
func (*AutoMlImageClassificationInputs) GetDisableEarlyStopping ¶
func (x *AutoMlImageClassificationInputs) GetDisableEarlyStopping() bool
func (*AutoMlImageClassificationInputs) GetModelType ¶
func (x *AutoMlImageClassificationInputs) GetModelType() AutoMlImageClassificationInputs_ModelType
func (*AutoMlImageClassificationInputs) GetMultiLabel ¶
func (x *AutoMlImageClassificationInputs) GetMultiLabel() bool
func (*AutoMlImageClassificationInputs) ProtoMessage ¶
func (*AutoMlImageClassificationInputs) ProtoMessage()
func (*AutoMlImageClassificationInputs) ProtoReflect ¶
func (x *AutoMlImageClassificationInputs) ProtoReflect() protoreflect.Message
func (*AutoMlImageClassificationInputs) Reset ¶
func (x *AutoMlImageClassificationInputs) Reset()
func (*AutoMlImageClassificationInputs) String ¶
func (x *AutoMlImageClassificationInputs) String() string
type AutoMlImageClassificationInputs_ModelType ¶
type AutoMlImageClassificationInputs_ModelType int32
const ( // Should not be set. AutoMlImageClassificationInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageClassificationInputs_ModelType = 0 // A Model best tailored to be used within Google Cloud, and which cannot // be exported. // Default. AutoMlImageClassificationInputs_CLOUD AutoMlImageClassificationInputs_ModelType = 1 // A model that, in addition to being available within Google // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow // or Core ML model and used on a mobile or edge device afterwards. // Expected to have low latency, but may have lower prediction // quality than other mobile models. AutoMlImageClassificationInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageClassificationInputs_ModelType = 2 // A model that, in addition to being available within Google // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow // or Core ML model and used on a mobile or edge device with afterwards. AutoMlImageClassificationInputs_MOBILE_TF_VERSATILE_1 AutoMlImageClassificationInputs_ModelType = 3 // A model that, in addition to being available within Google // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow // or Core ML model and used on a mobile or edge device afterwards. // Expected to have a higher latency, but should also have a higher // prediction quality than other mobile models. AutoMlImageClassificationInputs_MOBILE_TF_HIGH_ACCURACY_1 AutoMlImageClassificationInputs_ModelType = 4 )
func (AutoMlImageClassificationInputs_ModelType) Descriptor ¶
func (AutoMlImageClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageClassificationInputs_ModelType.Descriptor instead.
func (AutoMlImageClassificationInputs_ModelType) Number ¶
func (x AutoMlImageClassificationInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlImageClassificationInputs_ModelType) String ¶
func (x AutoMlImageClassificationInputs_ModelType) String() string
func (AutoMlImageClassificationInputs_ModelType) Type ¶
func (AutoMlImageClassificationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageClassificationMetadata ¶
type AutoMlImageClassificationMetadata struct { // The actual training cost of creating this model, expressed in // milli node hours, i.e. 1,000 value in this field means 1 node hour. // Guaranteed to not exceed inputs.budgetMilliNodeHours. CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"` // For successful job completions, this is the reason why the job has // finished. SuccessfulStopReason AutoMlImageClassificationMetadata_SuccessfulStopReason `` /* 241-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlImageClassificationMetadata) Descriptor
deprecated
func (*AutoMlImageClassificationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageClassificationMetadata.ProtoReflect.Descriptor instead.
func (*AutoMlImageClassificationMetadata) GetCostMilliNodeHours ¶
func (x *AutoMlImageClassificationMetadata) GetCostMilliNodeHours() int64
func (*AutoMlImageClassificationMetadata) GetSuccessfulStopReason ¶
func (x *AutoMlImageClassificationMetadata) GetSuccessfulStopReason() AutoMlImageClassificationMetadata_SuccessfulStopReason
func (*AutoMlImageClassificationMetadata) ProtoMessage ¶
func (*AutoMlImageClassificationMetadata) ProtoMessage()
func (*AutoMlImageClassificationMetadata) ProtoReflect ¶
func (x *AutoMlImageClassificationMetadata) ProtoReflect() protoreflect.Message
func (*AutoMlImageClassificationMetadata) Reset ¶
func (x *AutoMlImageClassificationMetadata) Reset()
func (*AutoMlImageClassificationMetadata) String ¶
func (x *AutoMlImageClassificationMetadata) String() string
type AutoMlImageClassificationMetadata_SuccessfulStopReason ¶
type AutoMlImageClassificationMetadata_SuccessfulStopReason int32
const ( // Should not be set. AutoMlImageClassificationMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageClassificationMetadata_SuccessfulStopReason = 0 // The inputs.budgetMilliNodeHours had been reached. AutoMlImageClassificationMetadata_BUDGET_REACHED AutoMlImageClassificationMetadata_SuccessfulStopReason = 1 // Further training of the Model ceased to increase its quality, since it // already has converged. AutoMlImageClassificationMetadata_MODEL_CONVERGED AutoMlImageClassificationMetadata_SuccessfulStopReason = 2 )
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor ¶
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor
deprecated
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageClassificationMetadata_SuccessfulStopReason.Descriptor instead.
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Number ¶
func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
func (AutoMlImageClassificationMetadata_SuccessfulStopReason) String ¶
func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) String() string
type AutoMlImageObjectDetection ¶
type AutoMlImageObjectDetection struct { // The input parameters of this TrainingJob. Inputs *AutoMlImageObjectDetectionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // The metadata information Metadata *AutoMlImageObjectDetectionMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Image Object Detection Model.
func (*AutoMlImageObjectDetection) Descriptor
deprecated
func (*AutoMlImageObjectDetection) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageObjectDetection.ProtoReflect.Descriptor instead.
func (*AutoMlImageObjectDetection) GetInputs ¶
func (x *AutoMlImageObjectDetection) GetInputs() *AutoMlImageObjectDetectionInputs
func (*AutoMlImageObjectDetection) GetMetadata ¶
func (x *AutoMlImageObjectDetection) GetMetadata() *AutoMlImageObjectDetectionMetadata
func (*AutoMlImageObjectDetection) ProtoMessage ¶
func (*AutoMlImageObjectDetection) ProtoMessage()
func (*AutoMlImageObjectDetection) ProtoReflect ¶
func (x *AutoMlImageObjectDetection) ProtoReflect() protoreflect.Message
func (*AutoMlImageObjectDetection) Reset ¶
func (x *AutoMlImageObjectDetection) Reset()
func (*AutoMlImageObjectDetection) String ¶
func (x *AutoMlImageObjectDetection) String() string
type AutoMlImageObjectDetectionInputs ¶
type AutoMlImageObjectDetectionInputs struct { ModelType AutoMlImageObjectDetectionInputs_ModelType `` /* 194-byte string literal not displayed */ // The training budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. The actual // metadata.costMilliNodeHours will be equal or less than this value. // If further model training ceases to provide any improvements, it will // stop without using the full budget and the metadata.successfulStopReason // will be `model-converged`. // Note, node_hour = actual_hour * number_of_nodes_involved. // For modelType `cloud`(default), the budget must be between 20,000 // and 900,000 milli node hours, inclusive. The default value is 216,000 // which represents one day in wall time, considering 9 nodes are used. // For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`, // `mobile-tf-high-accuracy-1` // the training budget must be between 1,000 and 100,000 milli node hours, // inclusive. The default value is 24,000 which represents one day in // wall time on a single node that is used. BudgetMilliNodeHours int64 `` /* 126-byte string literal not displayed */ // Use the entire training budget. This disables the early stopping feature. // When false the early stopping feature is enabled, which means that AutoML // Image Object Detection might stop training before the entire training // budget has been used. DisableEarlyStopping bool `protobuf:"varint,3,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"` // contains filtered or unexported fields }
func (*AutoMlImageObjectDetectionInputs) Descriptor
deprecated
func (*AutoMlImageObjectDetectionInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageObjectDetectionInputs.ProtoReflect.Descriptor instead.
func (*AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours ¶
func (x *AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours() int64
func (*AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping ¶
func (x *AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping() bool
func (*AutoMlImageObjectDetectionInputs) GetModelType ¶
func (x *AutoMlImageObjectDetectionInputs) GetModelType() AutoMlImageObjectDetectionInputs_ModelType
func (*AutoMlImageObjectDetectionInputs) ProtoMessage ¶
func (*AutoMlImageObjectDetectionInputs) ProtoMessage()
func (*AutoMlImageObjectDetectionInputs) ProtoReflect ¶
func (x *AutoMlImageObjectDetectionInputs) ProtoReflect() protoreflect.Message
func (*AutoMlImageObjectDetectionInputs) Reset ¶
func (x *AutoMlImageObjectDetectionInputs) Reset()
func (*AutoMlImageObjectDetectionInputs) String ¶
func (x *AutoMlImageObjectDetectionInputs) String() string
type AutoMlImageObjectDetectionInputs_ModelType ¶
type AutoMlImageObjectDetectionInputs_ModelType int32
const ( // Should not be set. AutoMlImageObjectDetectionInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageObjectDetectionInputs_ModelType = 0 // A model best tailored to be used within Google Cloud, and which cannot // be exported. Expected to have a higher latency, but should also have a // higher prediction quality than other cloud models. AutoMlImageObjectDetectionInputs_CLOUD_HIGH_ACCURACY_1 AutoMlImageObjectDetectionInputs_ModelType = 1 // A model best tailored to be used within Google Cloud, and which cannot // be exported. Expected to have a low latency, but may have lower // prediction quality than other cloud models. AutoMlImageObjectDetectionInputs_CLOUD_LOW_LATENCY_1 AutoMlImageObjectDetectionInputs_ModelType = 2 // A model that, in addition to being available within Google // Cloud can also be exported (see ModelService.ExportModel) and // used on a mobile or edge device with TensorFlow afterwards. // Expected to have low latency, but may have lower prediction // quality than other mobile models. AutoMlImageObjectDetectionInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageObjectDetectionInputs_ModelType = 3 // A model that, in addition to being available within Google // Cloud can also be exported (see ModelService.ExportModel) and // used on a mobile or edge device with TensorFlow afterwards. AutoMlImageObjectDetectionInputs_MOBILE_TF_VERSATILE_1 AutoMlImageObjectDetectionInputs_ModelType = 4 // A model that, in addition to being available within Google // Cloud, can also be exported (see ModelService.ExportModel) and // used on a mobile or edge device with TensorFlow afterwards. // Expected to have a higher latency, but should also have a higher // prediction quality than other mobile models. AutoMlImageObjectDetectionInputs_MOBILE_TF_HIGH_ACCURACY_1 AutoMlImageObjectDetectionInputs_ModelType = 5 )
func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor ¶
func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageObjectDetectionInputs_ModelType.Descriptor instead.
func (AutoMlImageObjectDetectionInputs_ModelType) Number ¶
func (x AutoMlImageObjectDetectionInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlImageObjectDetectionInputs_ModelType) String ¶
func (x AutoMlImageObjectDetectionInputs_ModelType) String() string
func (AutoMlImageObjectDetectionInputs_ModelType) Type ¶
func (AutoMlImageObjectDetectionInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageObjectDetectionMetadata ¶
type AutoMlImageObjectDetectionMetadata struct { // The actual training cost of creating this model, expressed in // milli node hours, i.e. 1,000 value in this field means 1 node hour. // Guaranteed to not exceed inputs.budgetMilliNodeHours. CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"` // For successful job completions, this is the reason why the job has // finished. SuccessfulStopReason AutoMlImageObjectDetectionMetadata_SuccessfulStopReason `` /* 242-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlImageObjectDetectionMetadata) Descriptor
deprecated
func (*AutoMlImageObjectDetectionMetadata) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageObjectDetectionMetadata.ProtoReflect.Descriptor instead.
func (*AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours ¶
func (x *AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours() int64
func (*AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason ¶
func (x *AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason() AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
func (*AutoMlImageObjectDetectionMetadata) ProtoMessage ¶
func (*AutoMlImageObjectDetectionMetadata) ProtoMessage()
func (*AutoMlImageObjectDetectionMetadata) ProtoReflect ¶
func (x *AutoMlImageObjectDetectionMetadata) ProtoReflect() protoreflect.Message
func (*AutoMlImageObjectDetectionMetadata) Reset ¶
func (x *AutoMlImageObjectDetectionMetadata) Reset()
func (*AutoMlImageObjectDetectionMetadata) String ¶
func (x *AutoMlImageObjectDetectionMetadata) String() string
type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason ¶
type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason int32
const ( // Should not be set. AutoMlImageObjectDetectionMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 0 // The inputs.budgetMilliNodeHours had been reached. AutoMlImageObjectDetectionMetadata_BUDGET_REACHED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 1 // Further training of the Model ceased to increase its quality, since it // already has converged. AutoMlImageObjectDetectionMetadata_MODEL_CONVERGED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 2 )
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor ¶
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor
deprecated
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageObjectDetectionMetadata_SuccessfulStopReason.Descriptor instead.
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number ¶
func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String ¶
func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String() string
type AutoMlImageSegmentation ¶
type AutoMlImageSegmentation struct { // The input parameters of this TrainingJob. Inputs *AutoMlImageSegmentationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // The metadata information. Metadata *AutoMlImageSegmentationMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Image Segmentation Model.
func (*AutoMlImageSegmentation) Descriptor
deprecated
func (*AutoMlImageSegmentation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageSegmentation.ProtoReflect.Descriptor instead.
func (*AutoMlImageSegmentation) GetInputs ¶
func (x *AutoMlImageSegmentation) GetInputs() *AutoMlImageSegmentationInputs
func (*AutoMlImageSegmentation) GetMetadata ¶
func (x *AutoMlImageSegmentation) GetMetadata() *AutoMlImageSegmentationMetadata
func (*AutoMlImageSegmentation) ProtoMessage ¶
func (*AutoMlImageSegmentation) ProtoMessage()
func (*AutoMlImageSegmentation) ProtoReflect ¶
func (x *AutoMlImageSegmentation) ProtoReflect() protoreflect.Message
func (*AutoMlImageSegmentation) Reset ¶
func (x *AutoMlImageSegmentation) Reset()
func (*AutoMlImageSegmentation) String ¶
func (x *AutoMlImageSegmentation) String() string
type AutoMlImageSegmentationInputs ¶
type AutoMlImageSegmentationInputs struct { ModelType AutoMlImageSegmentationInputs_ModelType `` /* 191-byte string literal not displayed */ // The training budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. The actual // metadata.costMilliNodeHours will be equal or less than this value. // If further model training ceases to provide any improvements, it will // stop without using the full budget and the metadata.successfulStopReason // will be `model-converged`. // Note, node_hour = actual_hour * number_of_nodes_involved. Or // actaul_wall_clock_hours = train_budget_milli_node_hours / // // (number_of_nodes_involved * 1000) // // For modelType `cloud-high-accuracy-1`(default), the budget must be between // 20,000 and 2,000,000 milli node hours, inclusive. The default value is // 192,000 which represents one day in wall time // (1000 milli * 24 hours * 8 nodes). BudgetMilliNodeHours int64 `` /* 126-byte string literal not displayed */ // The ID of the `base` model. If it is specified, the new model will be // trained based on the `base` model. Otherwise, the new model will be // trained from scratch. The `base` model must be in the same // Project and Location as the new Model to train, and have the same // modelType. BaseModelId string `protobuf:"bytes,3,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"` // contains filtered or unexported fields }
func (*AutoMlImageSegmentationInputs) Descriptor
deprecated
func (*AutoMlImageSegmentationInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageSegmentationInputs.ProtoReflect.Descriptor instead.
func (*AutoMlImageSegmentationInputs) GetBaseModelId ¶
func (x *AutoMlImageSegmentationInputs) GetBaseModelId() string
func (*AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours ¶
func (x *AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours() int64
func (*AutoMlImageSegmentationInputs) GetModelType ¶
func (x *AutoMlImageSegmentationInputs) GetModelType() AutoMlImageSegmentationInputs_ModelType
func (*AutoMlImageSegmentationInputs) ProtoMessage ¶
func (*AutoMlImageSegmentationInputs) ProtoMessage()
func (*AutoMlImageSegmentationInputs) ProtoReflect ¶
func (x *AutoMlImageSegmentationInputs) ProtoReflect() protoreflect.Message
func (*AutoMlImageSegmentationInputs) Reset ¶
func (x *AutoMlImageSegmentationInputs) Reset()
func (*AutoMlImageSegmentationInputs) String ¶
func (x *AutoMlImageSegmentationInputs) String() string
type AutoMlImageSegmentationInputs_ModelType ¶
type AutoMlImageSegmentationInputs_ModelType int32
const ( // Should not be set. AutoMlImageSegmentationInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageSegmentationInputs_ModelType = 0 // A model to be used via prediction calls to uCAIP API. Expected // to have a higher latency, but should also have a higher prediction // quality than other models. AutoMlImageSegmentationInputs_CLOUD_HIGH_ACCURACY_1 AutoMlImageSegmentationInputs_ModelType = 1 // A model to be used via prediction calls to uCAIP API. Expected // to have a lower latency but relatively lower prediction quality. AutoMlImageSegmentationInputs_CLOUD_LOW_ACCURACY_1 AutoMlImageSegmentationInputs_ModelType = 2 // A model that, in addition to being available within Google // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow // model and used on a mobile or edge device afterwards. // Expected to have low latency, but may have lower prediction // quality than other mobile models. AutoMlImageSegmentationInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageSegmentationInputs_ModelType = 3 )
func (AutoMlImageSegmentationInputs_ModelType) Descriptor ¶
func (AutoMlImageSegmentationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageSegmentationInputs_ModelType.Descriptor instead.
func (AutoMlImageSegmentationInputs_ModelType) Number ¶
func (x AutoMlImageSegmentationInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlImageSegmentationInputs_ModelType) String ¶
func (x AutoMlImageSegmentationInputs_ModelType) String() string
func (AutoMlImageSegmentationInputs_ModelType) Type ¶
func (AutoMlImageSegmentationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageSegmentationMetadata ¶
type AutoMlImageSegmentationMetadata struct { // The actual training cost of creating this model, expressed in // milli node hours, i.e. 1,000 value in this field means 1 node hour. // Guaranteed to not exceed inputs.budgetMilliNodeHours. CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"` // For successful job completions, this is the reason why the job has // finished. SuccessfulStopReason AutoMlImageSegmentationMetadata_SuccessfulStopReason `` /* 239-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlImageSegmentationMetadata) Descriptor
deprecated
func (*AutoMlImageSegmentationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlImageSegmentationMetadata.ProtoReflect.Descriptor instead.
func (*AutoMlImageSegmentationMetadata) GetCostMilliNodeHours ¶
func (x *AutoMlImageSegmentationMetadata) GetCostMilliNodeHours() int64
func (*AutoMlImageSegmentationMetadata) GetSuccessfulStopReason ¶
func (x *AutoMlImageSegmentationMetadata) GetSuccessfulStopReason() AutoMlImageSegmentationMetadata_SuccessfulStopReason
func (*AutoMlImageSegmentationMetadata) ProtoMessage ¶
func (*AutoMlImageSegmentationMetadata) ProtoMessage()
func (*AutoMlImageSegmentationMetadata) ProtoReflect ¶
func (x *AutoMlImageSegmentationMetadata) ProtoReflect() protoreflect.Message
func (*AutoMlImageSegmentationMetadata) Reset ¶
func (x *AutoMlImageSegmentationMetadata) Reset()
func (*AutoMlImageSegmentationMetadata) String ¶
func (x *AutoMlImageSegmentationMetadata) String() string
type AutoMlImageSegmentationMetadata_SuccessfulStopReason ¶
type AutoMlImageSegmentationMetadata_SuccessfulStopReason int32
const ( // Should not be set. AutoMlImageSegmentationMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 0 // The inputs.budgetMilliNodeHours had been reached. AutoMlImageSegmentationMetadata_BUDGET_REACHED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 1 // Further training of the Model ceased to increase its quality, since it // already has converged. AutoMlImageSegmentationMetadata_MODEL_CONVERGED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 2 )
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor ¶
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor
deprecated
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlImageSegmentationMetadata_SuccessfulStopReason.Descriptor instead.
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number ¶
func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) String ¶
func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) String() string
type AutoMlTables ¶
type AutoMlTables struct { // The input parameters of this TrainingJob. Inputs *AutoMlTablesInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // The metadata information. Metadata *AutoMlTablesMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Tables Model.
func (*AutoMlTables) Descriptor
deprecated
func (*AutoMlTables) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTables.ProtoReflect.Descriptor instead.
func (*AutoMlTables) GetInputs ¶
func (x *AutoMlTables) GetInputs() *AutoMlTablesInputs
func (*AutoMlTables) GetMetadata ¶
func (x *AutoMlTables) GetMetadata() *AutoMlTablesMetadata
func (*AutoMlTables) ProtoMessage ¶
func (*AutoMlTables) ProtoMessage()
func (*AutoMlTables) ProtoReflect ¶
func (x *AutoMlTables) ProtoReflect() protoreflect.Message
func (*AutoMlTables) Reset ¶
func (x *AutoMlTables) Reset()
func (*AutoMlTables) String ¶
func (x *AutoMlTables) String() string
type AutoMlTablesInputs ¶
type AutoMlTablesInputs struct { // Additional optimization objective configuration. Required for // `maximize-precision-at-recall` and `maximize-recall-at-precision`, // otherwise unused. // // Types that are assignable to AdditionalOptimizationObjectiveConfig: // // *AutoMlTablesInputs_OptimizationObjectiveRecallValue // *AutoMlTablesInputs_OptimizationObjectivePrecisionValue AdditionalOptimizationObjectiveConfig isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig `protobuf_oneof:"additional_optimization_objective_config"` // The type of prediction the Model is to produce. // // "classification" - Predict one out of multiple target values is // picked for each row. // "regression" - Predict a value based on its relation to other values. // This type is available only to columns that contain // semantically numeric values, i.e. integers or floating // point number, even if stored as e.g. strings. PredictionType string `protobuf:"bytes,1,opt,name=prediction_type,json=predictionType,proto3" json:"prediction_type,omitempty"` // The column name of the target column that the model is to predict. TargetColumn string `protobuf:"bytes,2,opt,name=target_column,json=targetColumn,proto3" json:"target_column,omitempty"` // Each transformation will apply transform function to given input column. // And the result will be used for training. // When creating transformation for BigQuery Struct column, the column should // be flattened using "." as the delimiter. Transformations []*AutoMlTablesInputs_Transformation `protobuf:"bytes,3,rep,name=transformations,proto3" json:"transformations,omitempty"` // Objective function the model is optimizing towards. The training process // creates a model that maximizes/minimizes the value of the objective // function over the validation set. // // The supported optimization objectives depend on the prediction type. // If the field is not set, a default objective function is used. // // classification (binary): // // "maximize-au-roc" (default) - Maximize the area under the receiver // operating characteristic (ROC) curve. // "minimize-log-loss" - Minimize log loss. // "maximize-au-prc" - Maximize the area under the precision-recall curve. // "maximize-precision-at-recall" - Maximize precision for a specified // recall value. // "maximize-recall-at-precision" - Maximize recall for a specified // precision value. // // classification (multi-class): // // "minimize-log-loss" (default) - Minimize log loss. // // regression: // // "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). // "minimize-mae" - Minimize mean-absolute error (MAE). // "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). OptimizationObjective string `protobuf:"bytes,4,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"` // Required. The train budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. // // The training cost of the model will not exceed this budget. The final cost // will be attempted to be close to the budget, though may end up being (even) // noticeably smaller - at the backend's discretion. This especially may // happen when further model training ceases to provide any improvements. // // If the budget is set to a value known to be insufficient to train a // model for the given dataset, the training won't be attempted and // will error. // // The train budget must be between 1,000 and 72,000 milli node hours, // inclusive. TrainBudgetMilliNodeHours int64 `` /* 143-byte string literal not displayed */ // Use the entire training budget. This disables the early stopping feature. // By default, the early stopping feature is enabled, which means that AutoML // Tables might stop training before the entire training budget has been used. DisableEarlyStopping bool `protobuf:"varint,8,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"` // Column name that should be used as the weight column. // Higher values in this column give more importance to the row // during model training. The column must have numeric values between 0 and // 10000 inclusively; 0 means the row is ignored for training. If weight // column field is not set, then all rows are assumed to have equal weight // of 1. WeightColumnName string `protobuf:"bytes,9,opt,name=weight_column_name,json=weightColumnName,proto3" json:"weight_column_name,omitempty"` // Configuration for exporting test set predictions to a BigQuery table. If // this configuration is absent, then the export is not performed. ExportEvaluatedDataItemsConfig *ExportEvaluatedDataItemsConfig `` /* 158-byte string literal not displayed */ // Additional experiment flags for the Tables training pipeline. AdditionalExperiments []string `protobuf:"bytes,11,rep,name=additional_experiments,json=additionalExperiments,proto3" json:"additional_experiments,omitempty"` // contains filtered or unexported fields }
func (*AutoMlTablesInputs) Descriptor
deprecated
func (*AutoMlTablesInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs) GetAdditionalExperiments ¶
func (x *AutoMlTablesInputs) GetAdditionalExperiments() []string
func (*AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig ¶
func (m *AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig() isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig
func (*AutoMlTablesInputs) GetDisableEarlyStopping ¶
func (x *AutoMlTablesInputs) GetDisableEarlyStopping() bool
func (*AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig ¶
func (x *AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
func (*AutoMlTablesInputs) GetOptimizationObjective ¶
func (x *AutoMlTablesInputs) GetOptimizationObjective() string
func (*AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue ¶
func (x *AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue() float32
func (*AutoMlTablesInputs) GetOptimizationObjectiveRecallValue ¶
func (x *AutoMlTablesInputs) GetOptimizationObjectiveRecallValue() float32
func (*AutoMlTablesInputs) GetPredictionType ¶
func (x *AutoMlTablesInputs) GetPredictionType() string
func (*AutoMlTablesInputs) GetTargetColumn ¶
func (x *AutoMlTablesInputs) GetTargetColumn() string
func (*AutoMlTablesInputs) GetTrainBudgetMilliNodeHours ¶
func (x *AutoMlTablesInputs) GetTrainBudgetMilliNodeHours() int64
func (*AutoMlTablesInputs) GetTransformations ¶
func (x *AutoMlTablesInputs) GetTransformations() []*AutoMlTablesInputs_Transformation
func (*AutoMlTablesInputs) GetWeightColumnName ¶
func (x *AutoMlTablesInputs) GetWeightColumnName() string
func (*AutoMlTablesInputs) ProtoMessage ¶
func (*AutoMlTablesInputs) ProtoMessage()
func (*AutoMlTablesInputs) ProtoReflect ¶
func (x *AutoMlTablesInputs) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs) Reset ¶
func (x *AutoMlTablesInputs) Reset()
func (*AutoMlTablesInputs) String ¶
func (x *AutoMlTablesInputs) String() string
type AutoMlTablesInputs_OptimizationObjectivePrecisionValue ¶
type AutoMlTablesInputs_OptimizationObjectivePrecisionValue struct { // Required when optimization_objective is "maximize-recall-at-precision". // Must be between 0 and 1, inclusive. OptimizationObjectivePrecisionValue float32 `protobuf:"fixed32,6,opt,name=optimization_objective_precision_value,json=optimizationObjectivePrecisionValue,proto3,oneof"` }
type AutoMlTablesInputs_OptimizationObjectiveRecallValue ¶
type AutoMlTablesInputs_OptimizationObjectiveRecallValue struct { // Required when optimization_objective is "maximize-precision-at-recall". // Must be between 0 and 1, inclusive. OptimizationObjectiveRecallValue float32 `protobuf:"fixed32,5,opt,name=optimization_objective_recall_value,json=optimizationObjectiveRecallValue,proto3,oneof"` }
type AutoMlTablesInputs_Transformation ¶
type AutoMlTablesInputs_Transformation struct { // The transformation that the training pipeline will apply to the input // columns. // // Types that are assignable to TransformationDetail: // // *AutoMlTablesInputs_Transformation_Auto // *AutoMlTablesInputs_Transformation_Numeric // *AutoMlTablesInputs_Transformation_Categorical // *AutoMlTablesInputs_Transformation_Timestamp // *AutoMlTablesInputs_Transformation_Text // *AutoMlTablesInputs_Transformation_RepeatedNumeric // *AutoMlTablesInputs_Transformation_RepeatedCategorical // *AutoMlTablesInputs_Transformation_RepeatedText TransformationDetail isAutoMlTablesInputs_Transformation_TransformationDetail `protobuf_oneof:"transformation_detail"` // contains filtered or unexported fields }
func (*AutoMlTablesInputs_Transformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation) GetAuto ¶
func (x *AutoMlTablesInputs_Transformation) GetAuto() *AutoMlTablesInputs_Transformation_AutoTransformation
func (*AutoMlTablesInputs_Transformation) GetCategorical ¶
func (x *AutoMlTablesInputs_Transformation) GetCategorical() *AutoMlTablesInputs_Transformation_CategoricalTransformation
func (*AutoMlTablesInputs_Transformation) GetNumeric ¶
func (x *AutoMlTablesInputs_Transformation) GetNumeric() *AutoMlTablesInputs_Transformation_NumericTransformation
func (*AutoMlTablesInputs_Transformation) GetRepeatedCategorical ¶
func (x *AutoMlTablesInputs_Transformation) GetRepeatedCategorical() *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation
func (*AutoMlTablesInputs_Transformation) GetRepeatedNumeric ¶
func (x *AutoMlTablesInputs_Transformation) GetRepeatedNumeric() *AutoMlTablesInputs_Transformation_NumericArrayTransformation
func (*AutoMlTablesInputs_Transformation) GetRepeatedText ¶
func (x *AutoMlTablesInputs_Transformation) GetRepeatedText() *AutoMlTablesInputs_Transformation_TextArrayTransformation
func (*AutoMlTablesInputs_Transformation) GetText ¶
func (x *AutoMlTablesInputs_Transformation) GetText() *AutoMlTablesInputs_Transformation_TextTransformation
func (*AutoMlTablesInputs_Transformation) GetTimestamp ¶
func (x *AutoMlTablesInputs_Transformation) GetTimestamp() *AutoMlTablesInputs_Transformation_TimestampTransformation
func (*AutoMlTablesInputs_Transformation) GetTransformationDetail ¶
func (m *AutoMlTablesInputs_Transformation) GetTransformationDetail() isAutoMlTablesInputs_Transformation_TransformationDetail
func (*AutoMlTablesInputs_Transformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation) Reset()
func (*AutoMlTablesInputs_Transformation) String ¶
func (x *AutoMlTablesInputs_Transformation) String() string
type AutoMlTablesInputs_Transformation_Auto ¶
type AutoMlTablesInputs_Transformation_Auto struct {
Auto *AutoMlTablesInputs_Transformation_AutoTransformation `protobuf:"bytes,1,opt,name=auto,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_AutoTransformation ¶
type AutoMlTablesInputs_Transformation_AutoTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will infer the proper transformation based on the statistic of dataset.
func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_AutoTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_AutoTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_AutoTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_AutoTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_AutoTransformation) String() string
type AutoMlTablesInputs_Transformation_Categorical ¶
type AutoMlTablesInputs_Transformation_Categorical struct {
Categorical *AutoMlTablesInputs_Transformation_CategoricalTransformation `protobuf:"bytes,3,opt,name=categorical,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation ¶
type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Treats the column as categorical array and performs following transformation functions. * For each element in the array, convert the category name to a dictionary
lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.
* Empty arrays treated as an embedding of zeroes.
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_CategoricalArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_CategoricalTransformation ¶
type AutoMlTablesInputs_Transformation_CategoricalTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling,
tense, and so on. - Convert the category name to a dictionary lookup index and generate an embedding for each index. - Categories that appear less than 5 times in the training dataset are treated as the "unknown" category. The "unknown" category gets its own special lookup index and resulting embedding.
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_CategoricalTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) String() string
type AutoMlTablesInputs_Transformation_Numeric ¶
type AutoMlTablesInputs_Transformation_Numeric struct {
Numeric *AutoMlTablesInputs_Transformation_NumericTransformation `protobuf:"bytes,2,opt,name=numeric,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_NumericArrayTransformation ¶
type AutoMlTablesInputs_Transformation_NumericArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Treats the column as numerical array and performs following transformation functions.
- All transformations for Numerical types applied to the average of the all elements.
- The average of empty arrays is treated as zero.
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_NumericArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_NumericTransformation ¶
type AutoMlTablesInputs_Transformation_NumericTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions.
- The value converted to float32.
- The z_score of the value.
- log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- A boolean value that indicates whether the value is valid.
func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_NumericTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_NumericTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_NumericTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_NumericTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_NumericTransformation) String() string
type AutoMlTablesInputs_Transformation_RepeatedCategorical ¶
type AutoMlTablesInputs_Transformation_RepeatedCategorical struct {
RepeatedCategorical *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation `protobuf:"bytes,7,opt,name=repeated_categorical,json=repeatedCategorical,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_RepeatedNumeric ¶
type AutoMlTablesInputs_Transformation_RepeatedNumeric struct {
RepeatedNumeric *AutoMlTablesInputs_Transformation_NumericArrayTransformation `protobuf:"bytes,6,opt,name=repeated_numeric,json=repeatedNumeric,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_RepeatedText ¶
type AutoMlTablesInputs_Transformation_RepeatedText struct {
RepeatedText *AutoMlTablesInputs_Transformation_TextArrayTransformation `protobuf:"bytes,8,opt,name=repeated_text,json=repeatedText,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_Text ¶
type AutoMlTablesInputs_Transformation_Text struct {
Text *AutoMlTablesInputs_Transformation_TextTransformation `protobuf:"bytes,5,opt,name=text,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_TextArrayTransformation ¶
type AutoMlTablesInputs_Transformation_TextArrayTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Treats the column as text array and performs following transformation functions. * Concatenate all text values in the array into a single text value using
a space (" ") as a delimiter, and then treat the result as a single text value. Apply the transformations for Text columns.
* Empty arrays treated as an empty text.
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_TextArrayTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_TextTransformation ¶
type AutoMlTablesInputs_Transformation_TextTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so
on.
* Tokenize text to words. Convert each words to a dictionary lookup index
and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean.
* Tokenization is based on unicode script boundaries. * Missing values get their own lookup index and resulting embedding. * Stop-words receive no special treatment and are not removed.
func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_TextTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_TextTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_TextTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_TextTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_TextTransformation) String() string
type AutoMlTablesInputs_Transformation_Timestamp ¶
type AutoMlTablesInputs_Transformation_Timestamp struct {
Timestamp *AutoMlTablesInputs_Transformation_TimestampTransformation `protobuf:"bytes,4,opt,name=timestamp,proto3,oneof"`
}
type AutoMlTablesInputs_Transformation_TimestampTransformation ¶
type AutoMlTablesInputs_Transformation_TimestampTransformation struct { ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"` // The format in which that time field is expressed. The time_format must // either be one of: // * `unix-seconds` // * `unix-milliseconds` // * `unix-microseconds` // * `unix-nanoseconds` // (for respectively number of seconds, milliseconds, microseconds and // nanoseconds since start of the Unix epoch); // or be written in `strftime` syntax. If time_format is not set, then the // default format is RFC 3339 `date-time` format, where // `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) TimeFormat string `protobuf:"bytes,2,opt,name=time_format,json=timeFormat,proto3" json:"time_format,omitempty"` // If invalid values is allowed, the training pipeline will create a // boolean feature that indicated whether the value is valid. // Otherwise, the training pipeline will discard the input row from // trainining data. InvalidValuesAllowed bool `protobuf:"varint,3,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"` // contains filtered or unexported fields }
Training pipeline will perform following transformation functions.
- Apply the transformation functions for Numerical columns.
- Determine the year, month, day,and weekday. Treat each value from the
- timestamp as a Categorical column.
- Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed.
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor
deprecated
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesInputs_Transformation_TimestampTransformation.ProtoReflect.Descriptor instead.
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName() string
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat() string
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage ¶
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage()
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Reset ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) Reset()
func (*AutoMlTablesInputs_Transformation_TimestampTransformation) String ¶
func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) String() string
type AutoMlTablesMetadata ¶
type AutoMlTablesMetadata struct { // Output only. The actual training cost of the model, expressed in milli // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed // to not exceed the train budget. TrainCostMilliNodeHours int64 `` /* 137-byte string literal not displayed */ // contains filtered or unexported fields }
Model metadata specific to AutoML Tables.
func (*AutoMlTablesMetadata) Descriptor
deprecated
func (*AutoMlTablesMetadata) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTablesMetadata.ProtoReflect.Descriptor instead.
func (*AutoMlTablesMetadata) GetTrainCostMilliNodeHours ¶
func (x *AutoMlTablesMetadata) GetTrainCostMilliNodeHours() int64
func (*AutoMlTablesMetadata) ProtoMessage ¶
func (*AutoMlTablesMetadata) ProtoMessage()
func (*AutoMlTablesMetadata) ProtoReflect ¶
func (x *AutoMlTablesMetadata) ProtoReflect() protoreflect.Message
func (*AutoMlTablesMetadata) Reset ¶
func (x *AutoMlTablesMetadata) Reset()
func (*AutoMlTablesMetadata) String ¶
func (x *AutoMlTablesMetadata) String() string
type AutoMlTextClassification ¶
type AutoMlTextClassification struct { // The input parameters of this TrainingJob. Inputs *AutoMlTextClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Text Classification Model.
func (*AutoMlTextClassification) Descriptor
deprecated
func (*AutoMlTextClassification) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextClassification.ProtoReflect.Descriptor instead.
func (*AutoMlTextClassification) GetInputs ¶
func (x *AutoMlTextClassification) GetInputs() *AutoMlTextClassificationInputs
func (*AutoMlTextClassification) ProtoMessage ¶
func (*AutoMlTextClassification) ProtoMessage()
func (*AutoMlTextClassification) ProtoReflect ¶
func (x *AutoMlTextClassification) ProtoReflect() protoreflect.Message
func (*AutoMlTextClassification) Reset ¶
func (x *AutoMlTextClassification) Reset()
func (*AutoMlTextClassification) String ¶
func (x *AutoMlTextClassification) String() string
type AutoMlTextClassificationInputs ¶
type AutoMlTextClassificationInputs struct { MultiLabel bool `protobuf:"varint,1,opt,name=multi_label,json=multiLabel,proto3" json:"multi_label,omitempty"` // contains filtered or unexported fields }
func (*AutoMlTextClassificationInputs) Descriptor
deprecated
func (*AutoMlTextClassificationInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextClassificationInputs.ProtoReflect.Descriptor instead.
func (*AutoMlTextClassificationInputs) GetMultiLabel ¶
func (x *AutoMlTextClassificationInputs) GetMultiLabel() bool
func (*AutoMlTextClassificationInputs) ProtoMessage ¶
func (*AutoMlTextClassificationInputs) ProtoMessage()
func (*AutoMlTextClassificationInputs) ProtoReflect ¶
func (x *AutoMlTextClassificationInputs) ProtoReflect() protoreflect.Message
func (*AutoMlTextClassificationInputs) Reset ¶
func (x *AutoMlTextClassificationInputs) Reset()
func (*AutoMlTextClassificationInputs) String ¶
func (x *AutoMlTextClassificationInputs) String() string
type AutoMlTextExtraction ¶
type AutoMlTextExtraction struct { // The input parameters of this TrainingJob. Inputs *AutoMlTextExtractionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Text Extraction Model.
func (*AutoMlTextExtraction) Descriptor
deprecated
func (*AutoMlTextExtraction) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextExtraction.ProtoReflect.Descriptor instead.
func (*AutoMlTextExtraction) GetInputs ¶
func (x *AutoMlTextExtraction) GetInputs() *AutoMlTextExtractionInputs
func (*AutoMlTextExtraction) ProtoMessage ¶
func (*AutoMlTextExtraction) ProtoMessage()
func (*AutoMlTextExtraction) ProtoReflect ¶
func (x *AutoMlTextExtraction) ProtoReflect() protoreflect.Message
func (*AutoMlTextExtraction) Reset ¶
func (x *AutoMlTextExtraction) Reset()
func (*AutoMlTextExtraction) String ¶
func (x *AutoMlTextExtraction) String() string
type AutoMlTextExtractionInputs ¶
type AutoMlTextExtractionInputs struct {
// contains filtered or unexported fields
}
func (*AutoMlTextExtractionInputs) Descriptor
deprecated
func (*AutoMlTextExtractionInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextExtractionInputs.ProtoReflect.Descriptor instead.
func (*AutoMlTextExtractionInputs) ProtoMessage ¶
func (*AutoMlTextExtractionInputs) ProtoMessage()
func (*AutoMlTextExtractionInputs) ProtoReflect ¶
func (x *AutoMlTextExtractionInputs) ProtoReflect() protoreflect.Message
func (*AutoMlTextExtractionInputs) Reset ¶
func (x *AutoMlTextExtractionInputs) Reset()
func (*AutoMlTextExtractionInputs) String ¶
func (x *AutoMlTextExtractionInputs) String() string
type AutoMlTextSentiment ¶
type AutoMlTextSentiment struct { // The input parameters of this TrainingJob. Inputs *AutoMlTextSentimentInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Text Sentiment Model.
func (*AutoMlTextSentiment) Descriptor
deprecated
func (*AutoMlTextSentiment) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextSentiment.ProtoReflect.Descriptor instead.
func (*AutoMlTextSentiment) GetInputs ¶
func (x *AutoMlTextSentiment) GetInputs() *AutoMlTextSentimentInputs
func (*AutoMlTextSentiment) ProtoMessage ¶
func (*AutoMlTextSentiment) ProtoMessage()
func (*AutoMlTextSentiment) ProtoReflect ¶
func (x *AutoMlTextSentiment) ProtoReflect() protoreflect.Message
func (*AutoMlTextSentiment) Reset ¶
func (x *AutoMlTextSentiment) Reset()
func (*AutoMlTextSentiment) String ¶
func (x *AutoMlTextSentiment) String() string
type AutoMlTextSentimentInputs ¶
type AutoMlTextSentimentInputs struct { // A sentiment is expressed as an integer ordinal, where higher value // means a more positive sentiment. The range of sentiments that will be used // is between 0 and sentimentMax (inclusive on both ends), and all the values // in the range must be represented in the dataset before a model can be // created. // Only the Annotations with this sentimentMax will be used for training. // sentimentMax value must be between 1 and 10 (inclusive). SentimentMax int32 `protobuf:"varint,1,opt,name=sentiment_max,json=sentimentMax,proto3" json:"sentiment_max,omitempty"` // contains filtered or unexported fields }
func (*AutoMlTextSentimentInputs) Descriptor
deprecated
func (*AutoMlTextSentimentInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlTextSentimentInputs.ProtoReflect.Descriptor instead.
func (*AutoMlTextSentimentInputs) GetSentimentMax ¶
func (x *AutoMlTextSentimentInputs) GetSentimentMax() int32
func (*AutoMlTextSentimentInputs) ProtoMessage ¶
func (*AutoMlTextSentimentInputs) ProtoMessage()
func (*AutoMlTextSentimentInputs) ProtoReflect ¶
func (x *AutoMlTextSentimentInputs) ProtoReflect() protoreflect.Message
func (*AutoMlTextSentimentInputs) Reset ¶
func (x *AutoMlTextSentimentInputs) Reset()
func (*AutoMlTextSentimentInputs) String ¶
func (x *AutoMlTextSentimentInputs) String() string
type AutoMlVideoActionRecognition ¶
type AutoMlVideoActionRecognition struct { // The input parameters of this TrainingJob. Inputs *AutoMlVideoActionRecognitionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Video Action Recognition Model.
func (*AutoMlVideoActionRecognition) Descriptor
deprecated
func (*AutoMlVideoActionRecognition) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoActionRecognition.ProtoReflect.Descriptor instead.
func (*AutoMlVideoActionRecognition) GetInputs ¶
func (x *AutoMlVideoActionRecognition) GetInputs() *AutoMlVideoActionRecognitionInputs
func (*AutoMlVideoActionRecognition) ProtoMessage ¶
func (*AutoMlVideoActionRecognition) ProtoMessage()
func (*AutoMlVideoActionRecognition) ProtoReflect ¶
func (x *AutoMlVideoActionRecognition) ProtoReflect() protoreflect.Message
func (*AutoMlVideoActionRecognition) Reset ¶
func (x *AutoMlVideoActionRecognition) Reset()
func (*AutoMlVideoActionRecognition) String ¶
func (x *AutoMlVideoActionRecognition) String() string
type AutoMlVideoActionRecognitionInputs ¶
type AutoMlVideoActionRecognitionInputs struct { ModelType AutoMlVideoActionRecognitionInputs_ModelType `` /* 196-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlVideoActionRecognitionInputs) Descriptor
deprecated
func (*AutoMlVideoActionRecognitionInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoActionRecognitionInputs.ProtoReflect.Descriptor instead.
func (*AutoMlVideoActionRecognitionInputs) GetModelType ¶
func (x *AutoMlVideoActionRecognitionInputs) GetModelType() AutoMlVideoActionRecognitionInputs_ModelType
func (*AutoMlVideoActionRecognitionInputs) ProtoMessage ¶
func (*AutoMlVideoActionRecognitionInputs) ProtoMessage()
func (*AutoMlVideoActionRecognitionInputs) ProtoReflect ¶
func (x *AutoMlVideoActionRecognitionInputs) ProtoReflect() protoreflect.Message
func (*AutoMlVideoActionRecognitionInputs) Reset ¶
func (x *AutoMlVideoActionRecognitionInputs) Reset()
func (*AutoMlVideoActionRecognitionInputs) String ¶
func (x *AutoMlVideoActionRecognitionInputs) String() string
type AutoMlVideoActionRecognitionInputs_ModelType ¶
type AutoMlVideoActionRecognitionInputs_ModelType int32
const ( // Should not be set. AutoMlVideoActionRecognitionInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoActionRecognitionInputs_ModelType = 0 // A model best tailored to be used within Google Cloud, and which c annot // be exported. Default. AutoMlVideoActionRecognitionInputs_CLOUD AutoMlVideoActionRecognitionInputs_ModelType = 1 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) as a TensorFlow or // TensorFlow Lite model and used on a mobile or edge device afterwards. AutoMlVideoActionRecognitionInputs_MOBILE_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 2 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) to a Jetson device // afterwards. AutoMlVideoActionRecognitionInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 3 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) as a TensorFlow or // TensorFlow Lite model and used on a Coral device afterwards. AutoMlVideoActionRecognitionInputs_MOBILE_CORAL_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 4 )
func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor ¶
func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoActionRecognitionInputs_ModelType.Descriptor instead.
func (AutoMlVideoActionRecognitionInputs_ModelType) Number ¶
func (x AutoMlVideoActionRecognitionInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlVideoActionRecognitionInputs_ModelType) String ¶
func (x AutoMlVideoActionRecognitionInputs_ModelType) String() string
func (AutoMlVideoActionRecognitionInputs_ModelType) Type ¶
func (AutoMlVideoActionRecognitionInputs_ModelType) Type() protoreflect.EnumType
type AutoMlVideoClassification ¶
type AutoMlVideoClassification struct { // The input parameters of this TrainingJob. Inputs *AutoMlVideoClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Video Classification Model.
func (*AutoMlVideoClassification) Descriptor
deprecated
func (*AutoMlVideoClassification) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoClassification.ProtoReflect.Descriptor instead.
func (*AutoMlVideoClassification) GetInputs ¶
func (x *AutoMlVideoClassification) GetInputs() *AutoMlVideoClassificationInputs
func (*AutoMlVideoClassification) ProtoMessage ¶
func (*AutoMlVideoClassification) ProtoMessage()
func (*AutoMlVideoClassification) ProtoReflect ¶
func (x *AutoMlVideoClassification) ProtoReflect() protoreflect.Message
func (*AutoMlVideoClassification) Reset ¶
func (x *AutoMlVideoClassification) Reset()
func (*AutoMlVideoClassification) String ¶
func (x *AutoMlVideoClassification) String() string
type AutoMlVideoClassificationInputs ¶
type AutoMlVideoClassificationInputs struct { ModelType AutoMlVideoClassificationInputs_ModelType `` /* 193-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlVideoClassificationInputs) Descriptor
deprecated
func (*AutoMlVideoClassificationInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoClassificationInputs.ProtoReflect.Descriptor instead.
func (*AutoMlVideoClassificationInputs) GetModelType ¶
func (x *AutoMlVideoClassificationInputs) GetModelType() AutoMlVideoClassificationInputs_ModelType
func (*AutoMlVideoClassificationInputs) ProtoMessage ¶
func (*AutoMlVideoClassificationInputs) ProtoMessage()
func (*AutoMlVideoClassificationInputs) ProtoReflect ¶
func (x *AutoMlVideoClassificationInputs) ProtoReflect() protoreflect.Message
func (*AutoMlVideoClassificationInputs) Reset ¶
func (x *AutoMlVideoClassificationInputs) Reset()
func (*AutoMlVideoClassificationInputs) String ¶
func (x *AutoMlVideoClassificationInputs) String() string
type AutoMlVideoClassificationInputs_ModelType ¶
type AutoMlVideoClassificationInputs_ModelType int32
const ( // Should not be set. AutoMlVideoClassificationInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoClassificationInputs_ModelType = 0 // A model best tailored to be used within Google Cloud, and which cannot // be exported. Default. AutoMlVideoClassificationInputs_CLOUD AutoMlVideoClassificationInputs_ModelType = 1 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) as a TensorFlow or // TensorFlow Lite model and used on a mobile or edge device afterwards. AutoMlVideoClassificationInputs_MOBILE_VERSATILE_1 AutoMlVideoClassificationInputs_ModelType = 2 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) to a Jetson device // afterwards. AutoMlVideoClassificationInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoClassificationInputs_ModelType = 3 )
func (AutoMlVideoClassificationInputs_ModelType) Descriptor ¶
func (AutoMlVideoClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoClassificationInputs_ModelType.Descriptor instead.
func (AutoMlVideoClassificationInputs_ModelType) Number ¶
func (x AutoMlVideoClassificationInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlVideoClassificationInputs_ModelType) String ¶
func (x AutoMlVideoClassificationInputs_ModelType) String() string
func (AutoMlVideoClassificationInputs_ModelType) Type ¶
func (AutoMlVideoClassificationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlVideoObjectTracking ¶
type AutoMlVideoObjectTracking struct { // The input parameters of this TrainingJob. Inputs *AutoMlVideoObjectTrackingInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"` // contains filtered or unexported fields }
A TrainingJob that trains and uploads an AutoML Video ObjectTracking Model.
func (*AutoMlVideoObjectTracking) Descriptor
deprecated
func (*AutoMlVideoObjectTracking) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoObjectTracking.ProtoReflect.Descriptor instead.
func (*AutoMlVideoObjectTracking) GetInputs ¶
func (x *AutoMlVideoObjectTracking) GetInputs() *AutoMlVideoObjectTrackingInputs
func (*AutoMlVideoObjectTracking) ProtoMessage ¶
func (*AutoMlVideoObjectTracking) ProtoMessage()
func (*AutoMlVideoObjectTracking) ProtoReflect ¶
func (x *AutoMlVideoObjectTracking) ProtoReflect() protoreflect.Message
func (*AutoMlVideoObjectTracking) Reset ¶
func (x *AutoMlVideoObjectTracking) Reset()
func (*AutoMlVideoObjectTracking) String ¶
func (x *AutoMlVideoObjectTracking) String() string
type AutoMlVideoObjectTrackingInputs ¶
type AutoMlVideoObjectTrackingInputs struct { ModelType AutoMlVideoObjectTrackingInputs_ModelType `` /* 193-byte string literal not displayed */ // contains filtered or unexported fields }
func (*AutoMlVideoObjectTrackingInputs) Descriptor
deprecated
func (*AutoMlVideoObjectTrackingInputs) Descriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoObjectTrackingInputs.ProtoReflect.Descriptor instead.
func (*AutoMlVideoObjectTrackingInputs) GetModelType ¶
func (x *AutoMlVideoObjectTrackingInputs) GetModelType() AutoMlVideoObjectTrackingInputs_ModelType
func (*AutoMlVideoObjectTrackingInputs) ProtoMessage ¶
func (*AutoMlVideoObjectTrackingInputs) ProtoMessage()
func (*AutoMlVideoObjectTrackingInputs) ProtoReflect ¶
func (x *AutoMlVideoObjectTrackingInputs) ProtoReflect() protoreflect.Message
func (*AutoMlVideoObjectTrackingInputs) Reset ¶
func (x *AutoMlVideoObjectTrackingInputs) Reset()
func (*AutoMlVideoObjectTrackingInputs) String ¶
func (x *AutoMlVideoObjectTrackingInputs) String() string
type AutoMlVideoObjectTrackingInputs_ModelType ¶
type AutoMlVideoObjectTrackingInputs_ModelType int32
const ( // Should not be set. AutoMlVideoObjectTrackingInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoObjectTrackingInputs_ModelType = 0 // A model best tailored to be used within Google Cloud, and which c annot // be exported. Default. AutoMlVideoObjectTrackingInputs_CLOUD AutoMlVideoObjectTrackingInputs_ModelType = 1 // A model that, in addition to being available within Google Cloud, can // also be exported (see ModelService.ExportModel) as a TensorFlow or // TensorFlow Lite model and used on a mobile or edge device afterwards. AutoMlVideoObjectTrackingInputs_MOBILE_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 2 // A versatile model that is meant to be exported (see // ModelService.ExportModel) and used on a Google Coral device. AutoMlVideoObjectTrackingInputs_MOBILE_CORAL_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 3 // A model that trades off quality for low latency, to be exported (see // ModelService.ExportModel) and used on a Google Coral device. AutoMlVideoObjectTrackingInputs_MOBILE_CORAL_LOW_LATENCY_1 AutoMlVideoObjectTrackingInputs_ModelType = 4 // A versatile model that is meant to be exported (see // ModelService.ExportModel) and used on an NVIDIA Jetson device. AutoMlVideoObjectTrackingInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 5 // A model that trades off quality for low latency, to be exported (see // ModelService.ExportModel) and used on an NVIDIA Jetson device. AutoMlVideoObjectTrackingInputs_MOBILE_JETSON_LOW_LATENCY_1 AutoMlVideoObjectTrackingInputs_ModelType = 6 )
func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor ¶
func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor
deprecated
func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor() ([]byte, []int)
Deprecated: Use AutoMlVideoObjectTrackingInputs_ModelType.Descriptor instead.
func (AutoMlVideoObjectTrackingInputs_ModelType) Number ¶
func (x AutoMlVideoObjectTrackingInputs_ModelType) Number() protoreflect.EnumNumber
func (AutoMlVideoObjectTrackingInputs_ModelType) String ¶
func (x AutoMlVideoObjectTrackingInputs_ModelType) String() string
func (AutoMlVideoObjectTrackingInputs_ModelType) Type ¶
func (AutoMlVideoObjectTrackingInputs_ModelType) Type() protoreflect.EnumType
type ExportEvaluatedDataItemsConfig ¶
type ExportEvaluatedDataItemsConfig struct { // URI of desired destination BigQuery table. Expected format: // bq://<project_id>:<dataset_id>:<table> // // If not specified, then results are exported to the following auto-created // BigQuery table: // <project_id>:export_evaluated_examples_<model_name>_<yyyy_MM_dd'T'HH_mm_ss_SSS'Z'>.evaluated_examples DestinationBigqueryUri string `` /* 129-byte string literal not displayed */ // If true and an export destination is specified, then the contents of the // destination are overwritten. Otherwise, if the export destination already // exists, then the export operation fails. OverrideExistingTable bool `` /* 127-byte string literal not displayed */ // contains filtered or unexported fields }
Configuration for exporting test set predictions to a BigQuery table.
func (*ExportEvaluatedDataItemsConfig) Descriptor
deprecated
func (*ExportEvaluatedDataItemsConfig) Descriptor() ([]byte, []int)
Deprecated: Use ExportEvaluatedDataItemsConfig.ProtoReflect.Descriptor instead.
func (*ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri ¶
func (x *ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri() string
func (*ExportEvaluatedDataItemsConfig) GetOverrideExistingTable ¶
func (x *ExportEvaluatedDataItemsConfig) GetOverrideExistingTable() bool
func (*ExportEvaluatedDataItemsConfig) ProtoMessage ¶
func (*ExportEvaluatedDataItemsConfig) ProtoMessage()
func (*ExportEvaluatedDataItemsConfig) ProtoReflect ¶
func (x *ExportEvaluatedDataItemsConfig) ProtoReflect() protoreflect.Message
func (*ExportEvaluatedDataItemsConfig) Reset ¶
func (x *ExportEvaluatedDataItemsConfig) Reset()
func (*ExportEvaluatedDataItemsConfig) String ¶
func (x *ExportEvaluatedDataItemsConfig) String() string
Source Files ¶
- automl_image_classification.pb.go
- automl_image_object_detection.pb.go
- automl_image_segmentation.pb.go
- automl_tables.pb.go
- automl_text_classification.pb.go
- automl_text_extraction.pb.go
- automl_text_sentiment.pb.go
- automl_time_series_forecasting.pb.go
- automl_video_action_recognition.pb.go
- automl_video_classification.pb.go
- automl_video_object_tracking.pb.go
- export_evaluated_data_items_config.pb.go