Documentation ¶
Overview ¶
Package testsgraphs provides a number of graphs used for testing routines in the path and path/dynamic packages.
Index ¶
- Constants
- Variables
- type Grid
- func (g *Grid) Dims() (r, c int)
- func (g *Grid) Edge(uid, vid int64) graph.Edge
- func (g *Grid) EdgeBetween(uid, vid int64) graph.Edge
- func (g *Grid) From(uid int64) graph.Nodes
- func (g *Grid) HasEdgeBetween(uid, vid int64) bool
- func (g *Grid) HasOpen(id int64) bool
- func (g *Grid) Node(id int64) graph.Node
- func (g *Grid) NodeAt(r, c int) graph.Node
- func (g *Grid) Nodes() graph.Nodes
- func (g *Grid) Render(path []graph.Node) ([]byte, error)
- func (g *Grid) RowCol(id int64) (r, c int)
- func (g *Grid) Set(r, c int, open bool)
- func (g *Grid) String() string
- func (g *Grid) Weight(xid, yid int64) (w float64, ok bool)
- func (g *Grid) WeightedEdge(uid, vid int64) graph.WeightedEdge
- func (g *Grid) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge
- func (g *Grid) XY(id int64) (x, y float64)
- type LimitedVisionGrid
- func (l *LimitedVisionGrid) Edge(uid, vid int64) graph.Edge
- func (l *LimitedVisionGrid) EdgeBetween(uid, vid int64) graph.Edge
- func (l *LimitedVisionGrid) From(uid int64) graph.Nodes
- func (l *LimitedVisionGrid) HasEdgeBetween(uid, vid int64) bool
- func (l *LimitedVisionGrid) MoveTo(n graph.Node) (new, old []graph.Edge)
- func (l *LimitedVisionGrid) Node(id int64) graph.Node
- func (l *LimitedVisionGrid) NodeAt(r, c int) graph.Node
- func (l *LimitedVisionGrid) Nodes() graph.Nodes
- func (l *LimitedVisionGrid) Render(path []graph.Node) ([]byte, error)
- func (l *LimitedVisionGrid) RowCol(id int64) (r, c int)
- func (l *LimitedVisionGrid) String() string
- func (l *LimitedVisionGrid) Weight(xid, yid int64) (w float64, ok bool)
- func (l *LimitedVisionGrid) WeightedEdge(uid, vid int64) graph.WeightedEdge
- func (l *LimitedVisionGrid) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge
- func (l *LimitedVisionGrid) XY(id int64) (x, y float64)
Constants ¶
const ( Closed = '*' // Closed is the closed grid node representation. Open = '.' // Open is the open grid node representation. Unknown = '?' // Unknown is the unknown grid node representation. )
Variables ¶
var ShortestPathTests = []struct { Name string Graph func() graph.WeightedEdgeAdder Edges []simple.WeightedEdge HasNegativeWeight bool HasNegativeCycle bool HasNegativeCycleInPath bool Query simple.Edge Weight float64 WantPaths [][]int64 HasUniquePath bool NoPathFor simple.Edge }{ { Name: "empty directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, Weight: math.Inf(1), NoPathFor: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, }, { Name: "empty undirected", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, Weight: math.Inf(1), NoPathFor: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, }, { Name: "one edge directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, Weight: 1, WantPaths: [][]int64{ {0, 1}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "one edge self directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(0)}, Weight: 0, WantPaths: [][]int64{ {0}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "one edge undirected", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, Weight: 1, WantPaths: [][]int64{ {0, 1}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "two paths directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(2)}, Weight: 2, WantPaths: [][]int64{ {0, 1, 2}, {0, 2}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(1)}, }, { Name: "two paths undirected", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(2)}, Weight: 2, WantPaths: [][]int64{ {0, 1, 2}, {0, 2}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(4)}, }, { Name: "confounding paths directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(5), W: 1}, {F: simple.Node(0), T: simple.Node(5), W: 4}, {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(3), W: 4}, {F: simple.Node(0), T: simple.Node(4), W: 0.25}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(5)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 5}, {0, 2, 3, 5}, {0, 5}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "confounding paths undirected", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(5), W: 1}, {F: simple.Node(0), T: simple.Node(5), W: 4}, {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(3), W: 4}, {F: simple.Node(0), T: simple.Node(4), W: 0.25}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(5)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 5}, {0, 2, 3, 5}, {0, 5}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(5), T: simple.Node(6)}, }, { Name: "confounding paths directed 2-step", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(5), W: 1}, {F: simple.Node(0), T: simple.Node(6), W: 2}, {F: simple.Node(6), T: simple.Node(5), W: 2}, {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(3), W: 4}, {F: simple.Node(0), T: simple.Node(4), W: 0.25}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(5)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 5}, {0, 2, 3, 5}, {0, 6, 5}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "confounding paths undirected 2-step", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(5), W: 1}, {F: simple.Node(0), T: simple.Node(6), W: 2}, {F: simple.Node(6), T: simple.Node(5), W: 2}, {F: simple.Node(0), T: simple.Node(2), W: 2}, {F: simple.Node(0), T: simple.Node(3), W: 4}, {F: simple.Node(0), T: simple.Node(4), W: 0.25}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(5)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 5}, {0, 2, 3, 5}, {0, 6, 5}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(5), T: simple.Node(7)}, }, { Name: "zero-weight cycle directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(1), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(1), W: 0}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight cycle^2 directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(1), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(1), W: 0}, {F: simple.Node(5), T: simple.Node(6), W: 0}, {F: simple.Node(6), T: simple.Node(5), W: 0}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight cycle^2 confounding directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(1), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(1), W: 0}, {F: simple.Node(5), T: simple.Node(6), W: 0}, {F: simple.Node(6), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(4), W: 3}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, {0, 1, 5, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight cycle^3 directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(1), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(1), W: 0}, {F: simple.Node(5), T: simple.Node(6), W: 0}, {F: simple.Node(6), T: simple.Node(5), W: 0}, {F: simple.Node(6), T: simple.Node(7), W: 0}, {F: simple.Node(7), T: simple.Node(6), W: 0}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight 3·cycle^2 confounding directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(1), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(1), W: 0}, {F: simple.Node(5), T: simple.Node(6), W: 0}, {F: simple.Node(6), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(7), W: 0}, {F: simple.Node(7), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(4), W: 3}, {F: simple.Node(6), T: simple.Node(4), W: 3}, {F: simple.Node(7), T: simple.Node(4), W: 3}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, {0, 1, 5, 4}, {0, 1, 5, 6, 4}, {0, 1, 5, 7, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight reversed 3·cycle^2 confounding directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, {F: simple.Node(3), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(3), W: 0}, {F: simple.Node(5), T: simple.Node(6), W: 0}, {F: simple.Node(6), T: simple.Node(5), W: 0}, {F: simple.Node(5), T: simple.Node(7), W: 0}, {F: simple.Node(7), T: simple.Node(5), W: 0}, {F: simple.Node(0), T: simple.Node(5), W: 3}, {F: simple.Node(0), T: simple.Node(6), W: 3}, {F: simple.Node(0), T: simple.Node(7), W: 3}, }, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, {0, 5, 3, 4}, {0, 6, 5, 3, 4}, {0, 7, 5, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight |V|·cycle^(n/|V|) directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: func() []simple.WeightedEdge { e := []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, } next := len(e) + 1 // Add n zero-weight cycles. const n = 100 for i := 0; i < n; i++ { e = append(e, simple.WeightedEdge{F: simple.Node(next + i), T: simple.Node(i), W: 0}, simple.WeightedEdge{F: simple.Node(i), T: simple.Node(next + i), W: 0}, ) } return e }(), Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight n·cycle directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: func() []simple.WeightedEdge { e := []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, } next := len(e) + 1 // Add n zero-weight cycles. const n = 100 for i := 0; i < n; i++ { e = append(e, simple.WeightedEdge{F: simple.Node(next + i), T: simple.Node(1), W: 0}, simple.WeightedEdge{F: simple.Node(1), T: simple.Node(next + i), W: 0}, ) } return e }(), Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "zero-weight bi-directional tree with single exit directed", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: func() []simple.WeightedEdge { e := []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: 1}, {F: simple.Node(2), T: simple.Node(3), W: 1}, {F: simple.Node(3), T: simple.Node(4), W: 1}, } // Make a bi-directional tree rooted at node 2 with // a single exit to node 4 and co-equal cost from // 2 to 4. const ( depth = 4 branching = 4 ) next := len(e) + 1 src := 2 var i, last int for l := 0; l < depth; l++ { for i = 0; i < branching; i++ { last = next + i e = append(e, simple.WeightedEdge{F: simple.Node(src), T: simple.Node(last), W: 0}) e = append(e, simple.WeightedEdge{F: simple.Node(last), T: simple.Node(src), W: 0}) } src = next + 1 next += branching } e = append(e, simple.WeightedEdge{F: simple.Node(last), T: simple.Node(4), W: 2}) return e }(), Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, Weight: 4, WantPaths: [][]int64{ {0, 1, 2, 3, 4}, {0, 1, 2, 6, 10, 14, 20, 4}, }, HasUniquePath: false, NoPathFor: simple.Edge{F: simple.Node(4), T: simple.Node(5)}, }, { Name: "one edge directed negative", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: -1}, }, HasNegativeWeight: true, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, Weight: -1, WantPaths: [][]int64{ {0, 1}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "one edge undirected negative", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedUndirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: -1}, }, HasNegativeWeight: true, HasNegativeCycle: true, Query: simple.Edge{F: simple.Node(0), T: simple.Node(1)}, HasNegativeCycleInPath: true, Weight: math.Inf(-1), WantPaths: [][]int64{ {0, 1}, }, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "two path directed negative cycle", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: -1}, {F: simple.Node(2), T: simple.Node(1), W: -1}, {F: simple.Node(1), T: simple.Node(3), W: 1}, {F: simple.Node(0), T: simple.Node(4), W: 1}, }, HasNegativeWeight: true, HasNegativeCycle: true, Query: simple.Edge{F: simple.Node(0), T: simple.Node(3)}, HasNegativeCycleInPath: true, Weight: math.Inf(-1), WantPaths: [][]int64{ {1, 2, 1, 3}, }, NoPathFor: simple.Edge{F: simple.Node(5), T: simple.Node(6)}, }, { Name: "two path directed off-path negative cycle", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: -1}, {F: simple.Node(2), T: simple.Node(1), W: -1}, {F: simple.Node(1), T: simple.Node(3), W: 1}, {F: simple.Node(0), T: simple.Node(4), W: 10}, }, HasNegativeWeight: true, HasNegativeCycle: true, Query: simple.Edge{F: simple.Node(0), T: simple.Node(4)}, HasNegativeCycleInPath: false, Weight: 10, WantPaths: [][]int64{ {0, 4}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(5), T: simple.Node(6)}, }, { Name: "two path directed diamond negative cycle", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node(0), T: simple.Node(1), W: 1}, {F: simple.Node(1), T: simple.Node(2), W: -1}, {F: simple.Node(2), T: simple.Node(1), W: -1}, {F: simple.Node(1), T: simple.Node(3), W: 1}, {F: simple.Node(0), T: simple.Node(3), W: 10}, }, HasNegativeWeight: true, HasNegativeCycle: true, Query: simple.Edge{F: simple.Node(0), T: simple.Node(3)}, HasNegativeCycleInPath: true, Weight: math.Inf(-1), WantPaths: [][]int64{ {1, 2, 1, 3}, }, NoPathFor: simple.Edge{F: simple.Node(5), T: simple.Node(6)}, }, { Name: "wp graph negative", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node('w'), T: simple.Node('z'), W: 2}, {F: simple.Node('x'), T: simple.Node('w'), W: 6}, {F: simple.Node('x'), T: simple.Node('y'), W: 3}, {F: simple.Node('y'), T: simple.Node('w'), W: 4}, {F: simple.Node('y'), T: simple.Node('z'), W: 5}, {F: simple.Node('z'), T: simple.Node('x'), W: -7}, {F: simple.Node('z'), T: simple.Node('y'), W: -3}, }, HasNegativeWeight: true, Query: simple.Edge{F: simple.Node('z'), T: simple.Node('y')}, Weight: -4, WantPaths: [][]int64{ {'z', 'x', 'y'}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, { Name: "roughgarden negative", Graph: func() graph.WeightedEdgeAdder { return simple.NewWeightedDirectedGraph(0, math.Inf(1)) }, Edges: []simple.WeightedEdge{ {F: simple.Node('a'), T: simple.Node('b'), W: -2}, {F: simple.Node('b'), T: simple.Node('c'), W: -1}, {F: simple.Node('c'), T: simple.Node('a'), W: 4}, {F: simple.Node('c'), T: simple.Node('x'), W: 2}, {F: simple.Node('c'), T: simple.Node('y'), W: -3}, {F: simple.Node('z'), T: simple.Node('x'), W: 1}, {F: simple.Node('z'), T: simple.Node('y'), W: -4}, }, HasNegativeWeight: true, Query: simple.Edge{F: simple.Node('a'), T: simple.Node('y')}, Weight: -6, WantPaths: [][]int64{ {'a', 'b', 'c', 'y'}, }, HasUniquePath: true, NoPathFor: simple.Edge{F: simple.Node(2), T: simple.Node(3)}, }, }
ShortestPathTests are graphs used to test the static shortest path routines in path: BellmanFord, DijkstraAllPaths, DijkstraFrom, FloydWarshall and Johnson, and the static degenerate case for the dynamic shortest path routine in path/dynamic: DStarLite.
Functions ¶
This section is empty.
Types ¶
type Grid ¶
type Grid struct { // AllowDiagonal specifies whether // diagonally adjacent nodes can // be connected by an edge. AllowDiagonal bool // UnitEdgeWeight specifies whether // finite edge weights are returned as // the unit length. Otherwise edge // weights are the Euclidean distance // between connected nodes. UnitEdgeWeight bool // AllVisible specifies whether // non-open nodes are visible // in calls to Nodes and HasNode. AllVisible bool // contains filtered or unexported fields }
Grid is a 2D grid planar undirected graph.
func NewGridFrom ¶
NewGridFrom returns a grid specified by the rows strings. All rows must be the same length and must only contain the Open or Closed characters, NewGridFrom will panic otherwise.
func (*Grid) EdgeBetween ¶
EdgeBetween returns the edge between u and v.
func (*Grid) From ¶
From returns all the nodes reachable from u. Reachabilty requires that both ends of an edge must be open.
func (*Grid) HasEdgeBetween ¶
HasEdgeBetween returns whether there is an edge between u and v.
func (*Grid) Node ¶
Node returns the node with the given ID if it exists in the graph, and nil otherwise.
func (*Grid) Nodes ¶
Nodes returns all the open nodes in the grid if AllVisible is false, otherwise all nodes are returned.
func (*Grid) Render ¶
Render returns a text representation of the graph with the given path included. If the path is not a path in the grid Render returns a non-nil error and the path up to that point.
func (*Grid) RowCol ¶
RowCol returns the row and column of the id. RowCol will panic if the node id is outside the range of the grid.
func (*Grid) WeightedEdge ¶
func (g *Grid) WeightedEdge(uid, vid int64) graph.WeightedEdge
WeightedEdge returns the weighted edge between u and v.
func (*Grid) WeightedEdgeBetween ¶
func (g *Grid) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge
WeightedEdgeBetween returns the weighted edge between u and v.
type LimitedVisionGrid ¶
type LimitedVisionGrid struct { Grid *Grid // Location is the current // location on the grid. Location graph.Node // VisionRadius specifies how far // away edges can be detected. VisionRadius float64 // Known holds a store of known // nodes, if not nil. Known map[int64]bool }
LimitedVisionGrid is a 2D grid planar undirected graph where the capacity to determine the presence of edges is dependent on the current and past positions on the grid. In the absence of information, the grid is optimistic.
func (*LimitedVisionGrid) Edge ¶
func (l *LimitedVisionGrid) Edge(uid, vid int64) graph.Edge
Edge optimistically returns the edge from u to v.
func (*LimitedVisionGrid) EdgeBetween ¶
func (l *LimitedVisionGrid) EdgeBetween(uid, vid int64) graph.Edge
EdgeBetween optimistically returns the edge between u and v.
func (*LimitedVisionGrid) From ¶
func (l *LimitedVisionGrid) From(uid int64) graph.Nodes
From returns nodes that are optimistically reachable from u.
func (*LimitedVisionGrid) HasEdgeBetween ¶
func (l *LimitedVisionGrid) HasEdgeBetween(uid, vid int64) bool
HasEdgeBetween optimistically returns whether an edge is exists between u and v.
func (*LimitedVisionGrid) MoveTo ¶
func (l *LimitedVisionGrid) MoveTo(n graph.Node) (new, old []graph.Edge)
MoveTo moves to the node n on the grid and returns a slice of newly seen and already known edges. MoveTo panics if n is nil.
func (*LimitedVisionGrid) Node ¶
func (l *LimitedVisionGrid) Node(id int64) graph.Node
Node returns the node with the given ID if it exists in the graph, and nil otherwise.
func (*LimitedVisionGrid) NodeAt ¶
func (l *LimitedVisionGrid) NodeAt(r, c int) graph.Node
NodeAt returns the node at (r, c). The returned node may be open or closed.
func (*LimitedVisionGrid) Nodes ¶
func (l *LimitedVisionGrid) Nodes() graph.Nodes
Nodes returns all the nodes in the grid.
func (*LimitedVisionGrid) Render ¶
func (l *LimitedVisionGrid) Render(path []graph.Node) ([]byte, error)
Render returns a text representation of the graph with the given path included. If the path is not a path in the grid Render returns a non-nil error and the path up to that point.
func (*LimitedVisionGrid) RowCol ¶
func (l *LimitedVisionGrid) RowCol(id int64) (r, c int)
RowCol returns the row and column of the id. RowCol will panic if the node id is outside the range of the grid.
func (*LimitedVisionGrid) String ¶
func (l *LimitedVisionGrid) String() string
String returns a string representation of the grid.
func (*LimitedVisionGrid) Weight ¶
func (l *LimitedVisionGrid) Weight(xid, yid int64) (w float64, ok bool)
Weight returns the weight of the given edge.
func (*LimitedVisionGrid) WeightedEdge ¶
func (l *LimitedVisionGrid) WeightedEdge(uid, vid int64) graph.WeightedEdge
WeightedEdge optimistically returns the weighted edge from u to v.
func (*LimitedVisionGrid) WeightedEdgeBetween ¶
func (l *LimitedVisionGrid) WeightedEdgeBetween(uid, vid int64) graph.WeightedEdge
WeightedEdgeBetween optimistically returns the weighted edge between u and v.
func (*LimitedVisionGrid) XY ¶
func (l *LimitedVisionGrid) XY(id int64) (x, y float64)
XY returns the cartesian coordinates of n. If n is not a node in the grid, (NaN, NaN) is returned.