Documentation ¶
Overview ¶
Package c128 provides complex128 vector primitives.
Index ¶
- func Add(dst, s []complex128)
- func AddConst(alpha complex128, x []complex128)
- func AxpyInc(alpha complex128, x, y []complex128, n, incX, incY, ix, iy uintptr)
- func AxpyIncTo(dst []complex128, incDst, idst uintptr, alpha complex128, x, y []complex128, ...)
- func AxpyUnitary(alpha complex128, x, y []complex128)
- func AxpyUnitaryTo(dst []complex128, alpha complex128, x, y []complex128)
- func CumProd(dst, s []complex128) []complex128
- func CumSum(dst, s []complex128) []complex128
- func Div(dst, s []complex128)
- func DivTo(dst, s, t []complex128) []complex128
- func DotUnitary(x, y []complex128) (sum complex128)
- func DotcInc(x, y []complex128, n, incX, incY, ix, iy uintptr) (sum complex128)
- func DotcUnitary(x, y []complex128) (sum complex128)
- func DotuInc(x, y []complex128, n, incX, incY, ix, iy uintptr) (sum complex128)
- func DotuUnitary(x, y []complex128) (sum complex128)
- func DscalInc(alpha float64, x []complex128, n, inc uintptr)
- func DscalUnitary(alpha float64, x []complex128)
- func L2DistanceUnitary(x, y []complex128) (norm float64)
- func L2NormUnitary(x []complex128) (norm float64)
- func ScalInc(alpha complex128, x []complex128, n, inc uintptr)
- func ScalIncTo(dst []complex128, incDst uintptr, alpha complex128, x []complex128, ...)
- func ScalUnitary(alpha complex128, x []complex128)
- func ScalUnitaryTo(dst []complex128, alpha complex128, x []complex128)
- func Sum(x []complex128) complex128
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AddConst ¶ added in v0.8.0
func AddConst(alpha complex128, x []complex128)
AddConst is
for i := range x { x[i] += alpha }
func AxpyInc ¶
func AxpyInc(alpha complex128, x, y []complex128, n, incX, incY, ix, iy uintptr)
AxpyInc is
for i := 0; i < int(n); i++ { y[iy] += alpha * x[ix] ix += incX iy += incY }
func AxpyIncTo ¶
func AxpyIncTo(dst []complex128, incDst, idst uintptr, alpha complex128, x, y []complex128, n, incX, incY, ix, iy uintptr)
AxpyIncTo is
for i := 0; i < int(n); i++ { dst[idst] = alpha*x[ix] + y[iy] ix += incX iy += incY idst += incDst }
func AxpyUnitary ¶
func AxpyUnitary(alpha complex128, x, y []complex128)
AxpyUnitary is
for i, v := range x { y[i] += alpha * v }
func AxpyUnitaryTo ¶
func AxpyUnitaryTo(dst []complex128, alpha complex128, x, y []complex128)
AxpyUnitaryTo is
for i, v := range x { dst[i] = alpha*v + y[i] }
func CumProd ¶ added in v0.8.0
func CumProd(dst, s []complex128) []complex128
CumProd is
if len(s) == 0 { return dst } dst[0] = s[0] for i, v := range s[1:] { dst[i+1] = dst[i] * v } return dst
func CumSum ¶ added in v0.8.0
func CumSum(dst, s []complex128) []complex128
CumSum is
if len(s) == 0 { return dst } dst[0] = s[0] for i, v := range s[1:] { dst[i+1] = dst[i] + v } return dst
func DivTo ¶ added in v0.8.0
func DivTo(dst, s, t []complex128) []complex128
DivTo is
for i, v := range s { dst[i] = v / t[i] } return dst
func DotUnitary ¶ added in v0.8.0
func DotUnitary(x, y []complex128) (sum complex128)
DotUnitary is
for i, v := range x { sum += cmplx.Conj(v) * y[i] } return sum
func DotcInc ¶
func DotcInc(x, y []complex128, n, incX, incY, ix, iy uintptr) (sum complex128)
DotcInc is
for i := 0; i < int(n); i++ { sum += y[iy] * cmplx.Conj(x[ix]) ix += incX iy += incY } return sum
func DotcUnitary ¶
func DotcUnitary(x, y []complex128) (sum complex128)
DotcUnitary is
for i, v := range x { sum += y[i] * cmplx.Conj(v) } return sum
func DotuInc ¶
func DotuInc(x, y []complex128, n, incX, incY, ix, iy uintptr) (sum complex128)
DotuInc is
for i := 0; i < int(n); i++ { sum += y[iy] * x[ix] ix += incX iy += incY } return sum
func DotuUnitary ¶
func DotuUnitary(x, y []complex128) (sum complex128)
DotuUnitary is
for i, v := range x { sum += y[i] * v } return sum
func DscalInc ¶
func DscalInc(alpha float64, x []complex128, n, inc uintptr)
DscalInc is
var ix uintptr for i := 0; i < int(n); i++ { x[ix] = complex(real(x[ix])*alpha, imag(x[ix])*alpha) ix += inc }
func DscalUnitary ¶
func DscalUnitary(alpha float64, x []complex128)
DscalUnitary is
for i, v := range x { x[i] = complex(real(v)*alpha, imag(v)*alpha) }
func L2DistanceUnitary ¶ added in v0.8.0
func L2DistanceUnitary(x, y []complex128) (norm float64)
L2DistanceUnitary returns the L2-norm of x-y.
func L2NormUnitary ¶ added in v0.8.0
func L2NormUnitary(x []complex128) (norm float64)
L2NormUnitary returns the L2-norm of x.
func ScalInc ¶
func ScalInc(alpha complex128, x []complex128, n, inc uintptr)
ScalInc is
var ix uintptr for i := 0; i < int(n); i++ { x[ix] *= alpha ix += incX }
func ScalIncTo ¶
func ScalIncTo(dst []complex128, incDst uintptr, alpha complex128, x []complex128, n, incX uintptr)
ScalIncTo is
var idst, ix uintptr for i := 0; i < int(n); i++ { dst[idst] = alpha * x[ix] ix += incX idst += incDst }
func ScalUnitary ¶
func ScalUnitary(alpha complex128, x []complex128)
ScalUnitary is
for i := range x { x[i] *= alpha }
func ScalUnitaryTo ¶
func ScalUnitaryTo(dst []complex128, alpha complex128, x []complex128)
ScalUnitaryTo is
for i, v := range x { dst[i] = alpha * v }
func Sum ¶ added in v0.8.0
func Sum(x []complex128) complex128
Sum is
var sum complex128 for i := range x { sum += x[i] }
Types ¶
This section is empty.
Click to show internal directories.
Click to hide internal directories.