Documentation ¶
Overview ¶
Package chans provides standard neural conductance channels for computing a point-neuron approximation based on the standard equivalent RC circuit model of a neuron (i.e., basic Ohms law equations). Includes excitatory, leak, inhibition, and dynamic potassium channels.
Index ¶
- func VFmBio(vm float32) float32
- func VToBio(vm float32) float32
- type AKParams
- func (ap *AKParams) AlphaFmVK(vbio, k float32) float32
- func (ap *AKParams) BetaFmVK(vbio, k float32) float32
- func (ap *AKParams) DMHFmV(v, m, h float32) (float32, float32)
- func (ap *AKParams) Defaults()
- func (ap *AKParams) Distal()
- func (ap *AKParams) Gak(m, h float32) float32
- func (ap *AKParams) HFmV(vbio float32) float32
- func (ap *AKParams) HTauFmV(vbio float32) float32
- func (ap *AKParams) KFmV(vbio float32) float32
- func (ap *AKParams) MFmAlpha(alpha float32) float32
- func (ap *AKParams) MTauFmAlphaBeta(alpha, beta float32) float32
- func (ap *AKParams) Proximal()
- func (ap *AKParams) Update()
- type AKsParams
- type Chans
- type GABABParams
- func (gp *GABABParams) DG(g, x float32) float32
- func (gp *GABABParams) DX(x float32) float32
- func (gp *GABABParams) Defaults()
- func (gp *GABABParams) GFmGX(gabaB, gabaBx float32) float32
- func (gp *GABABParams) GFmS(s float32) float32
- func (gp *GABABParams) GFmV(v float32) float32
- func (gp *GABABParams) GgabaB(gabaB, vm float32) float32
- func (gp *GABABParams) Update()
- func (gp *GABABParams) XFmGiX(gabaBx, gi float32) float32
- type KNaMedSlow
- type KNaParams
- type MahpParams
- func (mp *MahpParams) DNFmV(v, n float32) float32
- func (mp *MahpParams) Defaults()
- func (mp *MahpParams) EFun(z float32) float32
- func (mp *MahpParams) GmAHP(n float32) float32
- func (mp *MahpParams) NinfTauFmV(vbio float32, ninf, tau *float32)
- func (mp *MahpParams) NinfTauFmVnorm(v float32, ninf, tau *float32)
- func (mp *MahpParams) Update()
- type NMDAParams
- func (np *NMDAParams) CaFmV(v float32) float32
- func (np *NMDAParams) CaFmVbio(vbio float32) float32
- func (np *NMDAParams) Defaults()
- func (np *NMDAParams) Gnmda(nmda, vm float32) float32
- func (np *NMDAParams) MgGFmV(v float32) float32
- func (np *NMDAParams) MgGFmVbio(vbio float32) float32
- func (np *NMDAParams) NMDASyn(nmda, raw float32) float32
- func (np *NMDAParams) SnmdaFmSpike(spike float32, snmdaO, snmdaI *float32)
- func (np *NMDAParams) Update()
- type SahpParams
- func (mp *SahpParams) CaInt(caInt, ca float32) float32
- func (mp *SahpParams) DNFmV(ca, n float32) float32
- func (mp *SahpParams) Defaults()
- func (mp *SahpParams) EFun(z float32) float32
- func (mp *SahpParams) GsAHP(n float32) float32
- func (mp *SahpParams) NinfTauFmCa(ca float32, ninf, tau *float32)
- func (mp *SahpParams) Update()
- type VGCCParams
- func (np *VGCCParams) CaFmG(v, g, ca float32) float32
- func (np *VGCCParams) DMHFmV(v, m, h float32, dm, dh *float32)
- func (np *VGCCParams) Defaults()
- func (np *VGCCParams) GFmV(v float32) float32
- func (np *VGCCParams) Gvgcc(vm, m, h float32) float32
- func (np *VGCCParams) HFmV(vbio float32) float32
- func (np *VGCCParams) MFmV(vbio float32) float32
- func (np *VGCCParams) Update()
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
Types ¶
type AKParams ¶
type AKParams struct { // strength of AK current Gbar float32 `def:"1,0.1,0.01"` // multiplier for the beta term; 0.01446 for distal, 0.02039 for proximal dendrites Beta float32 `def:"0.01446,02039"` // Dm factor: 0.5 for distal, 0.25 for proximal Dm float32 `def:"0.5,0.25"` // offset for K, 1.8 for distal, 1.5 for proximal Koff float32 `def:"1.8,1.5"` // voltage offset for alpha and beta functions: 1 for distal, 11 for proximal Voff float32 `def:"1,11"` // h multiplier factor, 0.1133 for distal, 0.1112 for proximal Hf float32 `def:"0.1133,0.1112"` // contains filtered or unexported fields }
AKParams control an A-type K channel, which is voltage gated with maximal activation around -37 mV. It has two state variables, M (v-gated opening) and H (v-gated closing), which integrate with fast and slow time constants, respectively. H relatively quickly hits an asymptotic level of inactivation for sustained activity patterns. It is particularly important for counteracting the excitatory effects of voltage gated calcium channels which can otherwise drive runaway excitatory currents. See AKsParams for a much simpler version that works fine when full AP-like spikes are not simulated, as in our standard axon models.
func (*AKParams) AlphaFmVK ¶
AlphaFmVK returns the Alpha function from vbio (not normalized, must not exceed 0)
func (*AKParams) BetaFmVK ¶
BetaFmVK returns the Beta function from vbio (not normalized, must not exceed 0)
func (*AKParams) DMHFmV ¶
DMHFmV returns the change at msec update scale in M, H factors as a function of V normalized (0-1)
func (*AKParams) Defaults ¶
func (ap *AKParams) Defaults()
Defaults sets the parameters for distal dendrites
func (*AKParams) Distal ¶
func (ap *AKParams) Distal()
Distal sets the parameters for distal dendrites
func (*AKParams) HTauFmV ¶
HTauFmV returns the HTau rate constant in msec from vbio (not normalized, must not exceed 0)
func (*AKParams) MTauFmAlphaBeta ¶
MTauFmAlphaBeta returns the MTau rate constant in msec from alpha, beta
type AKsParams ¶
type AKsParams struct { // strength of AK current Gbar float32 `def:"2,0.1,0.01"` // H factor as a constant multiplier on overall M factor result -- rescales M to level consistent with H being present at full strength Hf float32 `def:"0.076"` // multiplier for M -- determines slope of function Mf float32 `def:"0.075"` // voltage offset in biological units for M function Voff float32 `def:"2"` Vmax float32 `def:-37" desc:"voltage level of maximum channel opening -- stays flat above that"` // contains filtered or unexported fields }
AKsParams provides a highly simplified stateless A-type K channel that only has the voltage-gated activation (M) dynamic with a cutoff that ends up capturing a close approximation to the much more complex AK function. This is voltage gated with maximal activation around -37 mV. It is particularly important for counteracting the excitatory effects of voltage gated calcium channels which can otherwise drive runaway excitatory currents.
func (*AKsParams) Defaults ¶
func (ap *AKsParams) Defaults()
Defaults sets the parameters for distal dendrites
func (*AKsParams) Gak ¶
Gak returns the conductance as a function of normalized Vm GBar * MFmVnorm(v)
type Chans ¶
type Chans struct { // excitatory sodium (Na) AMPA channels activated by synaptic glutamate E float32 // constant leak (potassium, K+) channels -- determines resting potential (typically higher than resting potential of K) L float32 // inhibitory chloride (Cl-) channels activated by synaptic GABA I float32 // gated / active potassium channels -- typically hyperpolarizing relative to leak / rest K float32 }
Chans are ion channels used in computing point-neuron activation function
func (*Chans) SetFmMinusOther ¶
SetFmMinusOther sets all the values from given value minus other Chans
func (*Chans) SetFmOtherMinus ¶
SetFmOtherMinus sets all the values from other Chans minus given value
type GABABParams ¶
type GABABParams struct { // overall strength multiplier of GABA-B current Gbar float32 `def:"0,0.2,0.25,0.3,0.4"` // rise time for bi-exponential time dynamics of GABA-B RiseTau float32 `def:"45"` // decay time for bi-exponential time dynamics of GABA-B DecayTau float32 `def:"50"` // baseline level of GABA-B channels open independent of inhibitory input (is added to spiking-produced conductance) Gbase float32 `def:"0.2"` // multiplier for converting Gi to equivalent GABA spikes GiSpike float32 `def:"10"` // time offset when peak conductance occurs, in msec, computed from RiseTau and DecayTau MaxTime float32 `edit:"-"` // time constant factor used in integration: (Decay / Rise) ^ (Rise / (Decay - Rise)) TauFact float32 `view:"-"` // contains filtered or unexported fields }
GABABParams control the GABAB dynamics in PFC Maint neurons, based on Brunel & Wang (2001) parameters.
func (*GABABParams) Defaults ¶
func (gp *GABABParams) Defaults()
func (*GABABParams) GFmGX ¶
func (gp *GABABParams) GFmGX(gabaB, gabaBx float32) float32
GFmGX returns the updated GABA-B / GIRK conductance based on current values and gi inhibitory conductance (proxy for GABA spikes)
func (*GABABParams) GFmS ¶
func (gp *GABABParams) GFmS(s float32) float32
GFmS returns the GABA-B conductance as a function of GABA spiking rate, based on normalized spiking factor (i.e., Gi from FFFB etc)
func (*GABABParams) GFmV ¶
func (gp *GABABParams) GFmV(v float32) float32
GFmV returns the GABA-B conductance as a function of normalized membrane potential
func (*GABABParams) GgabaB ¶
func (gp *GABABParams) GgabaB(gabaB, vm float32) float32
GgabaB returns the overall net GABAB / GIRK conductance including Gbar, Gbase, and voltage-gating
func (*GABABParams) Update ¶
func (gp *GABABParams) Update()
func (*GABABParams) XFmGiX ¶
func (gp *GABABParams) XFmGiX(gabaBx, gi float32) float32
XFmGiX returns the updated GABA-B x value based on current values and gi inhibitory conductance (proxy for GABA spikes)
type KNaMedSlow ¶
type KNaMedSlow struct { // if On, apply K-Na adaptation On slbool.Bool // medium time-scale adaptation Med KNaParams `view:"inline"` // slow time-scale adaptation Slow KNaParams `view:"inline"` // contains filtered or unexported fields }
KNaMedSlow describes sodium-gated potassium channel adaptation mechanism. Evidence supports 2 different time constants: Slick (medium) and Slack (slow)
func (*KNaMedSlow) Defaults ¶
func (ka *KNaMedSlow) Defaults()
func (*KNaMedSlow) GcFmSpike ¶
func (ka *KNaMedSlow) GcFmSpike(gKNaM, gKNaS *float32, spike bool)
GcFmSpike updates med, slow time scales of KNa adaptation from spiking
func (*KNaMedSlow) Update ¶
func (ka *KNaMedSlow) Update()
type KNaParams ¶
type KNaParams struct { // if On, use this component of K-Na adaptation On slbool.Bool // Rise rate of fast time-scale adaptation as function of Na concentration due to spiking -- directly multiplies -- 1/rise = tau for rise rate Rise float32 `viewif:"On"` // Maximum potential conductance of fast K channels -- divide nA biological value by 10 for the normalized units here Max float32 `viewif:"On"` // time constant in cycles for decay of adaptation, which should be milliseconds typically (tau is roughly how long it takes for value to change significantly -- 1.4x the half-life) Tau float32 `viewif:"On"` // 1/Tau rate constant Dt float32 `view:"-"` // contains filtered or unexported fields }
KNaParams implements sodium (Na) gated potassium (K) currents that drive adaptation (accommodation) in neural firing. As neurons spike, driving an influx of Na, this activates the K channels, which, like leak channels, pull the membrane potential back down toward rest (or even below).
type MahpParams ¶
type MahpParams struct { // strength of mAHP current Gbar float32 // voltage offset (threshold) in biological units for infinite time N gating function -- where the gate is at 50% strength Voff float32 `def:"-30"` // slope of the arget (infinite time) gating function Vslope float32 `def:"9"` // maximum slow rate time constant in msec for activation / deactivation. The effective Tau is much slower -- 1/20th in original temp, and 1/60th in standard 37 C temp TauMax float32 `def:"1000"` // temperature adjustment factor: assume temp = 37 C, whereas original units were at 23 C Tadj float32 `view:"-" edit:"-"` // 1/Tau DtMax float32 `view:"-" edit:"-"` // contains filtered or unexported fields }
MahpParams implements an M-type medium afterhyperpolarizing (mAHP) channel, where m also stands for muscarinic due to the ACh inactivation of this channel. It has a slow activation and deactivation time constant, and opens at a lowish membrane potential. There is one gating variable n updated over time with a tau that is also voltage dependent. The infinite-time value of n is voltage dependent according to a logistic function of the membrane potential, centered at Voff with slope Vslope.
func (*MahpParams) DNFmV ¶
func (mp *MahpParams) DNFmV(v, n float32) float32
DNFmV returns the change in gating factor N based on normalized Vm
func (*MahpParams) EFun ¶
func (mp *MahpParams) EFun(z float32) float32
EFun handles singularities in an elegant way -- from Mainen impl
func (*MahpParams) GmAHP ¶
func (mp *MahpParams) GmAHP(n float32) float32
GmAHP returns the conductance as a function of n
func (*MahpParams) NinfTauFmV ¶
func (mp *MahpParams) NinfTauFmV(vbio float32, ninf, tau *float32)
NinfTauFmV returns the target infinite-time N gate value and voltage-dependent time constant tau, from vbio
func (*MahpParams) NinfTauFmVnorm ¶
func (mp *MahpParams) NinfTauFmVnorm(v float32, ninf, tau *float32)
NinfTauFmVnorm returns the target infinite-time N gate value and voltage-dependent time constant tau, from normalized vm
func (*MahpParams) Update ¶
func (mp *MahpParams) Update()
type NMDAParams ¶
type NMDAParams struct { // overall multiplier for strength of NMDA current -- multiplies GnmdaSyn to get net conductance. 0.15 standard for SnmdaDeplete = false, 1.4 when on. Gbar float32 `def:"0,0.15,0.25,0.3,1.4"` // decay time constant for NMDA channel activation -- rise time is 2 msec and not worth extra effort for biexponential. 30 fits the Urakubo et al (2008) model with ITau = 100, but 100 works better in practice is small networks so far. Tau float32 `def:"30,50,100,200,300"` // decay time constant for NMDA channel inhibition, which captures the Urakubo et al (2008) allosteric dynamics (100 fits their model well) -- set to 1 to eliminate that mechanism. ITau float32 `def:"1,100"` // magnesium ion concentration: Brunel & Wang (2001) and Sanders et al (2013) use 1 mM, based on Jahr & Stevens (1990). Urakubo et al (2008) use 1.5 mM. 1.4 with Voff = 5 works best so far in large models, 1.2, Voff = 0 best in smaller nets. MgC float32 `def:"1:1.5"` // offset in membrane potential in biological units for voltage-dependent functions. 5 corresponds to the -65 mV rest, -45 threshold of the Urakubo et al (2008) model. 0 is best in small models Voff float32 `def:"0,5"` // rate = 1 / tau Dt float32 `view:"-" json:"-" xml:"-"` // rate = 1 / tau IDt float32 `view:"-" json:"-" xml:"-"` // MgFact = MgC / 3.57 MgFact float32 `view:"-" json:"-" xml:"-"` }
NMDAParams control the NMDA dynamics, based on Jahr & Stevens (1990) equations which are widely used in models, from Brunel & Wang (2001) to Sanders et al. (2013). The overall conductance is a function of a voltage-dependent postsynaptic factor based on Mg ion blockage, and presynaptic Glu-based opening, which in a simple model just increments
func (*NMDAParams) CaFmV ¶
func (np *NMDAParams) CaFmV(v float32) float32
CaFmV returns the calcium current factor as a function of normalized membrane potential -- this factor is needed for computing the calcium current * MgGFmV
func (*NMDAParams) CaFmVbio ¶
func (np *NMDAParams) CaFmVbio(vbio float32) float32
CaFmVbio returns the calcium current factor as a function of biological membrane potential -- this factor is needed for computing the calcium current * MgGFmV. This is the same function used in VGCC for their conductance factor.
func (*NMDAParams) Defaults ¶
func (np *NMDAParams) Defaults()
func (*NMDAParams) Gnmda ¶
func (np *NMDAParams) Gnmda(nmda, vm float32) float32
Gnmda returns the NMDA net conductance from nmda Glu binding and Vm including the GBar factor
func (*NMDAParams) MgGFmV ¶
func (np *NMDAParams) MgGFmV(v float32) float32
MgGFmV returns the NMDA conductance as a function of normalized membrane potential based on Mg ion blocking
func (*NMDAParams) MgGFmVbio ¶
func (np *NMDAParams) MgGFmVbio(vbio float32) float32
MgGFmVbio returns the NMDA conductance as a function of biological membrane potential based on Mg ion blocking
func (*NMDAParams) NMDASyn ¶
func (np *NMDAParams) NMDASyn(nmda, raw float32) float32
NMDASyn returns the updated synaptic NMDA Glu binding based on new raw spike-driven Glu binding.
func (*NMDAParams) SnmdaFmSpike ¶
func (np *NMDAParams) SnmdaFmSpike(spike float32, snmdaO, snmdaI *float32)
SnmdaFmSpike updates sender-based NMDA channel opening based on neural spiking using the inhibition and decay factors. These dynamics closely match the Urakubo et al (2008) allosteric NMDA receptor behavior, with ITau = 100, Tau = 30
func (*NMDAParams) Update ¶
func (np *NMDAParams) Update()
type SahpParams ¶
type SahpParams struct { // strength of sAHP current Gbar float32 `def:"0.05,0.1"` // time constant for integrating Ca across theta cycles CaTau float32 `def:"5,10"` // integrated Ca offset (threshold) for infinite time N gating function -- where the gate is at 50% strength Off float32 `def:"0.8"` // slope of the infinite time logistic gating function Slope float32 `def:"0.02"` // maximum slow rate time constant in msec for activation / deactivation. The effective Tau is much slower -- 1/20th in original temp, and 1/60th in standard 37 C temp TauMax float32 `def:"1"` // 1/Tau CaDt float32 `view:"-" edit:"-"` // 1/Tau DtMax float32 `view:"-" edit:"-"` // contains filtered or unexported fields }
SahpParams implements a slow afterhyperpolarizing (sAHP) channel, It has a slowly accumulating calcium value, aggregated at the theta cycle level, that then drives the logistic gating function, so that it only activates after a significant accumulation. After which point it decays. For the theta-cycle updating, the normal m-type tau is all within the scope of a single theta cycle, so we just omit the time integration of the n gating value, but tau is computed in any case.
func (*SahpParams) CaInt ¶
func (mp *SahpParams) CaInt(caInt, ca float32) float32
CaInt returns the updated time-integrated Ca value from current value and current Ca
func (*SahpParams) DNFmV ¶
func (mp *SahpParams) DNFmV(ca, n float32) float32
DNFmCa returns the change in gating factor N based on integrated Ca Omit this and just use ninf directly for theta-cycle updating.
func (*SahpParams) EFun ¶
func (mp *SahpParams) EFun(z float32) float32
EFun handles singularities in an elegant way -- from Mainen impl
func (*SahpParams) GsAHP ¶
func (mp *SahpParams) GsAHP(n float32) float32
GsAHP returns the conductance as a function of n
func (*SahpParams) NinfTauFmCa ¶
func (mp *SahpParams) NinfTauFmCa(ca float32, ninf, tau *float32)
NinfTauFmCa returns the target infinite-time N gate value and time constant tau, from integrated Ca value
func (*SahpParams) Update ¶
func (mp *SahpParams) Update()
type VGCCParams ¶
type VGCCParams struct { // strength of VGCC current -- 0.12 value is from Urakubo et al (2008) model -- best fits actual model behavior using axon equations (1.5 nominal in that model), 0.02 works better in practice for not getting stuck in high plateau firing Gbar float32 `def:"0.02,0.12"` // calcium from conductance factor -- important for learning contribution of VGCC Ca float32 `def:"25"` // contains filtered or unexported fields }
VGCCParams control the standard L-type Ca channel
func (*VGCCParams) CaFmG ¶
func (np *VGCCParams) CaFmG(v, g, ca float32) float32
CaFmG returns the Ca from Gvgcc conductance, current Ca level, and normalized membrane potential.
func (*VGCCParams) DMHFmV ¶
func (np *VGCCParams) DMHFmV(v, m, h float32, dm, dh *float32)
DMHFmV returns the change at msec update scale in M, H factors as a function of V normalized (0-1)
func (*VGCCParams) Defaults ¶
func (np *VGCCParams) Defaults()
func (*VGCCParams) GFmV ¶
func (np *VGCCParams) GFmV(v float32) float32
GFmV returns the VGCC conductance as a function of normalized membrane potential
func (*VGCCParams) Gvgcc ¶
func (np *VGCCParams) Gvgcc(vm, m, h float32) float32
Gvgcc returns the VGCC net conductance from m, h activation and vm
func (*VGCCParams) HFmV ¶
func (np *VGCCParams) HFmV(vbio float32) float32
HFmV returns the H gate function from vbio (not normalized, must not exceed 0)
func (*VGCCParams) MFmV ¶
func (np *VGCCParams) MFmV(vbio float32) float32
MFmV returns the M gate function from vbio (not normalized, must not exceed 0)
func (*VGCCParams) Update ¶
func (np *VGCCParams) Update()