Documentation ¶
Overview ¶
Package mlvision uses an underlying model from the ML model service as a vision model, and wraps the ML model with the vision service methods.
Index ¶
Constants ¶
View Source
const ( // UInt8 is one of the possible input/output types for tensors. UInt8 = "uint8" // Float32 is one of the possible input/output types for tensors. Float32 = "float32" // DefaultOutTensorName is the prefix key given to output tensors in the map // if there is no metadata. (output0, output1, etc.) DefaultOutTensorName = "output" )
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type MLModelConfig ¶
type MLModelConfig struct { ModelName string `json:"mlmodel_name"` RemapInputNames map[string]string `json:"remap_input_names"` RemapOutputNames map[string]string `json:"remap_output_names"` BoxOrder []int `json:"xmin_ymin_xmax_ymax_order"` // optional parameter used to normalize the input image if the ML Model expects it MeanValue []float32 `json:"input_image_mean_value"` // optional parameter used to normalize the input image if the ML Model expects it StdDev []float32 `json:"input_image_std_dev"` // optional parameter used to change the input image to BGR format if the ML Model expects it IsBGR bool `json:"input_image_bgr"` DefaultConfidence float64 `json:"default_minimum_confidence"` LabelConfidenceMap map[string]float64 `json:"label_confidences"` LabelPath string `json:"label_path"` }
MLModelConfig specifies the parameters needed to turn an ML model into a vision Model.
Click to show internal directories.
Click to hide internal directories.