rand

package
v1.10.0-beta1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 31, 2022 License: Apache-2.0 Imports: 5 Imported by: 0

Documentation

Overview

Package rand implements pseudo-random number generators.

Random numbers are generated by a Source. Top-level functions, such as Float64 and Int, use a default shared Source that produces a deterministic sequence of values each time a program is run. Use the Seed function to initialize the default Source if different behavior is required for each run. The default Source, a LockedSource, is safe for concurrent use by multiple goroutines, but Sources created by NewSource are not. However, Sources are small and it is reasonable to have a separate Source for each goroutine, seeded differently, to avoid locking.

For random numbers suitable for security-sensitive work, see the crypto/rand package.

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func Add64

func Add64(x, y, carry uint64) (sum, carryOut uint64)

Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. The carry input must be 0 or 1; otherwise the behavior is undefined. The carryOut output is guaranteed to be 0 or 1.

func ExpFloat64

func ExpFloat64() float64

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter

func Float32

func Float32() float32

Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) from the default Source.

func Float64

func Float64() float64

Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) from the default Source.

func Int

func Int() int

Int returns a non-negative pseudo-random int from the default Source.

func Int31

func Int31() int32

Int31 returns a non-negative pseudo-random 31-bit integer as an int32 from the default Source.

func Int31n

func Int31n(n int32) int32

Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) from the default Source. It panics if n <= 0.

func Int63

func Int63() int64

Int63 returns a non-negative pseudo-random 63-bit integer as an int64 from the default Source.

func Int63n

func Int63n(n int64) int64

Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) from the default Source. It panics if n <= 0.

func Intn

func Intn(n int) int

Intn returns, as an int, a non-negative pseudo-random number in [0,n) from the default Source. It panics if n <= 0.

func Mul64

func Mul64(x, y uint64) (hi, lo uint64)

Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y with the product bits' upper half returned in hi and the lower half returned in lo.

func NormFloat64

func NormFloat64() float64

NormFloat64 returns a normally distributed float64 in the range [-math.MaxFloat64, +math.MaxFloat64] with standard normal distribution (mean = 0, stddev = 1) from the default Source. To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean

func Perm

func Perm(n int) []int

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) from the default Source.

func Read

func Read(p []byte) (n int, err error)

Read generates len(p) random bytes from the default Source and writes them into p. It always returns len(p) and a nil error. Read, unlike the Rand.Read method, is safe for concurrent use.

func Seed

func Seed(seed uint64)

Seed uses the provided seed value to initialize the default Source to a deterministic state. If Seed is not called, the generator behaves as if seeded by Seed(1). Seed, unlike the Rand.Seed method, is safe for concurrent use.

func Shuffle

func Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements using the default Source. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

func Uint32

func Uint32() uint32

Uint32 returns a pseudo-random 32-bit value as a uint32 from the default Source.

func Uint64

func Uint64() uint64

Uint64 returns a pseudo-random 64-bit value as a uint64 from the default Source.

Types

type LockedSource

type LockedSource struct {
	// contains filtered or unexported fields
}

LockedSource is an implementation of Source that is concurrency-safe. A Rand using a LockedSource is safe for concurrent use.

The zero value of LockedSource is valid, but should be seeded before use.

func (*LockedSource) Read

func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error)

Read implements Read for a LockedSource.

func (*LockedSource) Seed

func (s *LockedSource) Seed(seed uint64)

func (*LockedSource) Uint64

func (s *LockedSource) Uint64() (n uint64)

type PCGSource

type PCGSource struct {
	// contains filtered or unexported fields
}

PCGSource is an implementation of a 64-bit permuted congruential generator as defined in

PCG: A Family of Simple Fast Space-Efficient Statistically Good
Algorithms for Random Number Generation
Melissa E. O’Neill, Harvey Mudd College
http://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf

The generator here is the congruential generator PCG XSL RR 128/64 (LCG) as found in the software available at http://www.pcg-random.org/. It has period 2^128 with 128 bits of state, producing 64-bit values. Is state is represented by two uint64 words.

func (*PCGSource) MarshalBinary

func (pcg *PCGSource) MarshalBinary() ([]byte, error)

MarshalBinary returns the binary representation of the current state of the generator.

func (*PCGSource) Seed

func (pcg *PCGSource) Seed(seed uint64)

Seed uses the provided seed value to initialize the generator to a deterministic state.

func (*PCGSource) Uint64

func (pcg *PCGSource) Uint64() uint64

Uint64 returns a pseudo-random 64-bit unsigned integer as a uint64.

func (*PCGSource) UnmarshalBinary

func (pcg *PCGSource) UnmarshalBinary(data []byte) error

UnmarshalBinary sets the state of the generator to the state represented in data.

type Rand

type Rand struct {
	// contains filtered or unexported fields
}

A Rand is a source of random numbers.

func New

func New(src Source) *Rand

New returns a new Rand that uses random values from src to generate other random values.

func (*Rand) ExpFloat64

func (r *Rand) ExpFloat64() float64

ExpFloat64 returns an exponentially distributed float64 in the range (0, +math.MaxFloat64] with an exponential distribution whose rate parameter (lambda) is 1 and whose mean is 1/lambda (1). To produce a distribution with a different rate parameter, callers can adjust the output using:

sample = ExpFloat64() / desiredRateParameter

func (*Rand) Float32

func (r *Rand) Float32() float32

Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).

func (*Rand) Float64

func (r *Rand) Float64() float64

Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).

func (*Rand) Int

func (r *Rand) Int() int

Int returns a non-negative pseudo-random int.

func (*Rand) Int31

func (r *Rand) Int31() int32

Int31 returns a non-negative pseudo-random 31-bit integer as an int32.

func (*Rand) Int31n

func (r *Rand) Int31n(n int32) int32

Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). It panics if n <= 0.

func (*Rand) Int63

func (r *Rand) Int63() int64

Int63 returns a non-negative pseudo-random 63-bit integer as an int64.

func (*Rand) Int63n

func (r *Rand) Int63n(n int64) int64

Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). It panics if n <= 0.

func (*Rand) Intn

func (r *Rand) Intn(n int) int

Intn returns, as an int, a non-negative pseudo-random number in [0,n). It panics if n <= 0.

func (*Rand) NormFloat64

func (r *Rand) NormFloat64() float64

NormFloat64 returns a normally distributed float64 in the range [-math.MaxFloat64, +math.MaxFloat64] with standard normal distribution (mean = 0, stddev = 1). To produce a different normal distribution, callers can adjust the output using:

sample = NormFloat64() * desiredStdDev + desiredMean

func (*Rand) Perm

func (r *Rand) Perm(n int) []int

Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).

func (*Rand) Read

func (r *Rand) Read(p []byte) (n int, err error)

Read generates len(p) random bytes and writes them into p. It always returns len(p) and a nil error. Read should not be called concurrently with any other Rand method unless the underlying source is a LockedSource.

func (*Rand) Seed

func (r *Rand) Seed(seed uint64)

Seed uses the provided seed value to initialize the generator to a deterministic state. Seed should not be called concurrently with any other Rand method.

func (*Rand) Shuffle

func (r *Rand) Shuffle(n int, swap func(i, j int))

Shuffle pseudo-randomizes the order of elements. n is the number of elements. Shuffle panics if n < 0. swap swaps the elements with indexes i and j.

func (*Rand) Uint32

func (r *Rand) Uint32() uint32

Uint32 returns a pseudo-random 32-bit value as a uint32.

func (*Rand) Uint64

func (r *Rand) Uint64() uint64

Uint64 returns a pseudo-random 64-bit integer as a uint64.

func (*Rand) Uint64n

func (r *Rand) Uint64n(n uint64) uint64

Uint64n returns, as a uint64, a pseudo-random number in [0,n). It is guaranteed more uniform than taking a Source value mod n for any n that is not a power of 2.

type Source

type Source interface {
	Uint64() uint64
	Seed(seed uint64)
}

A Source represents a source of uniformly-distributed pseudo-random int64 values in the range [0, 1<<64).

func NewSource

func NewSource(seed uint64) Source

NewSource returns a new pseudo-random Source seeded with the given value.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL