Documentation ¶
Overview ¶
Package proof contains the following implementations
- proof of discrete logarithm (PDL) subprotocol from [spec] §8
- multiplicative-to-additive (MtA) subprotocol from [spec] §7
- proof of knowledge of a discrete log modulo a composite (fig 16), i.e., ProveCompositeDL and VerifyCompositeDL
Index ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type CdlProof ¶
func (CdlProof) Verify ¶
func (p CdlProof) Verify(cv *CdlVerifyParams) error
Verify checks the CdlProof as specified in [spec] §10.fig 16
type CdlProofParams ¶
CdlProofParams encapsulates parameters for ProveCompositeDL in Fig.16 Curve contains EC group generator g and EC group modulus q Pi, Qi are small p_i, q_i s.t. P_i = 2p_i+1, Q_i = 2q_i+1, which are Safe Primes ScalarX is a random element from Z_N~ and it should be kept as secret N is the field modulus
func (CdlProofParams) Prove ¶
func (p CdlProofParams) Prove() (*CdlProof, error)
Prove generates a CdlProof as specified in [spec] §10.fig 16
type PdlProof ¶
PdlProof is the proof generated in [spec] fig 14
func (PdlProof) Verify ¶
func (p PdlProof) Verify(pv *PdlVerifyParams) error
Verify checks the PdlProof as specified in [spec] fig 14
type PdlProofParams ¶
type PdlProofParams struct { Curve elliptic.Curve DealerParams *dealer.ProofParams Pk *paillier.PublicKey ScalarX, ScalarR, C *big.Int PointX, PointR *curves.EcPoint }
PdlProofParams encapsulates the parameters for ProvePDL in [spec] fig 14
func (PdlProofParams) Prove ¶
func (p PdlProofParams) Prove() (*PdlProof, error)
Prove generates a PdlProof as specified in [spec] fig 14
type PdlVerifyParams ¶
type PdlVerifyParams struct { Curve elliptic.Curve DealerParams *dealer.ProofParams Pk *paillier.PublicKey PointX, PointR *curves.EcPoint C *big.Int }
PdlVerifyParams encapsulates the parameters for VerifyPDL in [spec] fig 14
type Proof1Params ¶
type Proof1Params struct { Curve elliptic.Curve Pk *paillier.PublicKey DealerParams *dealer.ProofParams A, C, R *big.Int }
Proof1Params encapsulates the values over which a range proof (1) is computed. [spec] fig 10
func (Proof1Params) Prove ¶
func (pp Proof1Params) Prove() (*Range1Proof, error)
Prove computes a range proof over these parameters [spec] fig 10: MtaProveRange1
type Range1Proof ¶
Range1Proof encapsulates the results returned in proof (1) [spec] fig 10
func (Range1Proof) Verify ¶
func (pi Range1Proof) Verify(pp *Proof1Params) error
Verify checks a range (1) proof: [spec] §7.fig 7: MtaVerifyRange1
type Range2Proof ¶
Range2Proof encapsulates the values over which a range proof (2) is computed. [spec] fig 12
func (Range2Proof) Verify ¶
func (pi Range2Proof) Verify(pp *verifyProof2Params) error
Verify checks a range (2) proof: [spec] §7.fig 9: MtaVerifyRange2
func (Range2Proof) VerifyWc ¶
func (pi Range2Proof) VerifyWc(pp *verifyProof2Params) error
VerifyWc checks a range (2) proof: [spec] §7.fig 9: MtaVerifyRange2_wc
type ResponseFinalizer ¶
type ResponseFinalizer interface { Finalize(vp *ResponseVerifyParams) (*big.Int, error) FinalizeWc(vp *ResponseVerifyParams) (*big.Int, error) }
ResponseFinalizer captures the interface provided by a response proof [spec] fig 13
type ResponseProof ¶
type ResponseProof struct { R2proof *Range2Proof C2, Beta *big.Int // contains filtered or unexported fields }
ResponseProof encapsulates the values over which a range proof (2) is computed and a portion of the random value is encrypted [spec] §7.fig 8
func ResponseProofMock ¶ added in v1.8.17
func ResponseProofMock(mockResponse *big.Int) *ResponseProof
func (ResponseProof) Finalize ¶
func (rp ResponseProof) Finalize(vp *ResponseVerifyParams) (*big.Int, error)
Finalize checks a range (2) proof: [spec] fig 13: MtaFinalize and returns the paillier encrypted random value
func (ResponseProof) FinalizeWc ¶
func (rp ResponseProof) FinalizeWc(vp *ResponseVerifyParams) (*big.Int, error)
FinalizeWc checks a range (2) proof: [spec] fig 13: MtaFinalize_wc and returns the paillier encrypted random value
type ResponseProofParams ¶
type ResponseProofParams struct { Curve elliptic.Curve DealerParams *dealer.ProofParams Pk *paillier.PublicKey SmallB, C1 *big.Int B *curves.EcPoint }
ResponseProofParams encapsulates the values over which a range proof (2) is computed. [spec] §7.fig 8
func (ResponseProofParams) Prove ¶
func (rp ResponseProofParams) Prove() (*ResponseProof, error)
Prove computes a range proof over these parameters [spec] fig 11: MtaResponse
func (ResponseProofParams) ProveWc ¶
func (rp ResponseProofParams) ProveWc() (*ResponseProof, error)
ProveWc computes: [spec] fig 11: MtaResponse_wc