Documentation ¶
Index ¶
Constants ¶
View Source
const (
PDLwSlackMarshalledParts = 11
)
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type DLogProof ¶
Schnorr ZK of the discrete logarithm of pho_i such that A = g^pho (GG18)
func NewDLogProof ¶
NewDLogProof constructs a new Schnorr ZK of the discrete logarithm of pho_i such that A = g^pho (GG18)
func (*DLogProof) ValidateBasic ¶
type ECDDHProof ¶
func NewECDDHProof ¶
func NewECDDHProof(wit ECDDHWitness, st ECDDHStatement) ECDDHProof
func NewECSigmaIProof ¶
func (*ECDDHProof) Verify ¶
func (pf *ECDDHProof) Verify(st ECDDHStatement) bool
func (*ECDDHProof) VerifySigmaI ¶
type ECDDHStatement ¶
type ECDDHWitness ¶
type PDLwSlackProof ¶
func NewPDLwSlackProof ¶
func NewPDLwSlackProof(wit PDLwSlackWitness, st PDLwSlackStatement) PDLwSlackProof
func UnmarshalPDLwSlackProof ¶
func UnmarshalPDLwSlackProof(bzs [][]byte) (*PDLwSlackProof, error)
func (PDLwSlackProof) Marshal ¶
func (pf PDLwSlackProof) Marshal() ([][]byte, error)
func (PDLwSlackProof) Verify ¶
func (pf PDLwSlackProof) Verify(st PDLwSlackStatement) bool
type PDLwSlackStatement ¶
type PDLwSlackWitness ¶
type PDLwSlackWitness struct {
X, R *big.Int
SK *paillier.PrivateKey
}
type STProof ¶
ZK proof for knowledge of sigma_i, l_i such that S_i = R^sigma_i, T_i = g^sigma_i h^l_i (GG20)
func NewSTProof ¶
NewSTProof constructs a new ZK proof of knowledge sigma_i, l_i such that S_i = R^sigma_i, T_i = g^sigma_i h^l_i (GG20)
func (*STProof) ValidateBasic ¶
Click to show internal directories.
Click to hide internal directories.