Documentation ¶
Index ¶
- Constants
- Variables
- func RandomByteStringSliceChoice(s [][]byte) []byte
- func RandomInt64SliceChoice(s []int64) int64
- func RandomStringSliceChoice(s []string) string
- type BaseConfig
- type BaseSimulator
- type BaseSimulatorConfig
- type ClampedRandomWalkDistribution
- type ConstantDistribution
- type DataGeneratorConfig
- type Distribution
- type FloatPrecision
- type GeneratedDataHeaders
- type Generator
- type GeneratorConfig
- type LabeledDistributionMaker
- type LazyDistribution
- type MonotonicRandomWalkDistribution
- type NormalDistribution
- type RandomWalkDistribution
- type SimulatedMeasurement
- type Simulator
- type SimulatorConfig
- type SubsystemMeasurement
- type Tag
- type UniformDistribution
Constants ¶
const ( // Use case choices (make sure to update TestGetConfig if adding a new one) UseCaseCPUOnly = "cpu-only" UseCaseCPUSingle = "cpu-single" UseCaseDevops = "devops" UseCaseIoT = "iot" UseCaseDevopsGeneric = "devops-generic" )
const ErrScaleIsZero = "scale cannot be 0"
Variables ¶
var UseCaseChoices = []string{ UseCaseCPUOnly, UseCaseCPUSingle, UseCaseDevops, UseCaseIoT, UseCaseDevopsGeneric, }
Functions ¶
func RandomByteStringSliceChoice ¶
RandomByteStringSliceChoice returns a random byte string slice from the provided slice of byte string slices.
func RandomInt64SliceChoice ¶
RandomInt64SliceChoice returns a random int64 from an int64 slice.
func RandomStringSliceChoice ¶
RandomStringSliceChoice returns a random string from the provided slice of string slices.
Types ¶
type BaseConfig ¶
type BaseConfig struct { Format string `yaml:"format,omitempty" mapstructure:"format,omitempty"` Use string `yaml:"use-case" mapstructure:"use-case"` Scale uint64 TimeStart string `yaml:"timestamp-start" mapstructure:"timestamp-start"` TimeEnd string `yaml:"timestamp-end" mapstructure:"timestamp-end"` Seed int64 Debug int `yaml:"debug,omitempty" mapstructure:"debug,omitempty"` File string `yaml:"file,omitempty" mapstructure:"file,omitempty"` }
BaseConfig is a data struct that includes the common flags or configuration options shared across different types of Generators. These include things like the data format (i.e., which database system is this for), a PRNG seed, etc.
func (*BaseConfig) AddToFlagSet ¶
func (c *BaseConfig) AddToFlagSet(fs *pflag.FlagSet)
func (*BaseConfig) Validate ¶
func (c *BaseConfig) Validate() error
type BaseSimulator ¶
type BaseSimulator struct {
// contains filtered or unexported fields
}
BaseSimulator generates data similar to truck readings.
func (*BaseSimulator) Fields ¶
func (s *BaseSimulator) Fields() map[string][]string
Fields returns all the simulated measurements for the device.
func (*BaseSimulator) Finished ¶
func (s *BaseSimulator) Finished() bool
Finished tells whether we have simulated all the necessary points.
func (*BaseSimulator) Headers ¶
func (s *BaseSimulator) Headers() *GeneratedDataHeaders
func (*BaseSimulator) Next ¶
func (s *BaseSimulator) Next(p *data.Point) bool
Next advances a Point to the next state in the generator.
func (*BaseSimulator) TagKeys ¶
func (s *BaseSimulator) TagKeys() []string
TagKeys returns all the tag keys for the device.
func (*BaseSimulator) TagTypes ¶
func (s *BaseSimulator) TagTypes() []string
TagTypes returns the type for each tag, extracted from the generated values.
type BaseSimulatorConfig ¶
type BaseSimulatorConfig struct { // Start is the beginning time for the Simulator Start time.Time // End is the ending time for the Simulator End time.Time // InitGeneratorScale is the number of Generators to start with in the first reporting period InitGeneratorScale uint64 // GeneratorScale is the total number of Generators to have in the last reporting period GeneratorScale uint64 // GeneratorConstructor is the function used to create a new Generator given an id number and start time GeneratorConstructor func(i int, start time.Time) Generator }
BaseSimulatorConfig is used to create a BaseSimulator.
func (*BaseSimulatorConfig) NewSimulator ¶
func (sc *BaseSimulatorConfig) NewSimulator(interval time.Duration, limit uint64) Simulator
NewSimulator produces a Simulator that conforms to the given config over the specified interval.
type ClampedRandomWalkDistribution ¶
type ClampedRandomWalkDistribution struct { Step Distribution Min float64 Max float64 State float64 // optional }
ClampedRandomWalkDistribution is a stateful random walk, with minimum and maximum bounds. Initialize it with a Min, Max, and an underlying distribution, which is used to compute the new step value.
func CWD ¶
func CWD(step Distribution, min, max, state float64) *ClampedRandomWalkDistribution
CWD returns a new ClampedRandomWalkDistribution based on a given distribution and optional starting state
func (*ClampedRandomWalkDistribution) Advance ¶
func (d *ClampedRandomWalkDistribution) Advance()
Advance computes the next value of this distribution and stores it.
func (*ClampedRandomWalkDistribution) Get ¶
func (d *ClampedRandomWalkDistribution) Get() float64
Get returns the last computed value for this distribution.
type ConstantDistribution ¶
type ConstantDistribution struct {
State float64
}
ConstantDistribution is a stateful distribution that always returns the same value
func (*ConstantDistribution) Advance ¶
func (d *ConstantDistribution) Advance()
Advance does nothing in a constant distribution
func (*ConstantDistribution) Get ¶
func (d *ConstantDistribution) Get() float64
Get returns the last computed value for this distribution.
type DataGeneratorConfig ¶
type DataGeneratorConfig struct { BaseConfig `yaml:"base"` Limit uint64 `yaml:"max-data-points" mapstructure:"max-data-points"` InitialScale uint64 `yaml:"initial-scale" mapstructure:"initial-scale" ` LogInterval time.Duration `yaml:"log-interval" mapstructure:"log-interval"` InterleavedGroupID uint `yaml:"interleaved-generation-group-id" mapstructure:"interleaved-generation-group-id"` InterleavedNumGroups uint `yaml:"interleaved-generation-groups" mapstructure:"interleaved-generation-groups"` MaxMetricCountPerHost uint64 `yaml:"max-metric-count" mapstructure:"max-metric-count"` }
DataGeneratorConfig is the GeneratorConfig that should be used with a DataGenerator. It includes all the fields from a BaseConfig, as well as some options that are specific to generating the data for database write operations, such as the initial scale and how spaced apart data points should be in time.
func (*DataGeneratorConfig) AddToFlagSet ¶
func (c *DataGeneratorConfig) AddToFlagSet(fs *pflag.FlagSet)
func (*DataGeneratorConfig) Validate ¶
func (c *DataGeneratorConfig) Validate() error
Validate checks that the values of the DataGeneratorConfig are reasonable.
type Distribution ¶
type Distribution interface { Advance() Get() float64 // should be idempotent }
Distribution provides an interface to model a statistical distribution.
type FloatPrecision ¶
type FloatPrecision struct {
// contains filtered or unexported fields
}
FloatPrecision is a distribution wrapper which specifies the float value precision of the underlying distribution.
func FP ¶
func FP(step Distribution, precision int) *FloatPrecision
FP creates a new FloatPrecision distribution wrapper with a given distribution and precision value. Precision value is clamped to [0,5] to avoid floating point calculation errors.
func (*FloatPrecision) Advance ¶
func (f *FloatPrecision) Advance()
Advance calls the underlying distribution Advance method.
func (*FloatPrecision) Get ¶
func (f *FloatPrecision) Get() float64
Get returns the value from the underlying distribution with adjusted float value precision.
type GeneratedDataHeaders ¶
type Generator ¶
type Generator interface { Measurements() []SimulatedMeasurement Tags() []Tag TickAll(d time.Duration) }
Generator is a single entity which generates data from its respective measurements.
type GeneratorConfig ¶
type GeneratorConfig interface { // AddToFlagSet adds all the config options to a FlagSet, for easy use with CLIs AddToFlagSet(fs *pflag.FlagSet) // Validate checks that configuration is valid and ready to be consumed by a Generator Validate() error }
GeneratorConfig is an interface that defines a configuration that is used by Generators to govern their behavior. The interface methods provide a way to use the GeneratorConfig with the command-line via flag.FlagSet and a method to validate the config is actually valid.
type LabeledDistributionMaker ¶
type LabeledDistributionMaker struct { Label []byte DistributionMaker func() Distribution }
LabeledDistributionMaker combines a distribution maker with a label.
type LazyDistribution ¶
type LazyDistribution struct {
// contains filtered or unexported fields
}
LazyDistribution is a distribution that can change it's value only if a "motivation" distribution provides a value above a specified threshold. Otherwise it remains the same.
func LD ¶
func LD(motive, dist Distribution, threshold float64) *LazyDistribution
LD returns a new LazyDistribution that returns a new value from "dist", if the "motavation" distribution, fires above the threshold.
func (*LazyDistribution) Advance ¶
func (d *LazyDistribution) Advance()
Advance computes the next value of this distribution.
func (*LazyDistribution) Get ¶
func (d *LazyDistribution) Get() float64
Get returns the last computed value for this distribution.
type MonotonicRandomWalkDistribution ¶
type MonotonicRandomWalkDistribution struct { Step Distribution State float64 }
MonotonicRandomWalkDistribution is a stateful random walk that only increases. Initialize it with a Start and an underlying distribution, which is used to compute the new step value. The sign of any value of the u.d. is always made positive.
func MWD ¶
func MWD(step Distribution, state float64) *MonotonicRandomWalkDistribution
MWD creates a new MonotonicRandomWalkDistribution with a given distribution and initial state
func (*MonotonicRandomWalkDistribution) Advance ¶
func (d *MonotonicRandomWalkDistribution) Advance()
Advance computes the next value of this distribution and stores it.
func (*MonotonicRandomWalkDistribution) Get ¶
func (d *MonotonicRandomWalkDistribution) Get() float64
Get returns the last computed value for this distribution.
type NormalDistribution ¶
type NormalDistribution struct { Mean float64 StdDev float64 // contains filtered or unexported fields }
NormalDistribution models a normal distribution (stateless).
func ND ¶
func ND(mean, stddev float64) *NormalDistribution
ND creates a new normal distribution with the given mean/stddev
func (*NormalDistribution) Advance ¶
func (d *NormalDistribution) Advance()
Advance advances this distribution. Since the distribution is stateless, this just overwrites the internal cache value.
func (*NormalDistribution) Get ¶
func (d *NormalDistribution) Get() float64
Get returns the last computed value for this distribution.
type RandomWalkDistribution ¶
type RandomWalkDistribution struct { Step Distribution State float64 // optional }
RandomWalkDistribution is a stateful random walk. Initialize it with an underlying distribution, which is used to compute the new step value.
func WD ¶
func WD(step Distribution, state float64) *RandomWalkDistribution
WD creates a new RandomWalkDistribution based on a given distribution and starting state
func (*RandomWalkDistribution) Advance ¶
func (d *RandomWalkDistribution) Advance()
Advance computes the next value of this distribution and stores it.
func (*RandomWalkDistribution) Get ¶
func (d *RandomWalkDistribution) Get() float64
Get returns the last computed value for this distribution.
type SimulatedMeasurement ¶
SimulatedMeasurement simulates one measurement (e.g. Redis for DevOps).
type Simulator ¶
type Simulator interface { Finished() bool Next(*data.Point) bool Fields() map[string][]string TagKeys() []string TagTypes() []string Headers() *GeneratedDataHeaders }
Simulator simulates a use case.
type SimulatorConfig ¶
SimulatorConfig is an interface to create a Simulator from a time.Duration.
type SubsystemMeasurement ¶
type SubsystemMeasurement struct { Timestamp time.Time Distributions []Distribution }
SubsystemMeasurement represents a collection of measurement distributions and a start time.
func NewSubsystemMeasurement ¶
func NewSubsystemMeasurement(start time.Time, numDistributions int) *SubsystemMeasurement
NewSubsystemMeasurement creates a new SubsystemMeasurement with provided start time and number of distributions.
func NewSubsystemMeasurementWithDistributionMakers ¶
func NewSubsystemMeasurementWithDistributionMakers(start time.Time, makers []LabeledDistributionMaker) *SubsystemMeasurement
NewSubsystemMeasurementWithDistributionMakers creates a new SubsystemMeasurement with start time and distribution makers which are used to create the necessary distributions.
func (*SubsystemMeasurement) Tick ¶
func (m *SubsystemMeasurement) Tick(d time.Duration)
Tick advances all the distributions for the SubsystemMeasurement.
func (*SubsystemMeasurement) ToPoint ¶
func (m *SubsystemMeasurement) ToPoint(p *data.Point, measurementName []byte, labels []LabeledDistributionMaker)
ToPoint fills the provided serialize.Point with measurements from the SubsystemMeasurement.
func (*SubsystemMeasurement) ToPointAllInt64 ¶
func (m *SubsystemMeasurement) ToPointAllInt64(p *data.Point, measurementName []byte, labels []LabeledDistributionMaker)
ToPointAllInt64 fills in a serialize.Point with a given measurementName and all vales from the distributions stored as int64. The labels for each field are given by the supplied []LabeledDistributionMaker, assuming that the distributions are in the same order.
type Tag ¶
type Tag struct { Key []byte Value interface{} }
Tag is a key-value pair of information which is used to tag a generator
type UniformDistribution ¶
type UniformDistribution struct { Low float64 High float64 // contains filtered or unexported fields }
UniformDistribution models a uniform distribution (stateless).
func UD ¶
func UD(low, high float64) *UniformDistribution
UD creates a new uniform distribution with the given range
func (*UniformDistribution) Advance ¶
func (d *UniformDistribution) Advance()
Advance advances this distribution. Since the distribution is stateless, this just overwrites the internal cache value.
func (*UniformDistribution) Get ¶
func (d *UniformDistribution) Get() float64
Get returns the last computed value for this distribution.