Documentation ¶
Overview ¶
Package sort provides primitives for sorting slices and user-defined collections.
Example (SortKeys) ¶
ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
package main import ( "fmt" "sort" ) // A couple of type definitions to make the units clear. type earthMass float64 type au float64 // A Planet defines the properties of a solar system object. type Planet struct { name string mass earthMass distance au } // By is the type of a "less" function that defines the ordering of its Planet arguments. type By func(p1, p2 *Planet) bool // Sort is a method on the function type, By, that sorts the argument slice according to the function. func (by By) Sort(planets []Planet) { ps := &planetSorter{ planets: planets, by: by, // The Sort method's receiver is the function (closure) that defines the sort order. } sort.Sort(ps) } // planetSorter joins a By function and a slice of Planets to be sorted. type planetSorter struct { planets []Planet by func(p1, p2 *Planet) bool // Closure used in the Less method. } // Len is part of sort.Interface. func (s *planetSorter) Len() int { return len(s.planets) } // Swap is part of sort.Interface. func (s *planetSorter) Swap(i, j int) { s.planets[i], s.planets[j] = s.planets[j], s.planets[i] } // Less is part of sort.Interface. It is implemented by calling the "by" closure in the sorter. func (s *planetSorter) Less(i, j int) bool { return s.by(&s.planets[i], &s.planets[j]) } var planets = []Planet{ {"Mercury", 0.055, 0.4}, {"Venus", 0.815, 0.7}, {"Earth", 1.0, 1.0}, {"Mars", 0.107, 1.5}, } // ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria. func main() { // Closures that order the Planet structure. name := func(p1, p2 *Planet) bool { return p1.name < p2.name } mass := func(p1, p2 *Planet) bool { return p1.mass < p2.mass } distance := func(p1, p2 *Planet) bool { return p1.distance < p2.distance } decreasingDistance := func(p1, p2 *Planet) bool { return !distance(p1, p2) } // Sort the planets by the various criteria. By(name).Sort(planets) fmt.Println("By name:", planets) By(mass).Sort(planets) fmt.Println("By mass:", planets) By(distance).Sort(planets) fmt.Println("By distance:", planets) By(decreasingDistance).Sort(planets) fmt.Println("By decreasing distance:", planets) }
Output: By name: [{Earth 1 1} {Mars 0.107 1.5} {Mercury 0.055 0.4} {Venus 0.815 0.7}] By mass: [{Mercury 0.055 0.4} {Mars 0.107 1.5} {Venus 0.815 0.7} {Earth 1 1}] By distance: [{Mercury 0.055 0.4} {Venus 0.815 0.7} {Earth 1 1} {Mars 0.107 1.5}] By decreasing distance: [{Mars 0.107 1.5} {Earth 1 1} {Venus 0.815 0.7} {Mercury 0.055 0.4}]
Example (SortMultiKeys) ¶
ExampleMultiKeys demonstrates a technique for sorting a struct type using different sets of multiple fields in the comparison. We chain together "Less" functions, each of which compares a single field.
package main import ( "fmt" "sort" ) // A Change is a record of source code changes, recording user, language, and delta size. type Change struct { user string language string lines int } type lessFunc func(p1, p2 *Change) bool // multiSorter implements the Sort interface, sorting the changes within. type multiSorter struct { changes []Change less []lessFunc } // Sort sorts the argument slice according to the less functions passed to OrderedBy. func (ms *multiSorter) Sort(changes []Change) { sort.Sort(ms) } // OrderedBy returns a Sorter that sorts using the less functions, in order. // Call its Sort method to sort the data. func OrderedBy(less ...lessFunc) *multiSorter { return &multiSorter{ changes: changes, less: less, } } // Len is part of sort.Interface. func (ms *multiSorter) Len() int { return len(ms.changes) } // Swap is part of sort.Interface. func (ms *multiSorter) Swap(i, j int) { ms.changes[i], ms.changes[j] = ms.changes[j], ms.changes[i] } // Less is part of sort.Interface. It is implemented by looping along the // less functions until it finds a comparison that is either Less or // !Less. Note that it can call the less functions twice per call. We // could change the functions to return -1, 0, 1 and reduce the // number of calls for greater efficiency: an exercise for the reader. func (ms *multiSorter) Less(i, j int) bool { p, q := &ms.changes[i], &ms.changes[j] // Try all but the last comparison. var k int for k = 0; k < len(ms.less)-1; k++ { less := ms.less[k] switch { case less(p, q): // p < q, so we have a decision. return true case less(q, p): // p > q, so we have a decision. return false } // p == q; try the next comparison. } // All comparisons to here said "equal", so just return whatever // the final comparison reports. return ms.less[k](p, q) } var changes = []Change{ {"gri", "Go", 100}, {"ken", "C", 150}, {"glenda", "Go", 200}, {"rsc", "Go", 200}, {"r", "Go", 100}, {"ken", "Go", 200}, {"dmr", "C", 100}, {"r", "C", 150}, {"gri", "Smalltalk", 80}, } // ExampleMultiKeys demonstrates a technique for sorting a struct type using different // sets of multiple fields in the comparison. We chain together "Less" functions, each of // which compares a single field. func main() { // Closures that order the Change structure. user := func(c1, c2 *Change) bool { return c1.user < c2.user } language := func(c1, c2 *Change) bool { return c1.language < c2.language } increasingLines := func(c1, c2 *Change) bool { return c1.lines < c2.lines } decreasingLines := func(c1, c2 *Change) bool { return c1.lines > c2.lines // Note: > orders downwards. } // Simple use: Sort by user. OrderedBy(user).Sort(changes) fmt.Println("By user:", changes) // multiSorter implements the Sort interface, so we can also do this. sort.Sort(OrderedBy(user, increasingLines)) fmt.Println("By user,<lines:", changes) // More examples. OrderedBy(user, decreasingLines).Sort(changes) fmt.Println("By user,>lines:", changes) OrderedBy(language, increasingLines).Sort(changes) fmt.Println("By language,<lines:", changes) OrderedBy(language, increasingLines, user).Sort(changes) fmt.Println("By language,<lines,user:", changes) }
Output: By user: [{dmr C 100} {glenda Go 200} {gri Smalltalk 80} {gri Go 100} {ken Go 200} {ken C 150} {r Go 100} {r C 150} {rsc Go 200}] By user,<lines: [{dmr C 100} {glenda Go 200} {gri Smalltalk 80} {gri Go 100} {ken C 150} {ken Go 200} {r Go 100} {r C 150} {rsc Go 200}] By user,>lines: [{dmr C 100} {glenda Go 200} {gri Go 100} {gri Smalltalk 80} {ken Go 200} {ken C 150} {r C 150} {r Go 100} {rsc Go 200}] By language,<lines: [{dmr C 100} {ken C 150} {r C 150} {gri Go 100} {r Go 100} {ken Go 200} {glenda Go 200} {rsc Go 200} {gri Smalltalk 80}] By language,<lines,user: [{dmr C 100} {ken C 150} {r C 150} {gri Go 100} {r Go 100} {glenda Go 200} {ken Go 200} {rsc Go 200} {gri Smalltalk 80}]
Index ¶
- func Float64s(a []float64)
- func Float64sAreSorted(a []float64) bool
- func Ints(a []int)
- func IntsAreSorted(a []int) bool
- func IsSorted(data Interface) bool
- func Search(n int, f func(int) bool) int
- func SearchFloat64s(a []float64, x float64) int
- func SearchInts(a []int, x int) int
- func SearchStrings(a []string, x string) int
- func Sort(data Interface)
- func Strings(a []string)
- func StringsAreSorted(a []string) bool
- type Float64Slice
- type IntSlice
- type Interface
- type StringSlice
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func Float64sAreSorted ¶
Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.
func Ints ¶
func Ints(a []int)
Ints sorts a slice of ints in increasing order.
Example ¶
package main import ( "fmt" "sort" ) func main() { s := []int{5, 2, 6, 3, 1, 4} // unsorted sort.Ints(s) fmt.Println(s) }
Output: [1 2 3 4 5 6]
func IntsAreSorted ¶
IntsAreSorted tests whether a slice of ints is sorted in increasing order.
func Search ¶
Search uses binary search to find and return the smallest index i in [0, n) at which f(i) is true, assuming that on the range [0, n), f(i) == true implies f(i+1) == true. That is, Search requires that f is false for some (possibly empty) prefix of the input range [0, n) and then true for the (possibly empty) remainder; Search returns the first true index. If there is no such index, Search returns n. (Note that the "not found" return value is not -1 as in, for instance, strings.Index). Search calls f(i) only for i in the range [0, n).
A common use of Search is to find the index i for a value x in a sorted, indexable data structure such as an array or slice. In this case, the argument f, typically a closure, captures the value to be searched for, and how the data structure is indexed and ordered.
For instance, given a slice data sorted in ascending order, the call Search(len(data), func(i int) bool { return data[i] >= 23 }) returns the smallest index i such that data[i] >= 23. If the caller wants to find whether 23 is in the slice, it must test data[i] == 23 separately.
Searching data sorted in descending order would use the <= operator instead of the >= operator.
To complete the example above, the following code tries to find the value x in an integer slice data sorted in ascending order:
x := 23 i := sort.Search(len(data), func(i int) bool { return data[i] >= x }) if i < len(data) && data[i] == x { // x is present at data[i] } else { // x is not present in data, // but i is the index where it would be inserted. }
As a more whimsical example, this program guesses your number:
func GuessingGame() { var s string fmt.Printf("Pick an integer from 0 to 100.\n") answer := sort.Search(100, func(i int) bool { fmt.Printf("Is your number <= %d? ", i) fmt.Scanf("%s", &s) return s != "" && s[0] == 'y' }) fmt.Printf("Your number is %d.\n", answer) }
func SearchFloat64s ¶
SearchFloat64s searches for x in a sorted slice of float64s and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
func SearchInts ¶
SearchInts searches for x in a sorted slice of ints and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
func SearchStrings ¶
SearchStrings searches for x in a sorted slice of strings and returns the index as specified by Search. The return value is the index to insert x if x is not present (it could be len(a)). The slice must be sorted in ascending order.
func Sort ¶
func Sort(data Interface)
Sort sorts data. It makes one call to data.Len to determine n, and O(n*log(n)) calls to data.Less and data.Swap. The sort is not guaranteed to be stable.
func StringsAreSorted ¶
StringsAreSorted tests whether a slice of strings is sorted in increasing order.
Types ¶
type Float64Slice ¶
type Float64Slice []float64
Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.
func (Float64Slice) Len ¶
func (p Float64Slice) Len() int
func (Float64Slice) Less ¶
func (p Float64Slice) Less(i, j int) bool
func (Float64Slice) Search ¶
func (p Float64Slice) Search(x float64) int
Search returns the result of applying SearchFloat64s to the receiver and x.
func (Float64Slice) Swap ¶
func (p Float64Slice) Swap(i, j int)
type IntSlice ¶
type IntSlice []int
IntSlice attaches the methods of Interface to []int, sorting in increasing order.
type Interface ¶
type Interface interface { // Len is the number of elements in the collection. Len() int // Less returns whether the element with index i should sort // before the element with index j. Less(i, j int) bool // Swap swaps the elements with indexes i and j. Swap(i, j int) }
A type, typically a collection, that satisfies sort.Interface can be sorted by the routines in this package. The methods require that the elements of the collection be enumerated by an integer index.
Example ¶
package main import ( "fmt" "sort" ) type Grams int func (g Grams) String() string { return fmt.Sprintf("%dg", int(g)) } type Organ struct { Name string Weight Grams } type Organs []*Organ func (s Organs) Len() int { return len(s) } func (s Organs) Swap(i, j int) { s[i], s[j] = s[j], s[i] } // ByName implements sort.Interface by providing Less and using the Len and // Swap methods of the embedded Organs value. type ByName struct{ Organs } func (s ByName) Less(i, j int) bool { return s.Organs[i].Name < s.Organs[j].Name } // ByWeight implements sort.Interface by providing Less and using the Len and // Swap methods of the embedded Organs value. type ByWeight struct{ Organs } func (s ByWeight) Less(i, j int) bool { return s.Organs[i].Weight < s.Organs[j].Weight } func main() { s := []*Organ{ {"brain", 1340}, {"heart", 290}, {"liver", 1494}, {"pancreas", 131}, {"prostate", 62}, {"spleen", 162}, } sort.Sort(ByWeight{s}) fmt.Println("Organs by weight:") printOrgans(s) sort.Sort(ByName{s}) fmt.Println("Organs by name:") printOrgans(s) } func printOrgans(s []*Organ) { for _, o := range s { fmt.Printf("%-8s (%v)\n", o.Name, o.Weight) } }
Output: Organs by weight: prostate (62g) pancreas (131g) spleen (162g) heart (290g) brain (1340g) liver (1494g) Organs by name: brain (1340g) heart (290g) liver (1494g) pancreas (131g) prostate (62g) spleen (162g)
type StringSlice ¶
type StringSlice []string
StringSlice attaches the methods of Interface to []string, sorting in increasing order.
func (StringSlice) Len ¶
func (p StringSlice) Len() int
func (StringSlice) Less ¶
func (p StringSlice) Less(i, j int) bool
func (StringSlice) Search ¶
func (p StringSlice) Search(x string) int
Search returns the result of applying SearchStrings to the receiver and x.
func (StringSlice) Swap ¶
func (p StringSlice) Swap(i, j int)