AutoExecFlow

An API
for cross-platform custom orchestration of execution steps without any third-party dependencies.
Based on DAG
, it implements the scheduling function of sequential execution of dependent steps and concurrent execution of non-dependent steps.
It provides API
remote operation mode, batch execution of Shell
, Powershell
, Python
and other commands,
and easily completes common management tasks such as running automated operation and maintenance scripts, polling processes, installing or uninstalling software, updating applications, and installing patches.
Operating system remote execution interface

Feature
- support
Windows
/ Linux
/ Mac
- Dynamically adjust the number of workers
- Orchestrating execution based on directed acyclic graph (
DAG
)
- Supports forced termination of tasks or steps
- Supports suspension and resumption of tasks or steps
- Support timeout for tasks or steps
- Task-level Workspace isolation
- Browse, upload, and download tasks in Workspace
- Self-update, use parameter
--self_url
- WebShell
- Support delayed Task
- Send events before/after a task or step is executed
- Task or step plugin implementation
Help
Usage:
AutoExecFlow_linux_amd64_v1 [command]
Available Commands:
client a self-sufficient executor
help Help about any command
server start server
Flags:
--help Print usage
-v, --version Print version information and quit
Use "AutoExecFlow_linux_amd64_v1 [command] --help" for more information about a command.
How to use
Windows
Open PowerShell in management mode to add services
New-Service -Name AutoExecFlow -BinaryPathName "C:\AutoExecFlow\bin\AutoExecFlow_windows_amd64_v1.exe server" -DisplayName "AutoExecFlow " -StartupType Automatic
sc.exe failure AutoExecFlow reset= 0 actions= restart/0/restart/0/restart/0
sc.exe start AutoExecFlow
Linux
echo > /etc/systemd/system/AutoExecFlow.service <<EOF
[Unit]
Description=Operating system remote execution interface
Documentation=https://github.com/busybox-org/AutoExecFlow.git
After=network.target nss-lookup.target
[Service]
NoNewPrivileges=true
ExecStart=/usr/local/AutoExecFlow/bin/AutoExecFlow_linux_amd64_v1 server
Restart=on-failure
RestartSec=10s
LimitNOFILE=infinity
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable --now AutoExecFlow.service
Local compilation (Linux)
- Depends on the Docker environment
git clone https://github.com/xmapst/AutoExecFlow.git
cd AutoExecFlow
make
Request Example

name: 测试
desc: 这是一段任务描述
kind: dag
timeout: 2m
env:
- name: GLOBAL_NAME
value: "全局变量"
step:
- name: shell0-0
desc: 执行shell脚本
timeout: 2m
env:
- name: Test
value: "test_env"
type: sh
content: |-
ping -c 4 1.1.1.1
- name: shell0-1
desc: 执行shell脚本
timeout: 2m
env:
- name: Test
value: "test_env"
depends:
- shell0-0
type: sh
content: |-
ping -c 4 1.1.1.1
- name: python0-0
desc: 执行python脚本
timeout: 2m
env:
- name: Test
value: "test_env"
type: py3
content: |-
import subprocess
command = ["ping", "-c", "4", "1.1.1.1"]
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True)
print("Ping 命令的输出:")
print(result.stdout)
except subprocess.CalledProcessError as e:
print("执行 ping 命令时发生错误:")
print(e.stderr)
- name: python0-1
desc: 执行python脚本
timeout: 2m
env:
- name: Test
value: "test_env"
depends:
- python0-0
type: py3
content: |-
import subprocess
command = ["ping", "-c", "4", "1.1.1.1"]
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True)
print("Ping 命令的输出:")
print(result.stdout)
except subprocess.CalledProcessError as e:
print("执行 ping 命令时发生错误:")
print(e.stderr)
- name: shell
desc: 执行shell脚本
timeout: 2m
env:
- name: Test
value: "test_env"
type: sh
content: |-
ping -c 4 1.1.1.1
- name: python
desc: 执行python脚本
timeout: 2m
env:
- name: Test
value: "test_env"
depends:
- shell
type: py3
content: |-
import subprocess
command = ["ping", "-c", "4", "1.1.1.1"]
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True)
print("Ping 命令的输出:")
print(result.stdout)
except subprocess.CalledProcessError as e:
print("执行 ping 命令时发生错误:")
print(e.stderr)
- name: yaegi
desc: 执行yaegi脚本
env:
- name: Test
value: "test_env"
depends:
- python
type: yaegi
content: |-
import (
"context"
"fmt"
"os/exec"
"github.com/tidwall/gjson"
)
func EvalCall(ctx context.Context, params gjson.Result) {
fmt.Println(params)
cmd := exec.Command("ping", "-c", "4", "1.1.1.1")
output, err := cmd.CombinedOutput()
if err != nil {
fmt.Println("执行 ping 命令时发生错误:", err)
return
}
fmt.Println("Ping 命令的输出:")
fmt.Println(string(output))
}
- name: 聚合测试
desc: 等待所有脚本执行完成
env:
- name: Test
value: "test_env"
depends:
- yaegi
- 多分支执行2
type: sh
content: |-
echo "done done"
- name: 多分支执行
desc: 测试多分支执行
env:
- name: Test
value: "test_env"
type: yaegi
content: |-
import (
"context"
"fmt"
"io"
"log"
"net/http"
"github.com/tidwall/gjson"
)
func EvalCall(ctx context.Context, params gjson.Result) {
resp, err := http.Get("https://www.baidu.com")
if err != nil {
log.Fatalf("HTTP 请求失败: %v", err)
return
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
log.Printf("HTTP 请求失败,状态码: %d", resp.StatusCode)
return
}
// 读取响应体
body, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatalf("读取响应体失败: %v", err)
return
}
// 打印响应内容
fmt.Println("HTTP 响应内容:")
fmt.Println(string(body))
}
- name: 多分支执行1
desc: 测试多分支执行
env:
- name: Test
value: "test_env"
depends:
- 多分支执行
- shell0-1
- python0-1
type: yaegi
content: |-
import (
"context"
"fmt"
"io"
"log"
"net/http"
"github.com/tidwall/gjson"
)
func EvalCall(ctx context.Context, params gjson.Result) {
resp, err := http.Get("https://www.baidu.com")
if err != nil {
log.Fatalf("HTTP 请求失败: %v", err)
return
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
log.Printf("HTTP 请求失败,状态码: %d", resp.StatusCode)
return
}
// 读取响应体
body, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatalf("读取响应体失败: %v", err)
return
}
// 打印响应内容
fmt.Println("HTTP 响应内容:")
fmt.Println(string(body))
}
- name: 多分支执行2
desc: 测试多分支执行
env:
- name: Test
value: "test_env"
depends:
- 多分支执行1
type: yaegi
content: |-
import (
"context"
"fmt"
"io"
"log"
"net/http"
"github.com/tidwall/gjson"
)
func EvalCall(ctx context.Context, params gjson.Result) {
resp, err := http.Get("https://www.baidu.com")
if err != nil {
log.Fatalf("HTTP 请求失败: %v", err)
return
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
log.Printf("HTTP 请求失败,状态码: %d", resp.StatusCode)
return
}
// 读取响应体
body, err := io.ReadAll(resp.Body)
if err != nil {
log.Fatalf("读取响应体失败: %v", err)
return
}
// 打印响应内容
fmt.Println("HTTP 响应内容:")
fmt.Println(string(body))
}
Create a task
# By default, the execution is in order.
curl -X POST -H "Content-Type:application/json" -d '"name": "test",
"timeout": "10m",
"env": [
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
],
"step": [
{
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "env", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
]
},
{
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "curl ${TEST_SITE}", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.baidu.com"
}
]
}
]' 'http://localhost:2376/api/v1/task'
# Concurrent Execution
curl -X POST -H "Content-Type:application/json" -d '"name": "test",
"timeout": "10m",
"env": [
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
],
"kind": "dag",
"step": [
{
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "env", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
]
},
{
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "curl ${TEST_SITE}", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.baidu.com"
}
]
}
]' 'http://localhost:2376/api/v1/task'
# Customized orchestration execution
curl -X POST -H "Content-Type:application/json" -d '"name": "test",
"timeout": "10m",
"env": [
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
],
"kind": dag,
"step": [
{
"name": "step0",
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "env", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.google.com"
}
]
},
{
"name": "step1",
"type": "bash", # support[python2,python3,bash,sh,cmd,powershell]
"content": "curl ${TEST_SITE}", # Script content
"env": [ # Environment variable injection
{
"name": "TEST_SITE",
"value" : "www.baidu.com"
}
],
"depends": [
"step1"
]
}
]' 'http://localhost:2376/api/v1/task'
Get the task list
curl -X GET -H "Content-Type:application/json" 'http://localhost:2376/api/v1/task'
Get task details
curl -X GET -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}
Get task step list
curl -X GET -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step
Get the task working directory
curl -X GET -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/workspace
Task Control
# Task to force kill
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}?action=kill
# Pause task execution [Only pending tasks can be paused]
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}?action=pause
# Pause task execution (pause for 5 minutes) [Only tasks to be run can be paused]
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}?action=pause&duration=5m
# Continue the task
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}?action=resume
Get step console output
curl -X GET -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step/{step name}
Step Control
# Steps to force kill
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step/{step name}?action=kill
# Pause step execution [Only pending steps can be paused]
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step/{step name}?action=pause
# Pause step execution (pause for 5 minutes) [Only steps to be run can be paused]
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step/{step name}?action=pause&duration=5m
# Continue to step
curl -X PUT -H "Content-Type:application/json" http://localhost:2376/api/v1/task/{task name}/step/{step name}?action=resume
[Notes]
- code:
- 0: success
- 1001: running
- 1002: failed
- 1003: not found
- 1004: pending
- 1005: paused
- 1006: skipped
Script language support
Swagger API documentation
Swagger API documentation
