README ¶
Event-Recorder
记录对象发生的各类事件。
架构图
使用方式
- 创建rest-client
- 基于rest-client,建立一个
EventBroadCaster
events.NewEventBroadcasterAdapter(client)
- 开启EventBroadcaster消息处理循环;
go eventBroadcast.StartRecordingToSink(closeCh)
- 基于
EventBroadCaster
创建一个Record
eventBroadcast.NewRecorder("test")
- 基于
Record
开始记录事件-
r.Eventf(pod, pod, v1.EventTypeNormal, "test event record", "add", "")` - 关闭Broadcaster
eventBroadcast.Shutdown()
tools/record 包代码分解
EventBroadcaster
EventBroadcaster 是event处理的中间组件,可以介于一个EventSinker
开始一个EventBroadcaster。基于同一个EventBroadcaster
创建的Recorder
可以在任何时间记录事件。Broadcaster负责将事件消费并存储到Sinker
中。
EventBroadcaster的接口如下所示:
// EventBroadcaster knows how to receive events and send them to any EventSink, watcher, or log.
type EventBroadcaster interface {
// StartEventWatcher starts sending events received from this EventBroadcaster to the given
// event handler function. The return value can be ignored or used to stop recording, if
// desired.
//添加一个事件监听器
StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface
// StartRecordingToSink starts sending events received from this EventBroadcaster to the given
// sink. The return value can be ignored or used to stop recording, if desired.
// 开始将数据写入到sinker中
StartRecordingToSink(sink EventSink) watch.Interface
// StartLogging starts sending events received from this EventBroadcaster to the given logging
// function. The return value can be ignored or used to stop recording, if desired.
//将事件写入到日志中
StartLogging(logf func(format string, args ...interface{})) watch.Interface
// StartStructuredLogging starts sending events received from this EventBroadcaster to the structured
// logging function. The return value can be ignored or used to stop recording, if desired.
// 按照structed形式记录事件
StartStructuredLogging(verbosity klog.Level) watch.Interface
// NewRecorder returns an EventRecorder that can be used to send events to this EventBroadcaster
// with the event source set to the given event source.
// 新建一个Recorder,后续基于此Recorder记录的事件都会写入到存储中
NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder
// Shutdown shuts down the broadcaster
// 结束
Shutdown()
}
具体的实现如下所示:
type eventBroadcasterImpl struct {
*watch.Broadcaster // 事件广播器,recorder会将数据写入到这里,eventBroadercaster会开启单独的监听协程完成数据处理
sleepDuration time.Duration //每次发送到sinker后失败需要等待的时间
options CorrelatorOptions // 聚合与改正相关的参数
}
// StartEventWatcher starts sending events received from this EventBroadcaster to the given event handler function.
// The return value can be ignored or used to stop recording, if desired.
// 开始一个监听器
func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface {
//新建一个监听器,这样底层的broadcater之间接收到数据后,就可以通知此watcher
watcher := e.Watch()
go func() {
defer utilruntime.HandleCrash()
for watchEvent := range watcher.ResultChan() {
event, ok := watchEvent.Object.(*v1.Event)
if !ok {
// This is all local, so there's no reason this should
// ever happen.
continue
}
eventHandler(event)
}
}()
return watcher
}
// StartRecordingToSink starts sending events received from the specified eventBroadcaster to the given sink.
// The return value can be ignored or used to stop recording, if desired.
// TODO: make me an object with parameterizable queue length and retry interval
// 开始向Sinker中写入
func (e *eventBroadcasterImpl) StartRecordingToSink(sink EventSink) watch.Interface {
// 新建一个改写器
eventCorrelator := NewEventCorrelatorWithOptions(e.options)
return e.StartEventWatcher(
func(event *v1.Event) {
// 将数据写入到sinker中
recordToSink(sink, event, eventCorrelator, e.sleepDuration)
})
}
func recordToSink(sink EventSink, event *v1.Event, eventCorrelator *EventCorrelator, sleepDuration time.Duration) {
// Make a copy before modification, because there could be multiple listeners.
// Events are safe to copy like this.
eventCopy := *event
event = &eventCopy
// 基于新建的corrector处理下数据
result, err := eventCorrelator.EventCorrelate(event)
if err != nil {
utilruntime.HandleError(err)
}
// 如果需要跳过,则直接跳过
if result.Skip {
return
}
tries := 0
for {
//开始写如数据到sinker
if recordEvent(sink, result.Event, result.Patch, result.Event.Count > 1, eventCorrelator) {
//如果成功则直接返回
break
}
//重试
tries++
if tries >= maxTriesPerEvent {
klog.Errorf("Unable to write event '%#v' (retry limit exceeded!)", event)
break
}
// Randomize the first sleep so that various clients won't all be
// synced up if the master goes down.
//第一次增加一些随机事件,这样大部分APIServer访问不会同时发生
if tries == 1 {
time.Sleep(time.Duration(float64(sleepDuration) * rand.Float64()))
} else {
time.Sleep(sleepDuration)
}
}
}
// recordEvent attempts to write event to a sink. It returns true if the event
// was successfully recorded or discarded, false if it should be retried.
// If updateExistingEvent is false, it creates a new event, otherwise it updates
// existing event.
// 尝试写数据到sinker中
func recordEvent(sink EventSink, event *v1.Event, patch []byte, updateExistingEvent bool, eventCorrelator *EventCorrelator) bool {
var newEvent *v1.Event
var err error
// 似乎是对于eventSeries的处理,但是没有找到series的打印入口
if updateExistingEvent {
newEvent, err = sink.Patch(event, patch)
}
// Update can fail because the event may have been removed and it no longer exists.
if !updateExistingEvent || (updateExistingEvent && util.IsKeyNotFoundError(err)) {
//如果不是更新操作,或者更新过程中发现错误,则新建
// Making sure that ResourceVersion is empty on creation
event.ResourceVersion = ""
newEvent, err = sink.Create(event)
}
if err == nil {
// we need to update our event correlator with the server returned state to handle name/resourceversion
//否则更新
eventCorrelator.UpdateState(newEvent)
return true
}
// If we can't contact the server, then hold everything while we keep trying.
// Otherwise, something about the event is malformed and we should abandon it.
switch err.(type) {
case *restclient.RequestConstructionError:
// We will construct the request the same next time, so don't keep trying.
klog.Errorf("Unable to construct event '%#v': '%v' (will not retry!)", event, err)
return true
case *errors.StatusError:
if errors.IsAlreadyExists(err) {
klog.V(5).Infof("Server rejected event '%#v': '%v' (will not retry!)", event, err)
} else {
klog.Errorf("Server rejected event '%#v': '%v' (will not retry!)", event, err)
}
return true
case *errors.UnexpectedObjectError:
// We don't expect this; it implies the server's response didn't match a
// known pattern. Go ahead and retry.
default:
// This case includes actual http transport errors. Go ahead and retry.
}
klog.Errorf("Unable to write event: '%#v': '%v'(may retry after sleeping)", event, err)
return false
}
Recorder
//recorder 实现
type recorderImpl struct {
scheme *runtime.Scheme //scheme 用于解析某个对象GVR等信息
source v1.EventSource // 事件的创造者
*watch.Broadcaster //将消息发送到Broadcaster
clock clock.Clock //时钟
}
//创建事件
func (recorder *recorderImpl) generateEvent(object runtime.Object, annotations map[string]string, eventtype, reason, message string) {
//创建索引对象
ref, err := ref.GetReference(recorder.scheme, object)
if err != nil {
klog.Errorf("Could not construct reference to: '%#v' due to: '%v'. Will not report event: '%v' '%v' '%v'", object, err, eventtype, reason, message)
return
}
// 只能是warninng或者normal
if !util.ValidateEventType(eventtype) {
klog.Errorf("Unsupported event type: '%v'", eventtype)
return
}
//新建一个对象
event := recorder.makeEvent(ref, annotations, eventtype, reason, message)
//设置来源
event.Source = recorder.source
// NOTE: events should be a non-blocking operation, but we also need to not
// put this in a goroutine, otherwise we'll race to write to a closed channel
// when we go to shut down this broadcaster. Just drop events if we get overloaded,
// and log an error if that happens (we've configured the broadcaster to drop
// outgoing events anyway).
//发送或者丢弃事件,调用底层broadcaster方法,触发整理逻辑
if sent := recorder.ActionOrDrop(watch.Added, event); !sent {
klog.Errorf("unable to record event: too many queued events, dropped event %#v", event)
}
}
//发送一个事件
func (recorder *recorderImpl) Event(object runtime.Object, eventtype, reason, message string) {
recorder.generateEvent(object, nil, eventtype, reason, message)
}
func (recorder *recorderImpl) Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{}) {
recorder.Event(object, eventtype, reason, fmt.Sprintf(messageFmt, args...))
}
func (recorder *recorderImpl) AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{}) {
recorder.generateEvent(object, annotations, eventtype, reason, fmt.Sprintf(messageFmt, args...))
}
//创建一个事件对象
func (recorder *recorderImpl) makeEvent(ref *v1.ObjectReference, annotations map[string]string, eventtype, reason, message string) *v1.Event {
t := metav1.Time{Time: recorder.clock.Now()}
namespace := ref.Namespace
if namespace == "" {
namespace = metav1.NamespaceDefault
}
return &v1.Event{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("%v.%x", ref.Name, t.UnixNano()),
Namespace: namespace,
Annotations: annotations,
},
InvolvedObject: *ref,
Reason: reason,
Message: message,
FirstTimestamp: t,
LastTimestamp: t,
Count: 1,
Type: eventtype,
}
}
Sinker
// EventSink knows how to store events (client.Client implements it.)
// EventSink must respect the namespace that will be embedded in 'event'.
// It is assumed that EventSink will return the same sorts of errors as
// pkg/client's REST client.
// 事件存储接口,可创建,可以更新,可删除
type EventSink interface {
Create(event *v1.Event) (*v1.Event, error)
Update(event *v1.Event) (*v1.Event, error)
Patch(oldEvent *v1.Event, data []byte) (*v1.Event, error)
}
可以基于k8s.io/client-go/kubernetes/typed/core/v1
包的EventSinkImpl
的实现
sinker := typedv1core.EventSinkImpl{Interface: client.CoreV1().Events("")}
EventCorrelator
可以对Event做聚合或者做限流。
限流器的实现
// getSpamKey builds unique event key based on source, involvedObject
// 限流器的Key
func getSpamKey(event *v1.Event) string {
return strings.Join([]string{
event.Source.Component,
event.Source.Host,
event.InvolvedObject.Kind,
event.InvolvedObject.Namespace,
event.InvolvedObject.Name,
string(event.InvolvedObject.UID),
event.InvolvedObject.APIVersion,
},
"")
}
// EventFilterFunc is a function that returns true if the event should be skipped
type EventFilterFunc func(event *v1.Event) bool
// EventSourceObjectSpamFilter is responsible for throttling
// the amount of events a source and object can produce.
//具体实现
type EventSourceObjectSpamFilter struct {
sync.RWMutex
// the cache that manages last synced state
// cache
cache *lru.Cache
// burst is the amount of events we allow per source + object
burst int
// qps is the refill rate of the token bucket in queries per second
qps float32
// clock is used to allow for testing over a time interval
clock clock.Clock
}
// NewEventSourceObjectSpamFilter allows burst events from a source about an object with the specified qps refill.
func NewEventSourceObjectSpamFilter(lruCacheSize, burst int, qps float32, clock clock.Clock) *EventSourceObjectSpamFilter {
return &EventSourceObjectSpamFilter{
cache: lru.New(lruCacheSize),
burst: burst,
qps: qps,
clock: clock,
}
}
// spamRecord holds data used to perform spam filtering decisions.
type spamRecord struct {
// rateLimiter controls the rate of events about this object
rateLimiter flowcontrol.RateLimiter
}
// Filter controls that a given source+object are not exceeding the allowed rate.
func (f *EventSourceObjectSpamFilter) Filter(event *v1.Event) bool {
var record spamRecord
// controls our cached information about this event (source+object)
// 拿到key
eventKey := getSpamKey(event)
// do we have a record of similar events in our cache?
f.Lock()
defer f.Unlock()
value, found := f.cache.Get(eventKey)
if found {
record = value.(spamRecord)
}
// verify we have a rate limiter for this record
if record.rateLimiter == nil {
//令牌桶限流
record.rateLimiter = flowcontrol.NewTokenBucketRateLimiterWithClock(f.qps, f.burst, f.clock)
}
// ensure we have available rate
filter := !record.rateLimiter.TryAccept()
// update the cache
f.cache.Add(eventKey, record)
return filter
}
聚合器
// EventAggregatorKeyFunc is responsible for grouping events for aggregation
// It returns a tuple of the following:
// aggregateKey - key the identifies the aggregate group to bucket this event
// localKey - key that makes this event in the local group
type EventAggregatorKeyFunc func(event *v1.Event) (aggregateKey string, localKey string)
// EventAggregatorByReasonFunc aggregates events by exact match on event.Source, event.InvolvedObject, event.Type,
// event.Reason, event.ReportingController and event.ReportingInstance
//搞一个聚合key
func EventAggregatorByReasonFunc(event *v1.Event) (string, string) {
return strings.Join([]string{
event.Source.Component,
event.Source.Host,
event.InvolvedObject.Kind,
event.InvolvedObject.Namespace,
event.InvolvedObject.Name,
string(event.InvolvedObject.UID),
event.InvolvedObject.APIVersion,
event.Type,
event.Reason,
event.ReportingController,
event.ReportingInstance,
},
""), event.Message
}
// EventAggregatorMessageFunc is responsible for producing an aggregation message
type EventAggregatorMessageFunc func(event *v1.Event) string
// EventAggregratorByReasonMessageFunc returns an aggregate message by prefixing the incoming message
// 聚合之后使用的消息
func EventAggregatorByReasonMessageFunc(event *v1.Event) string {
return "(combined from similar events): " + event.Message
}
// EventAggregator identifies similar events and aggregates them into a single event
type EventAggregator struct {
sync.RWMutex
// The cache that manages aggregation state
// cache中存储record
cache *lru.Cache
// The function that groups events for aggregation
// 返回2个string,第一个作为cache外层的key,第二个作为record内部的key
keyFunc EventAggregatorKeyFunc
// The function that generates a message for an aggregate event
// 当信息被聚合后,应该如何显示信息
messageFunc EventAggregatorMessageFunc
// The maximum number of events in the specified interval before aggregation occurs
// record中多于多少个events时会聚合
maxEvents uint
// The amount of time in seconds that must transpire since the last occurrence of a similar event before it's considered new
// event最大保存时间
maxIntervalInSeconds uint
// clock is used to allow for testing over a time interval
clock clock.Clock
}
// NewEventAggregator returns a new instance of an EventAggregator
func NewEventAggregator(lruCacheSize int, keyFunc EventAggregatorKeyFunc, messageFunc EventAggregatorMessageFunc,
maxEvents int, maxIntervalInSeconds int, clock clock.Clock) *EventAggregator {
return &EventAggregator{
cache: lru.New(lruCacheSize), //存储对象多少
keyFunc: keyFunc,// 聚合key,localkey的产生方法
messageFunc: messageFunc, // 当消息需要聚合时,聚合信息产生方法
maxEvents: uint(maxEvents), //单个record event最多数量
maxIntervalInSeconds: uint(maxIntervalInSeconds), // 最大事件缓存事件
clock: clock,
}
}
// aggregateRecord holds data used to perform aggregation decisions
type aggregateRecord struct {
// we track the number of unique local keys we have seen in the aggregate set to know when to actually aggregate
// if the size of this set exceeds the max, we know we need to aggregate
// record内部的多个local key
localKeys sets.String
// The last time at which the aggregate was recorded
lastTimestamp metav1.Time
}
// EventAggregate checks if a similar event has been seen according to the
// aggregation configuration (max events, max interval, etc) and returns:
//
// - The (potentially modified) event that should be created
// - The cache key for the event, for correlation purposes. This will be set to
// the full key for normal events, and to the result of
// EventAggregatorMessageFunc for aggregate events.
// 聚合方法
func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) {
now := metav1.NewTime(e.clock.Now())
var record aggregateRecord
// eventKey is the full cache key for this event
// 一个event的全部信息key,包括message和其他元数据
eventKey := getEventKey(newEvent)
// aggregateKey is for the aggregate event, if one is needed.
//默认情况下aggregateKey 不包含 message,localKey为message,也就是说按照除了message的元数据做record分类,基于message做record内记录
aggregateKey, localKey := e.keyFunc(newEvent)
// Do we have a record of similar events in our cache?
e.Lock()
defer e.Unlock()
//从缓存中获取记录
value, found := e.cache.Get(aggregateKey)
if found {
record = value.(aggregateRecord)
}
// Is the previous record too old? If so, make a fresh one. Note: if we didn't
// find a similar record, its lastTimestamp will be the zero value, so we
// create a new one in that case.
maxInterval := time.Duration(e.maxIntervalInSeconds) * time.Second
interval := now.Time.Sub(record.lastTimestamp.Time)
// 如果事件太长了,就当没有任何event发生过
if interval > maxInterval {
record = aggregateRecord{localKeys: sets.NewString()}
}
// Write the new event into the aggregation record and put it on the cache
//加入一条localkey
record.localKeys.Insert(localKey)
// 更新时间
record.lastTimestamp = now
// 增加记录
e.cache.Add(aggregateKey, record)
// If we are not yet over the threshold for unique events, don't correlate them
// 如果单个record中的localKey数量没有限流,则正常增加
if uint(record.localKeys.Len()) < e.maxEvents {
// eventKey为圈梁数据
return newEvent, eventKey
}
// do not grow our local key set any larger than max
// 删除任何一个,因为刚刚添加了一个,所以不会影响限流
record.localKeys.PopAny()
// create a new aggregate event, and return the aggregateKey as the cache key
// (so that it can be overwritten.)
// 新建一个对象
eventCopy := &v1.Event{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("%v.%x", newEvent.InvolvedObject.Name, now.UnixNano()),
Namespace: newEvent.Namespace,
},
Count: 1, // 将数值设置为1,表示后期需要不断更新操作
FirstTimestamp: now,
InvolvedObject: newEvent.InvolvedObject,
LastTimestamp: now,
Message: e.messageFunc(newEvent),
Type: newEvent.Type,
Reason: newEvent.Reason,
Source: newEvent.Source,
}
// 返回,copyEvent,并返回聚合的key,这样可以和其他限流的对象公用一个事件,也就是后面会走更新操作
return eventCopy, aggregateKey
}
eventLogger
记录已经发生的事件,查看事件是否存在,如果已经存在了则尽力更新事件。
// eventLogger logs occurrences of an event
type eventLogger struct {
sync.RWMutex
cache *lru.Cache
clock clock.Clock
}
// newEventLogger observes events and counts their frequencies
func newEventLogger(lruCacheEntries int, clock clock.Clock) *eventLogger {
return &eventLogger{cache: lru.New(lruCacheEntries), clock: clock}
}
// eventObserve records an event, or updates an existing one if key is a cache hit
// 查看key是否存在,如果已经存在,并且count>0 则生成patch需要的body
func (e *eventLogger) eventObserve(newEvent *v1.Event, key string) (*v1.Event, []byte, error) {
var (
patch []byte
err error
)
eventCopy := *newEvent
event := &eventCopy
e.Lock()
defer e.Unlock()
// Check if there is an existing event we should update
// 获得记录
lastObservation := e.lastEventObservationFromCache(key)
// If we found a result, prepare a patch
// 大于0, 则更新
if lastObservation.count > 0 {
// update the event based on the last observation so patch will work as desired
event.Name = lastObservation.name
event.ResourceVersion = lastObservation.resourceVersion
event.FirstTimestamp = lastObservation.firstTimestamp
event.Count = int32(lastObservation.count) + 1
eventCopy2 := *event
eventCopy2.Count = 0
eventCopy2.LastTimestamp = metav1.NewTime(time.Unix(0, 0))
eventCopy2.Message = ""
newData, _ := json.Marshal(event)
oldData, _ := json.Marshal(eventCopy2)
patch, err = strategicpatch.CreateTwoWayMergePatch(oldData, newData, event)
}
// record our new observation
// 由于Record内的部分限流key,长时间不存在,增加过程会将老对象删除
e.cache.Add(
key,
eventLog{
count: uint(event.Count),
firstTimestamp: event.FirstTimestamp,
name: event.Name,
resourceVersion: event.ResourceVersion,
},
)
return event, patch, err
}
// updateState updates its internal tracking information based on latest server state
// 更新最新事件
func (e *eventLogger) updateState(event *v1.Event) {
key := getEventKey(event)
e.Lock()
defer e.Unlock()
// record our new observation
e.cache.Add(
key,
eventLog{
count: uint(event.Count),
firstTimestamp: event.FirstTimestamp,
name: event.Name,
resourceVersion: event.ResourceVersion,
},
)
}
// lastEventObservationFromCache returns the event from the cache, reads must be protected via external lock
func (e *eventLogger) lastEventObservationFromCache(key string) eventLog {
value, ok := e.cache.Get(key)
if ok {
observationValue, ok := value.(eventLog)
if ok {
return observationValue
}
}
return eventLog{}
}
EventCorrelator
func NewEventCorrelator(clock clock.Clock) *EventCorrelator {
cacheSize := maxLruCacheEntries
spamFilter := NewEventSourceObjectSpamFilter(cacheSize, defaultSpamBurst, defaultSpamQPS, clock)
return &EventCorrelator{
// 基于限流器做限流
filterFunc: spamFilter.Filter,
// 聚合器
aggregator: NewEventAggregator(
cacheSize,
EventAggregatorByReasonFunc,
EventAggregatorByReasonMessageFunc,
defaultAggregateMaxEvents,
defaultAggregateIntervalInSeconds,
clock),
// eventlogger
logger: newEventLogger(cacheSize, clock),
}
}
func NewEventCorrelatorWithOptions(options CorrelatorOptions) *EventCorrelator {
optionsWithDefaults := populateDefaults(options)
spamFilter := NewEventSourceObjectSpamFilter(optionsWithDefaults.LRUCacheSize,
optionsWithDefaults.BurstSize, optionsWithDefaults.QPS, optionsWithDefaults.Clock)
return &EventCorrelator{
filterFunc: spamFilter.Filter,
aggregator: NewEventAggregator(
optionsWithDefaults.LRUCacheSize,
optionsWithDefaults.KeyFunc,
optionsWithDefaults.MessageFunc,
optionsWithDefaults.MaxEvents,
optionsWithDefaults.MaxIntervalInSeconds,
optionsWithDefaults.Clock),
logger: newEventLogger(optionsWithDefaults.LRUCacheSize, optionsWithDefaults.Clock),
}
}
// populateDefaults populates the zero value options with defaults
// 增加默认值
func populateDefaults(options CorrelatorOptions) CorrelatorOptions {
if options.LRUCacheSize == 0 {
options.LRUCacheSize = maxLruCacheEntries
}
if options.BurstSize == 0 {
options.BurstSize = defaultSpamBurst
}
if options.QPS == 0 {
options.QPS = defaultSpamQPS
}
if options.KeyFunc == nil {
options.KeyFunc = EventAggregatorByReasonFunc
}
if options.MessageFunc == nil {
options.MessageFunc = EventAggregatorByReasonMessageFunc
}
if options.MaxEvents == 0 {
options.MaxEvents = defaultAggregateMaxEvents
}
if options.MaxIntervalInSeconds == 0 {
options.MaxIntervalInSeconds = defaultAggregateIntervalInSeconds
}
if options.Clock == nil {
options.Clock = clock.RealClock{}
}
return options
}
// EventCorrelate filters, aggregates, counts, and de-duplicates all incoming events
func (c *EventCorrelator) EventCorrelate(newEvent *v1.Event) (*EventCorrelateResult, error) {
if newEvent == nil {
return nil, fmt.Errorf("event is nil")
}
// 拿到聚合key aggregateEvent,
//如果没有发生限流,则aggregateEvent所谓原始event,ckey为event全部字段生成的key
//如果生成限流,则aggregateEvent为聚合厚度额event,key为aggregateKey
aggregateEvent, ckey := c.aggregator.EventAggregate(newEvent)
// 查看事件是否存在,并且是否是聚合后的key,如果是聚合后的key,则生成patch需要更新的数据
observedEvent, patch, err := c.logger.eventObserve(aggregateEvent, ckey)
if c.filterFunc(observedEvent) {
return &EventCorrelateResult{Skip: true}, nil
}
return &EventCorrelateResult{Event: observedEvent, Patch: patch}, err
}
Documentation ¶
There is no documentation for this package.
Click to show internal directories.
Click to hide internal directories.