Documentation ¶
Overview ¶
Package rsa implements RSA encryption as specified in PKCS#1.
Index ¶
- Constants
- Variables
- func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, ...) (msg []byte, err error)
- func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error)
- func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error)
- func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error)
- func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error)
- func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error)
- func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, ...) (s []byte, err error)
- func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error)
- func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error
- type CRTValue
- type PSSOptions
- type PrecomputedValues
- type PrivateKey
- type PublicKey
Constants ¶
const ( // PSSSaltLengthAuto causes the salt in a PSS signature to be as large // as possible when signing, and to be auto-detected when verifying. PSSSaltLengthAuto = 0 // PSSSaltLengthEqualsHash causes the salt length to equal the length // of the hash used in the signature. PSSSaltLengthEqualsHash = -1 )
Variables ¶
var ErrDecryption = errors.New("crypto/rsa: decryption error")
ErrDecryption represents a failure to decrypt a message. It is deliberately vague to avoid adaptive attacks.
var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
ErrMessageTooLong is returned when attempting to encrypt a message which is too large for the size of the public key.
var ErrVerification = errors.New("crypto/rsa: verification error")
ErrVerification represents a failure to verify a signature. It is deliberately vague to avoid adaptive attacks.
Functions ¶
func DecryptOAEP ¶
func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error)
DecryptOAEP decrypts ciphertext using RSA-OAEP. If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
func DecryptPKCS1v15 ¶
DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
func DecryptPKCS1v15SessionKey ¶
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error)
DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. It returns an error if the ciphertext is the wrong length or if the ciphertext is greater than the public modulus. Otherwise, no error is returned. If the padding is valid, the resulting plaintext message is copied into key. Otherwise, key is unchanged. These alternatives occur in constant time. It is intended that the user of this function generate a random session key beforehand and continue the protocol with the resulting value. This will remove any possibility that an attacker can learn any information about the plaintext. See “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology (Crypto '98).
func EncryptOAEP ¶
func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error)
EncryptOAEP encrypts the given message with RSA-OAEP. The message must be no longer than the length of the public modulus less twice the hash length plus 2.
func EncryptPKCS1v15 ¶
EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. The message must be no longer than the length of the public modulus minus 11 bytes. WARNING: use of this function to encrypt plaintexts other than session keys is dangerous. Use RSA OAEP in new protocols.
func SignPKCS1v15 ¶
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error)
SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that hashed must be the result of hashing the input message using the given hash function.
func SignPSS ¶
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error)
SignPSS calculates the signature of hashed using RSASSA-PSS [1]. Note that hashed must be the result of hashing the input message using the given hash funcion. The opts argument may be nil, in which case sensible defaults are used.
func VerifyPKCS1v15 ¶
VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. hashed is the result of hashing the input message using the given hash function and sig is the signature. A valid signature is indicated by returning a nil error.
Types ¶
type CRTValue ¶
type CRTValue struct { Exp *big.Int // D mod (prime-1). Coeff *big.Int // R·Coeff ≡ 1 mod Prime. R *big.Int // product of primes prior to this (inc p and q). }
CRTValue contains the precomputed chinese remainder theorem values.
type PSSOptions ¶
type PSSOptions struct { // SaltLength controls the length of the salt used in the PSS // signature. It can either be a number of bytes, or one of the special // PSSSaltLength constants. SaltLength int }
PSSOptions contains options for creating and verifying PSS signatures.
type PrecomputedValues ¶
type PrecomputedValues struct {
Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
Qinv *big.Int // Q^-1 mod Q
// CRTValues is used for the 3rd and subsequent primes. Due to a
// historical accident, the CRT for the first two primes is handled
// differently in PKCS#1 and interoperability is sufficiently
// important that we mirror this.
CRTValues []CRTValue
}
type PrivateKey ¶
type PrivateKey struct { PublicKey // public part. D *big.Int // private exponent Primes []*big.Int // prime factors of N, has >= 2 elements. // Precomputed contains precomputed values that speed up private // operations, if available. Precomputed PrecomputedValues }
A PrivateKey represents an RSA key
func GenerateKey ¶
func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error)
GenerateKey generates an RSA keypair of the given bit size.
func GenerateMultiPrimeKey ¶
GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit size, as suggested in [1]. Although the public keys are compatible (actually, indistinguishable) from the 2-prime case, the private keys are not. Thus it may not be possible to export multi-prime private keys in certain formats or to subsequently import them into other code.
Table 1 in [2] suggests maximum numbers of primes for a given size.
[1] US patent 4405829 (1972, expired) [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
func (*PrivateKey) Precompute ¶
func (priv *PrivateKey) Precompute()
Precompute performs some calculations that speed up private key operations in the future.
func (*PrivateKey) Validate ¶
func (priv *PrivateKey) Validate() error
Validate performs basic sanity checks on the key. It returns nil if the key is valid, or else an error describing a problem.