Documentation ¶
Index ¶
- Variables
- func CompareG1(a bn256.G1, b bn256.G1) bool
- func CompareG2(a bn256.G2, b bn256.G2) bool
- func EvaluatePoly(f Polynomial, x *big.Int, degree int) (big.Int, error)
- func Lagrange(f []big.Int, x []big.Int, degree int) big.Int
- func LagrangePub(cmt []bn256.G2, x []big.Int, degree int) bn256.G2
- func LagrangeSig(sig []bn256.G1, x []big.Int, degree int) bn256.G1
- func RScodeVerify(P []bn256.G2, x []big.Int, deg int) bool
- func VerifyDLEQ(proof DLEQproof, gbase bn256.G1, hbase bn256.G2, x bn256.G1, y bn256.G2) bool
- type DLEQproof
- type DLEQproofFlat
- type Polynomial
Constants ¶
This section is empty.
Variables ¶
View Source
var BigOne = bigOne
View Source
var BigZero = bigZero
View Source
var Gbase = gbase
View Source
var Hbase = hbase
Functions ¶
func EvaluatePoly ¶
Calculate polynomial's evaluation at some point
func LagrangePub ¶
Lagrange's polynomial interpolation algorithm: group public key share --> group public key
func LagrangeSig ¶
Lagrange's polynomial interpolation algorithm: group signature share --> group signature
func RScodeVerify ¶
RScode Verification function
func VerifyDLEQ ¶
to verify DLEQ proof
Types ¶
type DLEQproof ¶
type DLEQproof struct {
// contains filtered or unexported fields
}
Structure defination for DLEQ proof: a zero knowledge proof for index
func (*DLEQproof) ProofFlatToProof ¶
func (p1 *DLEQproof) ProofFlatToProof(d *DLEQproofFlat)
type DLEQproofFlat ¶
func ProofToProofFlat ¶
func ProofToProofFlat(d *DLEQproof) DLEQproofFlat
Click to show internal directories.
Click to hide internal directories.