trustmachine

package module
v0.0.0-...-f64b636 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Aug 23, 2017 License: GPL-3.0 Imports: 5 Imported by: 0

README

trust-tech.org

Trustmachine Go -- Test Stage

TrustMachine project aims to provide with global dececntralized trust service and it will be implemented in a typed functional language based on the Blackpaper. Currently we are choosing ethereum's golang implementation of Yellowpaper to secure the Testnet of Trustmachine. Another implementation to secure the network is parity's rust implementation. We will switch to mainnet once the testnet is stabalized with our own implementation. It is assumed that the project will change massively over time.

API Reference Gitter

Automated builds are available for stable releases and the unstable master branch. Binary archives are published at https://trust.thepleasurable.com/downloads/.

Building the source

For prerequisites and detailed build instructions please read the Installation Instructions on the wiki.

Building gotrust requires both a Go (version 1.7 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make gotrust

or, to build the full suite of utilities:

make all

Executables

The go-trustmachine project comes with several wrappers/executables found in the cmd directory.

Command Description
gotrust Our main Trustmachine CLI client. It is the entry point into the Trustmachine network (main-, test- or private net), capable of running as a full node (default) archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Trustmachine network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. gotrust --help and the CLI Wiki page for command line options
abigen Source code generator to convert Trustmachine contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain Trustmachine contract ABIs with expanded functionality if the contract bytecode is also available. However it also accepts Solidity source files, making development much more streamlined. Please see our Native DApps wiki page for details.
bootnode Stripped down version of our Trustmachine client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks.
disasm Bytecode disassembler to convert EVM (Trustmachine Virtual Machine) bytecode into more user friendly assembly-like opcodes (e.g. `echo "6001"
evm Developer utility version of the EVM (Trustmachine Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow insolated, fine-grained debugging of EVM opcodes (e.g. evm --code 60ff60ff --debug).
gotrustrpctest Developer utility tool to support our trustmachine/rpc-test test suite which validates baseline conformity to the Trustmachine JSON RPC specs. Please see the test suite's readme for details.
rlpdump Developer utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Trustmachine protocol both network as well as consensus wise) to user friendlier hierarchical representation (e.g. rlpdump --hex CE0183FFFFFFC4C304050583616263).
swarm swarm daemon and tools. This is the entrypoint for the swarm network. swarm --help for command line options and subcommands. See https://swarm-guide.readthedocs.io for swarm documentation.

Running gotrust

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page), but we've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own Gotrust instance.

Full node on the main Trustmachine network

By far the most common scenario is people wanting to simply interact with the Trustmachine network: create accounts; transfer funds; deploy and interact with contracts. For this particular use-case the user doesn't care about years-old historical data, so we can fast-sync quickly to the current state of the network. To do so:

$ gotrust --fast --cache=512 console

This command will:

  • Start gotrust in fast sync mode (--fast), causing it to download more data in exchange for avoiding processing the entire history of the Trustmachine network, which is very CPU intensive.
  • Bump the memory allowance of the database to 512MB (--cache=512), which can help significantly in sync times especially for HDD users. This flag is optional and you can set it as high or as low as you'd like, though we'd recommend the 512MB - 2GB range.
  • Start up Gotrust's built-in interactive JavaScript console, (via the trailing console subcommand) through which you can invoke all official web3 methods as well as Gotrust's own management APIs. This too is optional and if you leave it out you can always attach to an already running Gotrust instance with gotrust attach.

Full node on the Trustmachine test network

Transitioning towards developers, if you'd like to play around with creating Trustmachine contracts, you almost certainly would like to do that without any real money involved until you get the hang of the entire system. In other words, instead of attaching to the main network, you want to join the test network with your node, which is fully equivalent to the main network, but with play-Trust only.

$ gotrust --testnet --fast --cache=512 console

The --fast, --cache flags and console subcommand have the exact same meaning as above and they are equally useful on the testnet too. Please see above for their explanations if you've skipped to here.

Specifying the --testnet flag however will reconfigure your Gotrust instance a bit:

  • Instead of using the default data directory (~/.trustmachine on Linux for example), Gotrust will nest itself one level deeper into a testnet subfolder (~/.trustmachine/testnet on Linux). Note, on OSX and Linux this also means that attaching to a running testnet node requires the use of a custom endpoint since gotrust attach will try to attach to a production node endpoint by default. E.g. gotrust attach <datadir>/testnet/gotrust.ipc. Windows users are not affected by this.
  • Instead of connecting the main Trustmachine network, the client will connect to the test network, which uses different P2P bootnodes, different network IDs and genesis states.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, Gotrust will by default correctly separate the two networks and will not make any accounts available between them.

Docker quick start

One of the quickest ways to get Trustmachine up and running on your machine is by using Docker:

docker run -d --name trustmachine-node -v /Users/alice/trustmachine:/root \
           -p 8545:8545 -p 30303:30303 \
           trustmachine/client-go --fast --cache=512

This will start gotrust in fast sync mode with a DB memory allowance of 512MB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an alpine tag available for a slim version of the image.

Programatically interfacing Gotrust nodes

As a developer, sooner rather than later you'll want to start interacting with Gotrust and the Trustmachine network via your own programs and not manually through the console. To aid this, Gotrust has built in support for a JSON-RPC based APIs (standard APIs and Gotrust specific APIs). These can be exposed via HTTP, WebSockets and IPC (unix sockets on unix based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by Gotrust, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc Enable the HTTP-RPC server
  • --rpcaddr HTTP-RPC server listening interface (default: "localhost")
  • --rpcport HTTP-RPC server listening port (default: 8545)
  • --rpcapi API's offered over the HTTP-RPC interface (default: "entrust,net,web3")
  • --rpccorsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --wsaddr WS-RPC server listening interface (default: "localhost")
  • --wsport WS-RPC server listening port (default: 8546)
  • --wsapi API's offered over the WS-RPC interface (default: "entrust,net,web3")
  • --wsorigins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: "admin,debug,entrust,miner,net,personal,shh,txpool,web3")
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a Gotrust node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Trustmachine nodes with exposed APIs! Further, all browser tabs can access locally running webservers, so malicious webpages could try to subvert locally available APIs!

Operating a private network

Maintaining your own private network is more involved as a lot of configurations taken for granted in the official networks need to be manually set up.

Defining the private genesis state

First, you'll need to create the genesis state of your networks, which all nodes need to be aware of and agree upon. This consists of a small JSON file (e.g. call it genesis.json):

{
  "config": {
        "chainId": 0,
        "homesteadBlock": 0,
        "eip155Block": 0,
        "eip158Block": 0
    },
  "alloc"      : {},
  "coinbase"   : "0x0000000000000000000000000000000000000000",
  "difficulty" : "0x20000",
  "extraData"  : "",
  "gasLimit"   : "0x2fefd8",
  "nonce"      : "0x0000000000000042",
  "mixhash"    : "0x0000000000000000000000000000000000000000000000000000000000000000",
  "parentHash" : "0x0000000000000000000000000000000000000000000000000000000000000000",
  "timestamp"  : "0x00"
}

The above fields should be fine for most purposes, although we'd recommend changing the nonce to some random value so you prevent unknown remote nodes from being able to connect to you. If you'd like to pre-fund some accounts for easier testing, you can populate the alloc field with account configs:

"alloc": {
  "0x0000000000000000000000000000000000000001": {"balance": "111111111"},
  "0x0000000000000000000000000000000000000002": {"balance": "222222222"}
}

With the genesis state defined in the above JSON file, you'll need to initialize every Gotrust node with it prior to starting it up to ensure all blockchain parameters are correctly set:

$ gotrust init path/to/genesis.json
Creating the rendezvous point

With all nodes that you want to run initialized to the desired genesis state, you'll need to start a bootstrap node that others can use to find each other in your network and/or over the internet. The clean way is to configure and run a dedicated bootnode:

$ bootnode --genkey=boot.key
$ bootnode --nodekey=boot.key

With the bootnode online, it will display an enode URL that other nodes can use to connect to it and exchange peer information. Make sure to replace the displayed IP address information (most probably [::]) with your externally accessible IP to get the actual enode URL.

Note: You could also use a full fledged Gotrust node as a bootnode, but it's the less recommended way.

Starting up your member nodes

With the bootnode operational and externally reachable (you can try telnet <ip> <port> to ensure it's indeed reachable), start every subsequent Gotrust node pointed to the bootnode for peer discovery via the --bootnodes flag. It will probably also be desirable to keep the data directory of your private network separated, so do also specify a custom --datadir flag.

$ gotrust --datadir=path/to/custom/data/folder --bootnodes=<bootnode-enode-url-from-above>

Note: Since your network will be completely cut off from the main and test networks, you'll also need to configure a miner to process transactions and create new blocks for you.

Running a private miner

Mining on the public Trustmachine network is a complex task as it's only feasible using GPUs, requiring an OpenCL or CUDA enabled entrustminer instance. For information on such a setup, please consult the TrustMining subreddit and the Genoil miner repository.

In a private network setting however, a single CPU miner instance is more than enough for practical purposes as it can produce a stable stream of blocks at the correct intervals without needing heavy resources (consider running on a single thread, no need for multiple ones either). To start a Gotrust instance for mining, run it with all your usual flags, extended by:

$ gotrust <usual-flags> --mine --minerthreads=1 --trustbase=0x0000000000000000000000000000000000000000

Which will start mining bocks and transactions on a single CPU thread, crediting all proceedings to the account specified by --trustbase. You can further tune the mining by changing the default gas limit blocks converge to (--targetgaslimit) and the price transactions are accepted at (--gasprice).

Contribution

Thank you for considering to help out with the source code! We welcome contributions from anyone on the internet, and are grateful for even the smallest of fixes!

If you'd like to contribute to go-trustmachine, please fork, fix, commit and send a pull request for the maintainers to review and merge into the main code base. If you wish to submit more complex changes though, please check up with the core devs first on our gitter channel to ensure those changes are in line with the general philosophy of the project and/or get some early feedback which can make both your efforts much lighter as well as our review and merge procedures quick and simple.

Please make sure your contributions adhere to our coding guidelines:

  • Code must adhere to the official Go formatting guidelines (i.e. uses gofmt).
  • Code must be documented adhering to the official Go commentary guidelines.
  • Pull requests need to be based on and opened against the master branch.
  • Commit messages should be prefixed with the package(s) they modify.
    • E.g. "entrust, rpc: make trace configs optional"

Please see the Developers' Guide for more details on configuring your environment, managing project dependencies and testing procedures.

License

The go-trustmachine library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The go-trustmachine binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.

Documentation

Overview

Package trustmachine defines interfaces for interacting with Trustmachine.

Index

Constants

This section is empty.

Variables

View Source
var NotFound = errors.New("not found")

NotFound is returned by API methods if the requested item does not exist.

Functions

This section is empty.

Types

type CallMsg

type CallMsg struct {
	From     common.Address  // the sender of the 'transaction'
	To       *common.Address // the destination contract (nil for contract creation)
	Gas      *big.Int        // if nil, the call executes with near-infinite gas
	GasPrice *big.Int        // wei <-> gas exchange ratio
	Value    *big.Int        // amount of wei sent along with the call
	Data     []byte          // input data, usually an ABI-encoded contract method invocation
}

CallMsg contains parameters for contract calls.

type ChainReader

type ChainReader interface {
	BlockByHash(ctx context.Context, hash common.Hash) (*types.Block, error)
	BlockByNumber(ctx context.Context, number *big.Int) (*types.Block, error)
	HeaderByHash(ctx context.Context, hash common.Hash) (*types.Header, error)
	HeaderByNumber(ctx context.Context, number *big.Int) (*types.Header, error)
	TransactionCount(ctx context.Context, blockHash common.Hash) (uint, error)
	TransactionInBlock(ctx context.Context, blockHash common.Hash, index uint) (*types.Transaction, error)

	// This method subscribes to notifications about changes of the head block of
	// the canonical chain.
	SubscribeNewHead(ctx context.Context, ch chan<- *types.Header) (Subscription, error)
}

ChainReader provides access to the blockchain. The methods in this interface access raw data from either the canonical chain (when requesting by block number) or any blockchain fork that was previously downloaded and processed by the node. The block number argument can be nil to select the latest canonical block. Reading block headers should be preferred over full blocks whenever possible.

The returned error is NotFound if the requested item does not exist.

type ChainStateReader

type ChainStateReader interface {
	BalanceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (*big.Int, error)
	StorageAt(ctx context.Context, account common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error)
	CodeAt(ctx context.Context, account common.Address, blockNumber *big.Int) ([]byte, error)
	NonceAt(ctx context.Context, account common.Address, blockNumber *big.Int) (uint64, error)
}

ChainStateReader wraps access to the state trie of the canonical blockchain. Note that implementations of the interface may be unable to return state values for old blocks. In many cases, using CallContract can be preferable to reading raw contract storage.

type ChainSyncReader

type ChainSyncReader interface {
	SyncProgress(ctx context.Context) (*SyncProgress, error)
}

ChainSyncReader wraps access to the node's current sync status. If there's no sync currently running, it returns nil.

type ContractCaller

type ContractCaller interface {
	CallContract(ctx context.Context, call CallMsg, blockNumber *big.Int) ([]byte, error)
}

A ContractCaller provides contract calls, essentially transactions that are executed by the EVM but not mined into the blockchain. ContractCall is a low-level method to execute such calls. For applications which are structured around specific contracts, the abigen tool provides a nicer, properly typed way to perform calls.

type FilterQuery

type FilterQuery struct {
	FromBlock *big.Int         // beginning of the queried range, nil means genesis block
	ToBlock   *big.Int         // end of the range, nil means latest block
	Addresses []common.Address // restricts matches to events created by specific contracts

	// The Topic list restricts matches to particular event topics. Each event has a list
	// of topics. Topics matches a prefix of that list. An empty element slice matches any
	// topic. Non-empty elements represent an alternative that matches any of the
	// contained topics.
	//
	// Examples:
	// {} or nil          matches any topic list
	// {{A}}              matches topic A in first position
	// {{}, {B}}          matches any topic in first position, B in second position
	// {{A}}, {B}}        matches topic A in first position, B in second position
	// {{A, B}}, {C, D}}  matches topic (A OR B) in first position, (C OR D) in second position
	Topics [][]common.Hash
}

FilterQuery contains options for contact log filtering.

type GasEstimator

type GasEstimator interface {
	EstimateGas(ctx context.Context, call CallMsg) (usedGas *big.Int, err error)
}

GasEstimator wraps EstimateGas, which tries to estimate the gas needed to execute a specific transaction based on the pending state. There is no guarantee that this is the true gas limit requirement as other transactions may be added or removed by miners, but it should provide a basis for setting a reasonable default.

type GasPricer

type GasPricer interface {
	SuggestGasPrice(ctx context.Context) (*big.Int, error)
}

GasPricer wraps the gas price oracle, which monitors the blockchain to determine the optimal gas price given current fee market conditions.

type LogFilterer

type LogFilterer interface {
	FilterLogs(ctx context.Context, q FilterQuery) ([]types.Log, error)
	SubscribeFilterLogs(ctx context.Context, q FilterQuery, ch chan<- types.Log) (Subscription, error)
}

LogFilterer provides access to contract log events using a one-off query or continuous event subscription.

Logs received through a streaming query subscription may have Removed set to true, indicating that the log was reverted due to a chain reorganisation.

type PendingContractCaller

type PendingContractCaller interface {
	PendingCallContract(ctx context.Context, call CallMsg) ([]byte, error)
}

PendingContractCaller can be used to perform calls against the pending state.

type PendingStateEventer

type PendingStateEventer interface {
	SubscribePendingTransactions(ctx context.Context, ch chan<- *types.Transaction) (Subscription, error)
}

A PendingStateEventer provides access to real time notifications about changes to the pending state.

type PendingStateReader

type PendingStateReader interface {
	PendingBalanceAt(ctx context.Context, account common.Address) (*big.Int, error)
	PendingStorageAt(ctx context.Context, account common.Address, key common.Hash) ([]byte, error)
	PendingCodeAt(ctx context.Context, account common.Address) ([]byte, error)
	PendingNonceAt(ctx context.Context, account common.Address) (uint64, error)
	PendingTransactionCount(ctx context.Context) (uint, error)
}

A PendingStateReader provides access to the pending state, which is the result of all known executable transactions which have not yet been included in the blockchain. It is commonly used to display the result of ’unconfirmed’ actions (e.g. wallet value transfers) initiated by the user. The PendingNonceAt operation is a good way to retrieve the next available transaction nonce for a specific account.

type Subscription

type Subscription interface {
	// Unsubscribe cancels the sending of events to the data channel
	// and closes the error channel.
	Unsubscribe()
	// Err returns the subscription error channel. The error channel receives
	// a value if there is an issue with the subscription (e.g. the network connection
	// delivering the events has been closed). Only one value will ever be sent.
	// The error channel is closed by Unsubscribe.
	Err() <-chan error
}

Subscription represents an event subscription where events are delivered on a data channel.

type SyncProgress

type SyncProgress struct {
	StartingBlock uint64 // Block number where sync began
	CurrentBlock  uint64 // Current block number where sync is at
	HighestBlock  uint64 // Highest alleged block number in the chain
	PulledStates  uint64 // Number of state trie entries already downloaded
	KnownStates   uint64 // Total number os state trie entries known about
}

SyncProgress gives progress indications when the node is synchronising with the Trustmachine network.

type TransactionReader

type TransactionReader interface {
	// TransactionByHash checks the pool of pending transactions in addition to the
	// blockchain. The isPending return value indicates whether the transaction has been
	// mined yet. Note that the transaction may not be part of the canonical chain even if
	// it's not pending.
	TransactionByHash(ctx context.Context, txHash common.Hash) (tx *types.Transaction, isPending bool, err error)
	// TransactionReceipt returns the receipt of a mined transaction. Note that the
	// transaction may not be included in the current canonical chain even if a receipt
	// exists.
	TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error)
}

TransactionReader provides access to past transactions and their receipts. Implementations may impose arbitrary restrictions on the transactions and receipts that can be retrieved. Historic transactions may not be available.

Avoid relying on this interface if possible. Contract logs (through the LogFilterer interface) are more reliable and usually safer in the presence of chain reorganisations.

The returned error is NotFound if the requested item does not exist.

type TransactionSender

type TransactionSender interface {
	SendTransaction(ctx context.Context, tx *types.Transaction) error
}

TransactionSender wraps transaction sending. The SendTransaction method injects a signed transaction into the pending transaction pool for execution. If the transaction was a contract creation, the TransactionReceipt method can be used to retrieve the contract address after the transaction has been mined.

The transaction must be signed and have a valid nonce to be included. Consumers of the API can use package accounts to maintain local private keys and need can retrieve the next available nonce using PendingNonceAt.

Directories

Path Synopsis
Package accounts implements high level Trustmachine account management.
Package accounts implements high level Trustmachine account management.
abi
Package abi implements the Trustmachine ABI (Application Binary Interface).
Package abi implements the Trustmachine ABI (Application Binary Interface).
abi/bind
Package bind generates Trustmachine contract Go bindings.
Package bind generates Trustmachine contract Go bindings.
keystore
Package keystore implements encrypted storage of secp256k1 private keys.
Package keystore implements encrypted storage of secp256k1 private keys.
usbwallet
Package usbwallet implements support for USB hardware wallets.
Package usbwallet implements support for USB hardware wallets.
cmd
bootnode
bootnode runs a bootstrap node for the Trustmachine Discovery Protocol.
bootnode runs a bootstrap node for the Trustmachine Discovery Protocol.
evm
evm executes EVM code snippets.
evm executes EVM code snippets.
faucet
faucet is a Trust faucet backed by a light client.
faucet is a Trust faucet backed by a light client.
gotrust
gotrust is the official command-line client for Trustmachine.
gotrust is the official command-line client for Trustmachine.
internal/browser
Package browser provides utilities for interacting with users' browsers.
Package browser provides utilities for interacting with users' browsers.
puppentrust
puppentrust is a command to assemble and maintain private networks.
puppentrust is a command to assemble and maintain private networks.
rlpdump
rlpdump is a pretty-printer for RLP data.
rlpdump is a pretty-printer for RLP data.
swarm
Command bzzhash computes a swarm tree hash.
Command bzzhash computes a swarm tree hash.
utils
Package utils contains internal helper functions for go-trustmachine commands.
Package utils contains internal helper functions for go-trustmachine commands.
Package common contains various helper functions.
Package common contains various helper functions.
bitutil
Package bitutil implements fast bitwise operations.
Package bitutil implements fast bitwise operations.
compiler
Package compiler wraps the Solidity compiler executable (solc).
Package compiler wraps the Solidity compiler executable (solc).
hexutil
Package hexutil implements hex encoding with 0x prefix.
Package hexutil implements hex encoding with 0x prefix.
math
Package math provides integer math utilities.
Package math provides integer math utilities.
mclock
package mclock is a wrapper for a monotonic clock source
package mclock is a wrapper for a monotonic clock source
compression
rle
Package rle implements the run-length encoding used for Trustmachine data.
Package rle implements the run-length encoding used for Trustmachine data.
Package consensus implements different Trustmachine consensus engines.
Package consensus implements different Trustmachine consensus engines.
clique
Package clique implements the proof-of-authority consensus engine.
Package clique implements the proof-of-authority consensus engine.
entrustash
Package entrustash implements the entrustash proof-of-work consensus engine.
Package entrustash implements the entrustash proof-of-work consensus engine.
contracts
chequebook
Package chequebook package wraps the 'chequebook' Trustmachine smart contract.
Package chequebook package wraps the 'chequebook' Trustmachine smart contract.
ens
release
Package release contains the node service that tracks client releases.
Package release contains the node service that tracks client releases.
Package core implements the Trustmachine consensus protocol.
Package core implements the Trustmachine consensus protocol.
asm
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
state
Package state provides a caching layer atop the Trustmachine state trie.
Package state provides a caching layer atop the Trustmachine state trie.
types
Package types contains data types related to Trustmachine consensus.
Package types contains data types related to Trustmachine consensus.
vm
Package vm implements the Trustmachine Virtual Machine.
Package vm implements the Trustmachine Virtual Machine.
vm/runtime
Package runtime provides a basic execution model for executing EVM code.
Package runtime provides a basic execution model for executing EVM code.
bn256
Package bn256 implements a particular bilinear group at the 128-bit security level.
Package bn256 implements a particular bilinear group at the 128-bit security level.
secp256k1
Package secp256k1 wraps the bitcoin secp256k1 C library.
Package secp256k1 wraps the bitcoin secp256k1 C library.
Package entrust implements the Trustmachine protocol.
Package entrust implements the Trustmachine protocol.
downloader
Package downloader contains the manual full chain synchronisation.
Package downloader contains the manual full chain synchronisation.
fetcher
Package fetcher contains the block announcement based synchronisation.
Package fetcher contains the block announcement based synchronisation.
filters
Package filters implements an trustmachine filtering system for block, transactions and log events.
Package filters implements an trustmachine filtering system for block, transactions and log events.
Package entrustclient provides a client for the Trustmachine RPC API.
Package entrustclient provides a client for the Trustmachine RPC API.
Package entruststats implements the network stats reporting service.
Package entruststats implements the network stats reporting service.
Package event deals with subscriptions to real-time events.
Package event deals with subscriptions to real-time events.
filter
Package filter implements event filters.
Package filter implements event filters.
internal
debug
Package debug interfaces Go runtime debugging facilities.
Package debug interfaces Go runtime debugging facilities.
entrustapi
Package entrustapi implements the general Trustmachine API functions.
Package entrustapi implements the general Trustmachine API functions.
guide
Package guide is a small test suite to ensure snippets in the dev guide work.
Package guide is a small test suite to ensure snippets in the dev guide work.
jsre
Package jsre provides execution environment for JavaScript.
Package jsre provides execution environment for JavaScript.
jsre/deps
Package deps contains the console JavaScript dependencies Go embedded.
Package deps contains the console JavaScript dependencies Go embedded.
web3ext
package web3ext contains gotrust specific web3.js extensions.
package web3ext contains gotrust specific web3.js extensions.
les
Package les implements the Light Trustmachine Subprotocol.
Package les implements the Light Trustmachine Subprotocol.
flowcontrol
Package flowcontrol implements a client side flow control mechanism Package flowcontrol implements a client side flow control mechanism
Package flowcontrol implements a client side flow control mechanism Package flowcontrol implements a client side flow control mechanism
Package light implements on-demand retrieval capable state and chain objects for the Trustmachine Light Client.
Package light implements on-demand retrieval capable state and chain objects for the Trustmachine Light Client.
log
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable.
Package metrics provides general system and process level metrics collection.
Package metrics provides general system and process level metrics collection.
Package miner implements Trustmachine block creation and mining.
Package miner implements Trustmachine block creation and mining.
Package gotrust contains the simplified mobile APIs to go-trustmachine.
Package gotrust contains the simplified mobile APIs to go-trustmachine.
Package node sets up multi-protocol Trustmachine nodes.
Package node sets up multi-protocol Trustmachine nodes.
p2p
Package p2p implements the Trustmachine p2p network protocols.
Package p2p implements the Trustmachine p2p network protocols.
discover
Package discover implements the Node Discovery Protocol.
Package discover implements the Node Discovery Protocol.
discv5
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
Package discv5 implements the RLPx v5 Topic Discovery Protocol.
nat
Package nat provides access to common network port mapping protocols.
Package nat provides access to common network port mapping protocols.
netutil
Package netutil contains extensions to the net package.
Package netutil contains extensions to the net package.
Package rlp implements the RLP serialization format.
Package rlp implements the RLP serialization format.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
Package rpc provides access to the exported methods of an object across a network or other I/O connection.
api
api/http
A simple http server interface to Swarm
A simple http server interface to Swarm
Package tests implements execution of Trustmachine JSON tests.
Package tests implements execution of Trustmachine JSON tests.
Package trie implements Merkle Patricia Tries.
Package trie implements Merkle Patricia Tries.
whisper
whisperv2
Package whisper implements the Whisper PoC-1.
Package whisper implements the Whisper PoC-1.
whisperv5
Package whisper implements the Whisper protocol (version 5).
Package whisper implements the Whisper protocol (version 5).

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL