vehicle-command

module
v0.3.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 23, 2025 License: Apache-2.0

README

Tesla Vehicle Command SDK

Go Reference Build and Test Current Version DockerHub Tags

Tesla vehicles now support a protocol that provides end-to-end command authentication. This Golang package uses the new protocol to control vehicle functions, such as climate control and charging.

Among the included tools is an HTTP proxy server that converts REST API calls to the new vehicle-command protocol.

Some developers may be familiar with Tesla's Owner API. Owner API will stop working as vehicles begin requiring end-to-end command authentication. If you are one of these developers, you can set up the proxy server or refactor your application to use this library directly. Pre-2021 Model S and X vehicles do not support this new protocol. Fleet API will continue to work on these vehicles.

System overview

Command authentication takes place in two steps:

  1. Tesla's servers will only forward messages to a vehicle if the client has a valid OAuth token.
  2. The vehicle will only execute the command if it can be authenticated using a public key from the vehicle's keychain.

So in order to send a command to a vehicle, a third-party application must obtain a valid OAuth token from the user, and the user must enroll the application's public key in the vehicle.

Tesla's website has instructions for obtaining OAuth tokens. This README has instructions for generating private keys and directing the user to the public-key enrollment flow. The tools in this repository can use the OAuth token and the private key to send commands to vehicles.

For example, the repository includes a command-line interface:

tesla-control -ble -key-file private_key.pem lock

And a REST API proxy server (which is provided with a private key on launch and uses OAuth tokens sent by clients):

curl --cacert cert.pem \
    --header 'Content-Type: application/json' \
    --header "Authorization: Bearer $TESLA_AUTH_TOKEN" \
    --data '{}' \
    "https://localhost:4443/api/1/vehicles/$VIN/command/door_lock"

Installation and configuration

Installing locally

Requirements:

  • You've installed Golang. The package was tested with Go 1.23.0.
  • You're using macOS or Linux. (Everything except BLE should run on Windows, but Windows is not officially supported).

Installation steps:

  1. Download dependencies: go get ./...
  2. Compile tools and examples: go build ./...
  3. Install tools to your PATH: go install ./...

The final command installs the following utilities:

  • tesla-keygen: Generate a command-authentication private key and save it to your system keyring.
  • tesla-control: Send commands to a vehicle over BLE or the Internet. See tool's README file for more information.
  • tesla-http-proxy: An HTTP proxy that exposes a REST API for sending vehicle commands.
  • tesla-auth-token: Write an OAuth token to your system keyring. This utility does not fetch tokens. Read the Fleet API documentation for information on fetching OAuth tokens.
Installing with Docker

A Docker image is available for running these tools. The image defaults to running the HTTP proxy, but the --entrypoint flag changes the tool to be used.

Run the image from Docker hub:

docker pull tesla/vehicle-command:latest
docker run tesla/vehicle-command:latest --help

# running a different tool
docker run --entrypoint tesla-control tesla/vehicle-command:latest --help

An example docker-compose.yml file is also provided.

docker compose up
Configuration

The following environment variables can used in lieu of command-line flags.

  • TESLA_KEY_NAME used to derive the entry name for your command authentication private key in your system keyring.
  • TESLA_TOKEN_NAME used to derive the entry name for your OAuth token in your system keyring.
  • TESLA_KEYRING_TYPE used override the default system keyring type for your OS. Run tesla-keygen -h to see supported values listed in the -keyring-type flag documentation. Consult keyring documentation for details on each option.
  • TESLA_VIN specifies a vehicle identification number. You can find your VIN under Controls > Software in your vehicle's UI. (Despite the name, VINs contain both letters and numbers).
  • TESLA_CACHE_FILE specifies a file that caches session information. The cache allows programs to skip sending handshake messages to a vehicle. This reduces both latency and the number of Fleet API calls a client makes when reconnecting to a vehicle after restarting. This is particularly helpful when using tesla-control, which restarts on each invocation.
  • TESLA_HTTP_PROXY_TLS_CERT specifies a TLS certificate file for the HTTP proxy.
  • TESLA_HTTP_PROXY_TLS_KEY specifies a TLS key file for the HTTP proxy.
  • TESLA_HTTP_PROXY_HOST specifies the host for the HTTP proxy.
  • TESLA_HTTP_PROXY_PORT specifies the port for the HTTP proxy.
  • TESLA_HTTP_PROXY_TIMEOUT specifies the timeout for the HTTP proxy to use when contacting Tesla servers.
  • TESLA_VERBOSE enables verbose logging. Supported by tesla-control and tesla-http-proxy.

For example:

export TESLA_KEY_NAME=$(whoami)
export TESLA_TOKEN_NAME=$(whoami)
export TESLA_CACHE_FILE=~/.tesla-cache.json

At this point, you're ready to go use the the command-line tool to start sending commands to your personal vehicle over BLE! Alternatively, continue reading below to learn how to build an application that can send commands over the Internet using a REST API.

Using the HTTP proxy

This section describes how to set up and use the HTTP proxy, which allows clients to send vehicle commands using a REST API.

As discussed above, your HTTP proxy will need to authenticate both with Tesla (using OAuth tokens) and with individual vehicles (using a private key).

Obtaining OAuth access tokens

Tesla's servers require your client to provide an OAuth access token before they will forward commands to a vehicle. You must obtain the OAuth token from the vehicle's owner. See Tesla's website for instructions on registering a developer account and obtaining OAuth tokens.

Generating a command-authentication private key

Even if your client has a valid token, the vehicle only accepts commands that are authorized by your client's private key.

The tesla-keygen utility included in this repository generates a private key, stores it in your system keyring, and prints the corresponding public key:

export TESLA_KEY_NAME=$(whoami)
tesla-keygen create > public_key.pem

The system keyring uses your OS-dependent credential storage as the system keyring. On macOS, for example, it defaults to using your login keychain. Run tesla-keygen -h for more options.

Re-running the tesla-keygen command will print out the same public key without overwriting the private key. You can force the utility to overwrite an existing public key with -f.

Distributing your public key

Vehicles verify commands using public keys. Your public key must be enrolled on your users' vehicles before they will accept commands sent by your application.

Here's the enrollment process from the owner's perspective:

  1. Your website or app provides a link, as described below.
  2. The user taps the link, which opens the Tesla app.
  3. The Tesla app asks the user to approve the request.
  4. If the user approves, then the Tesla app sends a command to the vehicle to enroll your public key. This requires the vehicle to be online and paired with the phone.

In order for this process to work, you must register a domain name that identifies your application. The Tesla app will display this domain name to the user when it asks if they wish to approve your request, and the vehicle will display the domain name next to the key in the Locks screen.

Follow the instructions to register your public key and domain. The public key referred to in those instructions is the public_key.pem file in the above example.

Once your public key is successfully registered, provide vehicle owners with a link to https://tesla.com/_ak/<your_domain_name>. For example, if you registered example.com, provide a link to https://tesla.com/_ak/example.com. The official Tesla iPhone or Android mobile app (version 4.27.3 or above) will handle the rest. Customers with more than one Tesla product must select the desired vehicle before clicking the link or scanning the QR code.

Generating a server TLS key and certificate

The HTTP Proxy requires a TLS server certificate. For testing and development purposes, you can create a self-signed localhost server certificate using OpenSSL:

mkdir config
openssl req -x509 -nodes -newkey ec \
    -pkeyopt ec_paramgen_curve:secp521r1 \
    -pkeyopt ec_param_enc:named_curve  \
    -subj '/CN=localhost' \
    -keyout config/tls-key.pem -out config/tls-cert.pem -sha256 -days 3650 \
    -addext "extendedKeyUsage = serverAuth" \
    -addext "keyUsage = digitalSignature, keyCertSign, keyAgreement"

This command creates an unencrypted private key, config/tls-key.pem.

Running the proxy server

The proxy server can be run using the following command:

tesla-http-proxy -tls-key config/tls-key.pem -cert config/tls-cert.pem -key-file config/fleet-key.pem -port 4443

It can also be run using Docker:

# option 1: using docker run
docker pull tesla/vehicle-command:latest
docker run -v ./config:/config -p 127.0.0.1:4443:4443 tesla/vehicle-command:latest -tls-key /config/tls-key.pem -cert /config/tls-cert.pem -key-file /config/fleet-key.pem -host 0.0.0.0 -port 4443

# option 2: using docker compose
docker compose up

Note: In production, you'll likely want to omit the -port 4443 and listen on the standard port 443.

Sending commands to the proxy server

This section illustrates how clients can reach the server using curl. Clients are responsible for obtaining OAuth tokens. Obtain an OAuth token as described as above.

Endpoints that do not support end-to-end authentication are proxied to Tesla's REST API:

export TESLA_AUTH_TOKEN=<access-token>
export VIN=<vin>
curl --cacert cert.pem \
    --header "Authorization: Bearer $TESLA_AUTH_TOKEN" \
    "https://localhost:4443/api/1/vehicles/$VIN/vehicle_data" \
    | jq -r .

Endpoints that support end-to-end authentication are intercepted and re-written by the proxy, which handles session state and retries. After copying cert.pem to your client, running the following command from a client will cause the proxy to send a flash_lights command to the vehicle:

export TESLA_AUTH_TOKEN=<access-token>
export VIN=<vin>
curl --cacert cert.pem \
    --header 'Content-Type: application/json' \
    --header "Authorization: Bearer $TESLA_AUTH_TOKEN" \
    --data '{}' \
    "https://localhost:4443/api/1/vehicles/$VIN/command/flash_lights"

The flow to obtain $TESLA_AUTH_TOKEN:

A command's flow through the system:

REST API documentation

The HTTP proxy implements the Tesla Fleet API vehicle command endpoints.

Legacy clients written for Owner API may be using a vehicle's Owner API ID when constructing URL paths. The proxy server requires clients to use the VIN directly, instead.

Using the Golang library

You can read package documentation on pkg.go.dev.

This repository supports go mod and follows Go version semantics. Note that v0.x.x releases do not guarantee API stability.

Directories

Path Synopsis
cmd
tesla-auth-token
Tesla-auth-token writes a provided OAuth token to the system keyring.
Tesla-auth-token writes a provided OAuth token to the system keyring.
tesla-control
Tesla-control provides a command-line interface for sending commands to Tesla vehicles.
Tesla-control provides a command-line interface for sending commands to Tesla vehicles.
tesla-http-proxy
Tesla-http-proxy is a server that exposes a REST API for sending end-to-end authenticated commands to vehicles.
Tesla-http-proxy is a server that exposes a REST API for sending end-to-end authenticated commands to vehicles.
tesla-keygen
Tesla-keygen generates a private key and writes it to the system keyring.
Tesla-keygen generates a private key and writes it to the system keyring.
examples
ble
Ble illustrates how to send commands to a vehicle over Bluetooth Low Energy.
Ble illustrates how to send commands to a vehicle over Bluetooth Low Energy.
unlock
Unlock unlocks your Tesla.
Unlock unlocks your Tesla.
internal
log
pkg
account
Package account implements functions for managing a Tesla account.
Package account implements functions for managing a Tesla account.
cache
Package cache allows clients to resume authenticated sessions with a Tesla vehicle.
Package cache allows clients to resume authenticated sessions with a Tesla vehicle.
cli
Package cli facilitates building command-line applications for sending commands to vehicles.
Package cli facilitates building command-line applications for sending commands to vehicles.
connector
Package connector defines an interface for datagram transport between clients and Tesla vehicles.
Package connector defines an interface for datagram transport between clients and Tesla vehicles.
connector/ble
Package ble implements the Connector interface using BLE.
Package ble implements the Connector interface using BLE.
connector/inet
Package inet implements the Connector interface using an HTTP REST API.
Package inet implements the Connector interface using an HTTP REST API.
protocol
Package protocol defines constants and errors used by the Tesla API.
Package protocol defines constants and errors used by the Tesla API.
proxy
Package proxy implements a REST API for sending commands to Tesla vehicles.
Package proxy implements a REST API for sending commands to Tesla vehicles.
vehicle
Package vehicle allows clients to send commands to Tesla vehicles over the Internet or BLE.
Package vehicle allows clients to send commands to Tesla vehicles over the Internet or BLE.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL