envd

module
v0.2.0-beta4 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Sep 27, 2022 License: Apache-2.0

README ΒΆ

this slowpoke moves

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

What is envd?

envd (ΙͺnˈvdΙͺ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❀️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(envd_port=6006, envd_dir="/home/envd/logs",
        host_port=0, host_dir="/var/log/tensorboard"):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                "/home/envd/logs",
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
                ">>tensorboard.log",
                "2>&1",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We’re focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

πŸ’¬ Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started πŸš€

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+] ⌚ parse build.envd and download/cache dependencies 2.8s βœ… (finished)
 => download oh-my-zsh                                                    2.8s
[+] πŸ‹ build envd environment 18.3s (25/25) βœ… (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via πŸ…’ envd 
⬒ [envd]❯ # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation πŸ“

See envd documentation.

Roadmap πŸ—‚οΈ

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Friends A.

πŸ“– 🎨

Aaron Sun

πŸ““ πŸ’»

Aka.Fido

πŸ“¦ πŸ“– πŸ’»

Bingyi Sun

πŸ’»

Ce Gao

πŸ’» πŸ“– 🎨 πŸ“†

Guangyang Li

πŸ’»

Gui-Yue

πŸ’»

Haiker Sun

πŸ’»

Ikko Ashimine

πŸ’»

Jian Zeng

🎨 πŸ€” πŸ”¬

Jinjing Zhou

πŸ› πŸ’» 🎨 πŸ“–

Jun

πŸ“¦ πŸ’»

Keming

πŸ’» πŸ“– πŸ€” πŸš‡

Kevin Su

πŸ’»

Ling Jin

πŸ› πŸš‡

Manjusaka

πŸ’»

Nino

🎨 πŸ’»

Pengyu Wang

πŸ“–

Sepush

πŸ“–

Siyuan Wang

πŸ’» πŸš‡ 🚧

Wei Zhang

πŸ’»

Xu Jin

πŸ’»

Xuanwo

πŸ’¬ 🎨 πŸ€” πŸ‘€

Yuan Tang

πŸ’» 🎨 πŸ“– πŸ€”

Yuchen Cheng

πŸ› πŸš‡ 🚧 πŸ”§

Yuedong Wu

πŸ’»

Yunchuan Zheng

πŸ’»

Zheming Li

πŸ’»

Zhenguo.Li

πŸ’» πŸ“–

Zhenzhen Zhao

πŸš‡ πŸ““ πŸ’»

Zhizhen He

πŸ’» πŸ“–

jimoosciuc

πŸ““

kenwoodjw

πŸ’»

nullday

πŸ€” πŸ’»

wyq

πŸ› 🎨 πŸ’»

xiangtianyu

πŸ“–

xing0821

πŸ€” πŸ““ πŸ’»

zhyon404

πŸ’»

This project follows the all-contributors specification. Contributions of any kind welcome!

License πŸ“‹

Apache 2.0

trackgit-views

Directories ΒΆ

Path Synopsis
cmd
envd-sshd
ssh is the CLI running in the container as the sshd.
ssh is the CLI running in the container as the sshd.
pkg
app
buildkitd/mock
Package mock is a generated GoMock package.
Package mock is a generated GoMock package.
docker
The following code is from https://github.com/fsouza/go-dockerclient/ Copyright (c) 2013-2021, go-dockerclient authors
The following code is from https://github.com/fsouza/go-dockerclient/ Copyright (c) 2013-2021, go-dockerclient authors
lang/frontend/starlark/mock
Package mock is a generated GoMock package.
Package mock is a generated GoMock package.
progress/compileui/mock
Package mock is a generated GoMock package.
Package mock is a generated GoMock package.
ssh

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL