arm64

package
v0.0.0-...-380c739 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: May 7, 2022 License: BSD-3-Clause Imports: 7 Imported by: 0

Documentation

Overview

Package arm64 implements an ARM64 assembler. Go assembly syntax is different from GNU ARM64 syntax, but we can still follow the general rules to map between them.

Instructions mnemonics mapping rules

1. Most instructions use width suffixes of instruction names to indicate operand width rather than using different register names.

Examples:
  ADC R24, R14, R12          <=>     adc x12, x24
  ADDW R26->24, R21, R15     <=>     add w15, w21, w26, asr #24
  FCMPS F2, F3               <=>     fcmp s3, s2
  FCMPD F2, F3               <=>     fcmp d3, d2
  FCVTDH F2, F3              <=>     fcvt h3, d2

2. Go uses .P and .W suffixes to indicate post-increment and pre-increment.

Examples:
  MOVD.P -8(R10), R8         <=>      ldr x8, [x10],#-8
  MOVB.W 16(R16), R10        <=>      ldr x10, [x16,#16]!

3. Go uses a series of MOV instructions as load and store.

64-bit variant ldr, str, stur => MOVD; 32-bit variant str, stur, ldrsw => MOVW; 32-bit variant ldr => MOVWU; ldrb => MOVBU; ldrh => MOVHU; ldrsb, sturb, strb => MOVB; ldrsh, sturh, strh => MOVH.

4. Go moves conditions into opcode suffix, like BLT.

5. Go adds a V prefix for most floating-point and SIMD instructions, except cryptographic extension instructions and floating-point(scalar) instructions.

Examples:
  VADD V5.H8, V18.H8, V9.H8         <=>      add v9.8h, v18.8h, v5.8h
  VLD1.P (R6)(R11), [V31.D1]        <=>      ld1 {v31.1d}, [x6], x11
  VFMLA V29.S2, V20.S2, V14.S2      <=>      fmla v14.2s, v20.2s, v29.2s
  AESD V22.B16, V19.B16             <=>      aesd v19.16b, v22.16b
  SCVTFWS R3, F16                   <=>      scvtf s17, w6

Special Cases.

(1) umov is written as VMOV.

(2) br is renamed JMP, blr is renamed CALL.

(3) No need to add "W" suffix: LDARB, LDARH, LDAXRB, LDAXRH, LDTRH, LDXRB, LDXRH.

Examples:
  VMOV V13.B[1], R20      <=>      mov x20, v13.b[1]
  VMOV V13.H[1], R20      <=>      mov w20, v13.h[1]
  JMP (R3)                <=>      br x3
  CALL (R17)              <=>      blr x17
  LDAXRB (R19), R16       <=>      ldaxrb w16, [x19]

Register mapping rules

1. All basic register names are written as Rn.

2. Go uses ZR as the zero register and RSP as the stack pointer.

3. Bn, Hn, Dn, Sn and Qn instructions are written as Fn in floating-point instructions and as Vn in SIMD instructions.

Argument mapping rules

1. The operands appear in left-to-right assignment order.

Go reverses the arguments of most instructions.

Examples:
  ADD R11.SXTB<<1, RSP, R25      <=>      add x25, sp, w11, sxtb #1
  VADD V16, V19, V14             <=>      add d14, d19, d16

Special Cases.

(1) Argument order is the same as in the GNU ARM64 syntax: cbz, cbnz and some store instructions, such as str, stur, strb, sturb, strh, sturh stlr, stlrb. stlrh, st1.

Examples:
  MOVD R29, 384(R19)    <=>    str x29, [x19,#384]
  MOVB.P R30, 30(R4)    <=>    strb w30, [x4],#30
  STLRH R21, (R19)      <=>    stlrh w21, [x19]

(2) MADD, MADDW, MSUB, MSUBW, SMADDL, SMSUBL, UMADDL, UMSUBL <Rm>, <Ra>, <Rn>, <Rd>

Examples:
  MADD R2, R30, R22, R6       <=>    madd x6, x22, x2, x30
  SMSUBL R10, R3, R17, R27    <=>    smsubl x27, w17, w10, x3

(3) FMADDD, FMADDS, FMSUBD, FMSUBS, FNMADDD, FNMADDS, FNMSUBD, FNMSUBS <Fm>, <Fa>, <Fn>, <Fd>

Examples:
  FMADDD F30, F20, F3, F29    <=>    fmadd d29, d3, d30, d20
  FNMSUBS F7, F25, F7, F22    <=>    fnmsub s22, s7, s7, s25

(4) BFI, BFXIL, SBFIZ, SBFX, UBFIZ, UBFX $<lsb>, <Rn>, $<width>, <Rd>

Examples:
  BFIW $16, R20, $6, R0      <=>    bfi w0, w20, #16, #6
  UBFIZ $34, R26, $5, R20    <=>    ubfiz x20, x26, #34, #5

(5) FCCMPD, FCCMPS, FCCMPED, FCCMPES <cond>, Fm. Fn, $<nzcv>

Examples:
  FCCMPD AL, F8, F26, $0     <=>    fccmp d26, d8, #0x0, al
  FCCMPS VS, F29, F4, $4     <=>    fccmp s4, s29, #0x4, vs
  FCCMPED LE, F20, F5, $13   <=>    fccmpe d5, d20, #0xd, le
  FCCMPES NE, F26, F10, $0   <=>    fccmpe s10, s26, #0x0, ne

(6) CCMN, CCMNW, CCMP, CCMPW <cond>, <Rn>, $<imm>, $<nzcv>

Examples:
  CCMP MI, R22, $12, $13     <=>    ccmp x22, #0xc, #0xd, mi
  CCMNW AL, R1, $11, $8      <=>    ccmn w1, #0xb, #0x8, al

(7) CCMN, CCMNW, CCMP, CCMPW <cond>, <Rn>, <Rm>, $<nzcv>

Examples:
  CCMN VS, R13, R22, $10     <=>    ccmn x13, x22, #0xa, vs
  CCMPW HS, R19, R14, $11    <=>    ccmp w19, w14, #0xb, cs

(9) CSEL, CSELW, CSNEG, CSNEGW, CSINC, CSINCW <cond>, <Rn>, <Rm>, <Rd> ; FCSELD, FCSELS <cond>, <Fn>, <Fm>, <Fd>

Examples:
  CSEL GT, R0, R19, R1        <=>    csel x1, x0, x19, gt
  CSNEGW GT, R7, R17, R8      <=>    csneg w8, w7, w17, gt
  FCSELD EQ, F15, F18, F16    <=>    fcsel d16, d15, d18, eq

(10) TBNZ, TBZ $<imm>, <Rt>, <label>

(11) STLXR, STLXRW, STXR, STXRW, STLXRB, STLXRH, STXRB, STXRH <Rf>, (<Rn|RSP>), <Rs>

Examples:
  STLXR ZR, (R15), R16    <=>    stlxr w16, xzr, [x15]
  STXRB R9, (R21), R19    <=>    stxrb w19, w9, [x21]

(12) STLXP, STLXPW, STXP, STXPW (<Rf1>, <Rf2>), (<Rn|RSP>), <Rs>

Examples:
  STLXP (R17, R19), (R4), R5      <=>    stlxp w5, x17, x19, [x4]
  STXPW (R30, R25), (R22), R13    <=>    stxp w13, w30, w25, [x22]

2. Expressions for special arguments.

#<immediate> is written as $<immediate>.

Optionally-shifted immediate.

Examples:
  ADD $(3151<<12), R14, R20     <=>    add x20, x14, #0xc4f, lsl #12
  ADDW $1864, R25, R6           <=>    add w6, w25, #0x748

Optionally-shifted registers are written as <Rm>{<shift><amount>}. The <shift> can be <<(lsl), >>(lsr), ->(asr), @>(ror).

Examples:
  ADD R19>>30, R10, R24     <=>    add x24, x10, x19, lsr #30
  ADDW R26->24, R21, R15    <=>    add w15, w21, w26, asr #24

Extended registers are written as <Rm>{.<extend>{<<<amount>}}. <extend> can be UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW or SXTX.

Examples:
  ADDS R19.UXTB<<4, R9, R26     <=>    adds x26, x9, w19, uxtb #4
  ADDSW R14.SXTX, R14, R6       <=>    adds w6, w14, w14, sxtx

Memory references: [<Xn|SP>{,#0}] is written as (Rn|RSP), a base register and an immediate offset is written as imm(Rn|RSP), a base register and an offset register is written as (Rn|RSP)(Rm).

Examples:
  LDAR (R22), R9                  <=>    ldar x9, [x22]
  LDP 28(R17), (R15, R23)         <=>    ldp x15, x23, [x17,#28]
  MOVWU (R4)(R12<<2), R8          <=>    ldr w8, [x4, x12, lsl #2]
  MOVD (R7)(R11.UXTW<<3), R25     <=>    ldr x25, [x7,w11,uxtw #3]
  MOVBU (R27)(R23), R14           <=>    ldrb w14, [x27,x23]

Register pairs are written as (Rt1, Rt2).

Examples:
  LDP.P -240(R11), (R12, R26)    <=>    ldp x12, x26, [x11],#-240

Register with arrangement and register with arrangement and index.

Examples:
  VADD V5.H8, V18.H8, V9.H8                     <=>    add v9.8h, v18.8h, v5.8h
  VLD1 (R2), [V21.B16]                          <=>    ld1 {v21.16b}, [x2]
  VST1.P V9.S[1], (R16)(R21)                    <=>    st1 {v9.s}[1], [x16], x28
  VST1.P [V13.H8, V14.H8, V15.H8], (R3)(R14)    <=>    st1 {v13.8h-v15.8h}, [x3], x14
  VST1.P [V14.D1, V15.D1], (R7)(R23)            <=>    st1 {v14.1d, v15.1d}, [x7], x23

Index

Constants

View Source
const (
	NSNAME = 8
	NSYM   = 50
	NREG   = 32 /* number of general registers */
	NFREG  = 32 /* number of floating point registers */
)
View Source
const (
	// integer
	REG_R0 = obj.RBaseARM64 + iota
	REG_R1
	REG_R2
	REG_R3
	REG_R4
	REG_R5
	REG_R6
	REG_R7
	REG_R8
	REG_R9
	REG_R10
	REG_R11
	REG_R12
	REG_R13
	REG_R14
	REG_R15
	REG_R16
	REG_R17
	REG_R18
	REG_R19
	REG_R20
	REG_R21
	REG_R22
	REG_R23
	REG_R24
	REG_R25
	REG_R26
	REG_R27
	REG_R28
	REG_R29
	REG_R30
	REG_R31

	// scalar floating point
	REG_F0
	REG_F1
	REG_F2
	REG_F3
	REG_F4
	REG_F5
	REG_F6
	REG_F7
	REG_F8
	REG_F9
	REG_F10
	REG_F11
	REG_F12
	REG_F13
	REG_F14
	REG_F15
	REG_F16
	REG_F17
	REG_F18
	REG_F19
	REG_F20
	REG_F21
	REG_F22
	REG_F23
	REG_F24
	REG_F25
	REG_F26
	REG_F27
	REG_F28
	REG_F29
	REG_F30
	REG_F31

	// SIMD
	REG_V0
	REG_V1
	REG_V2
	REG_V3
	REG_V4
	REG_V5
	REG_V6
	REG_V7
	REG_V8
	REG_V9
	REG_V10
	REG_V11
	REG_V12
	REG_V13
	REG_V14
	REG_V15
	REG_V16
	REG_V17
	REG_V18
	REG_V19
	REG_V20
	REG_V21
	REG_V22
	REG_V23
	REG_V24
	REG_V25
	REG_V26
	REG_V27
	REG_V28
	REG_V29
	REG_V30
	REG_V31

	// The EQ in
	// 	CSET	EQ, R0
	// is encoded as TYPE_REG, even though it's not really a register.
	COND_EQ
	COND_NE
	COND_HS
	COND_LO
	COND_MI
	COND_PL
	COND_VS
	COND_VC
	COND_HI
	COND_LS
	COND_GE
	COND_LT
	COND_GT
	COND_LE
	COND_AL
	COND_NV

	REG_RSP = REG_V31 + 32 // to differentiate ZR/SP, REG_RSP&0x1f = 31
)

General purpose registers, kept in the low bits of Prog.Reg.

View Source
const (
	REG_ARNG = obj.RBaseARM64 + 1<<10 + iota<<9 // Vn.<T>
	REG_ELEM                                    // Vn.<T>[index]
	REG_ELEM_END
)

bits 0-4 indicates register: Vn bits 5-8 indicates arrangement: <T>

View Source
const (
	REG_UXTB = REG_EXT + iota<<8
	REG_UXTH
	REG_UXTW
	REG_UXTX
	REG_SXTB
	REG_SXTH
	REG_SXTW
	REG_SXTX
)
View Source
const (
	REG_SPECIAL = obj.RBaseARM64 + 1<<12 + iota
	REG_DAIF
	REG_NZCV
	REG_FPSR
	REG_FPCR
	REG_SPSR_EL1
	REG_ELR_EL1
	REG_SPSR_EL2
	REG_ELR_EL2
	REG_CurrentEL
	REG_SP_EL0
	REG_SPSel
	REG_DAIFSet
	REG_DAIFClr
	REG_DCZID_EL0
	REG_PLDL1KEEP
	REG_PLDL1STRM
	REG_PLDL2KEEP
	REG_PLDL2STRM
	REG_PLDL3KEEP
	REG_PLDL3STRM
	REG_PLIL1KEEP
	REG_PLIL1STRM
	REG_PLIL2KEEP
	REG_PLIL2STRM
	REG_PLIL3KEEP
	REG_PLIL3STRM
	REG_PSTL1KEEP
	REG_PSTL1STRM
	REG_PSTL2KEEP
	REG_PSTL2STRM
	REG_PSTL3KEEP
	REG_PSTL3STRM
)

Special registers, after subtracting obj.RBaseARM64, bit 12 indicates a special register and the low bits select the register.

View Source
const (
	REGMIN = REG_R7  // register variables allocated from here to REGMAX
	REGRT1 = REG_R16 // ARM64 IP0, for external linker, runtime, duffzero and duffcopy
	REGRT2 = REG_R17 // ARM64 IP1, for external linker, runtime, duffcopy
	REGPR  = REG_R18 // ARM64 platform register, unused in the Go toolchain
	REGMAX = REG_R25

	REGCTXT = REG_R26 // environment for closures
	REGTMP  = REG_R27 // reserved for liblink
	REGG    = REG_R28 // G
	REGFP   = REG_R29 // frame pointer, unused in the Go toolchain
	REGLINK = REG_R30

	// ARM64 uses R31 as both stack pointer and zero register,
	// depending on the instruction. To differentiate RSP from ZR,
	// we use a different numeric value for REGZERO and REGSP.
	REGZERO = REG_R31
	REGSP   = REG_RSP

	FREGRET = REG_F0
	FREGMIN = REG_F7  // first register variable
	FREGMAX = REG_F26 // last register variable for 7g only
	FREGEXT = REG_F26 // first external register
)

Register assignments:

compiler allocates R0 up as temps compiler allocates register variables R7-R25 compiler allocates external registers R26 down

compiler allocates register variables F7-F26 compiler allocates external registers F26 down

View Source
const (
	/* mark flags */
	LABEL = 1 << iota
	LEAF
	FLOAT
	BRANCH
	LOAD
	FCMP
	SYNC
	LIST
	FOLL
	NOSCHED
)
View Source
const (
	// optab is sorted based on the order of these constants
	// and the first match is chosen.
	// The more specific class needs to come earlier.
	C_NONE   = iota
	C_REG    // R0..R30
	C_RSP    // R0..R30, RSP
	C_FREG   // F0..F31
	C_VREG   // V0..V31
	C_PAIR   // (Rn, Rm)
	C_SHIFT  // Rn<<2
	C_EXTREG // Rn.UXTB[<<3]
	C_SPR    // REG_NZCV
	C_COND   // EQ, NE, etc
	C_ARNG   // Vn.<T>
	C_ELEM   // Vn.<T>[index]
	C_LIST   // [V1, V2, V3]

	C_ZCON     // $0 or ZR
	C_ABCON0   // could be C_ADDCON0 or C_BITCON
	C_ADDCON0  // 12-bit unsigned, unshifted
	C_ABCON    // could be C_ADDCON or C_BITCON
	C_AMCON    // could be C_ADDCON or C_MOVCON
	C_ADDCON   // 12-bit unsigned, shifted left by 0 or 12
	C_MBCON    // could be C_MOVCON or C_BITCON
	C_MOVCON   // generated by a 16-bit constant, optionally inverted and/or shifted by multiple of 16
	C_BITCON   // bitfield and logical immediate masks
	C_ADDCON2  // 24-bit constant
	C_LCON     // 32-bit constant
	C_MOVCON2  // a constant that can be loaded with one MOVZ/MOVN and one MOVK
	C_MOVCON3  // a constant that can be loaded with one MOVZ/MOVN and two MOVKs
	C_VCON     // 64-bit constant
	C_FCON     // floating-point constant
	C_VCONADDR // 64-bit memory address

	C_AACON // ADDCON offset in auto constant $a(FP)
	C_LACON // 32-bit offset in auto constant $a(FP)
	C_AECON // ADDCON offset in extern constant $e(SB)

	// TODO(aram): only one branch class should be enough
	C_SBRA // for TYPE_BRANCH
	C_LBRA

	C_ZAUTO      // 0(RSP)
	C_NSAUTO_8   // -256 <= x < 0, 0 mod 8
	C_NSAUTO_4   // -256 <= x < 0, 0 mod 4
	C_NSAUTO     // -256 <= x < 0
	C_NPAUTO     // -512 <= x < 0, 0 mod 8
	C_NAUTO4K    // -4095 <= x < 0
	C_PSAUTO_8   // 0 to 255, 0 mod 8
	C_PSAUTO_4   // 0 to 255, 0 mod 4
	C_PSAUTO     // 0 to 255
	C_PPAUTO     // 0 to 504, 0 mod 8
	C_UAUTO4K_8  // 0 to 4095, 0 mod 8
	C_UAUTO4K_4  // 0 to 4095, 0 mod 4
	C_UAUTO4K_2  // 0 to 4095, 0 mod 2
	C_UAUTO4K    // 0 to 4095
	C_UAUTO8K_8  // 0 to 8190, 0 mod 8
	C_UAUTO8K_4  // 0 to 8190, 0 mod 4
	C_UAUTO8K    // 0 to 8190, 0 mod 2
	C_UAUTO16K_8 // 0 to 16380, 0 mod 8
	C_UAUTO16K   // 0 to 16380, 0 mod 4
	C_UAUTO32K   // 0 to 32760, 0 mod 8
	C_LAUTO      // any other 32-bit constant

	C_SEXT1  // 0 to 4095, direct
	C_SEXT2  // 0 to 8190
	C_SEXT4  // 0 to 16380
	C_SEXT8  // 0 to 32760
	C_SEXT16 // 0 to 65520
	C_LEXT

	C_ZOREG    // 0(R)
	C_NSOREG_8 // must mirror C_NSAUTO_8, etc
	C_NSOREG_4
	C_NSOREG
	C_NPOREG
	C_NOREG4K
	C_PSOREG_8
	C_PSOREG_4
	C_PSOREG
	C_PPOREG
	C_UOREG4K_8
	C_UOREG4K_4
	C_UOREG4K_2
	C_UOREG4K
	C_UOREG8K_8
	C_UOREG8K_4
	C_UOREG8K
	C_UOREG16K_8
	C_UOREG16K
	C_UOREG32K
	C_LOREG

	C_ADDR // TODO(aram): explain difference from C_VCONADDR

	// The GOT slot for a symbol in -dynlink mode.
	C_GOTADDR

	// TLS "var" in local exec mode: will become a constant offset from
	// thread local base that is ultimately chosen by the program linker.
	C_TLS_LE

	// TLS "var" in initial exec mode: will become a memory address (chosen
	// by the program linker) that the dynamic linker will fill with the
	// offset from the thread local base.
	C_TLS_IE

	C_ROFF // register offset (including register extended)

	C_GOK
	C_TEXTSIZE
	C_NCLASS // must be last
)
View Source
const (
	C_XPRE  = 1 << 6 // match arm.C_WBIT, so Prog.String know how to print it
	C_XPOST = 1 << 5 // match arm.C_PBIT, so Prog.String know how to print it
)
View Source
const (
	AADC = obj.ABaseARM64 + obj.A_ARCHSPECIFIC + iota
	AADCS
	AADCSW
	AADCW
	AADD
	AADDS
	AADDSW
	AADDW
	AADR
	AADRP
	AAND
	AANDS
	AANDSW
	AANDW
	AASR
	AASRW
	AAT
	ABFI
	ABFIW
	ABFM
	ABFMW
	ABFXIL
	ABFXILW
	ABIC
	ABICS
	ABICSW
	ABICW
	ABRK
	ACBNZ
	ACBNZW
	ACBZ
	ACBZW
	ACCMN
	ACCMNW
	ACCMP
	ACCMPW
	ACINC
	ACINCW
	ACINV
	ACINVW
	ACLREX
	ACLS
	ACLSW
	ACLZ
	ACLZW
	ACMN
	ACMNW
	ACMP
	ACMPW
	ACNEG
	ACNEGW
	ACRC32B
	ACRC32CB
	ACRC32CH
	ACRC32CW
	ACRC32CX
	ACRC32H
	ACRC32W
	ACRC32X
	ACSEL
	ACSELW
	ACSET
	ACSETM
	ACSETMW
	ACSETW
	ACSINC
	ACSINCW
	ACSINV
	ACSINVW
	ACSNEG
	ACSNEGW
	ADC
	ADCPS1
	ADCPS2
	ADCPS3
	ADMB
	ADRPS
	ADSB
	AEON
	AEONW
	AEOR
	AEORW
	AERET
	AEXTR
	AEXTRW
	AHINT
	AHLT
	AHVC
	AIC
	AISB
	ALDADDALB
	ALDADDALH
	ALDADDALW
	ALDADDALD
	ALDADDB
	ALDADDH
	ALDADDW
	ALDADDD
	ALDANDB
	ALDANDH
	ALDANDW
	ALDANDD
	ALDAR
	ALDARB
	ALDARH
	ALDARW
	ALDAXP
	ALDAXPW
	ALDAXR
	ALDAXRB
	ALDAXRH
	ALDAXRW
	ALDEORB
	ALDEORH
	ALDEORW
	ALDEORD
	ALDORB
	ALDORH
	ALDORW
	ALDORD
	ALDP
	ALDPW
	ALDPSW
	ALDXR
	ALDXRB
	ALDXRH
	ALDXRW
	ALDXP
	ALDXPW
	ALSL
	ALSLW
	ALSR
	ALSRW
	AMADD
	AMADDW
	AMNEG
	AMNEGW
	AMOVK
	AMOVKW
	AMOVN
	AMOVNW
	AMOVZ
	AMOVZW
	AMRS
	AMSR
	AMSUB
	AMSUBW
	AMUL
	AMULW
	AMVN
	AMVNW
	ANEG
	ANEGS
	ANEGSW
	ANEGW
	ANGC
	ANGCS
	ANGCSW
	ANGCW
	AORN
	AORNW
	AORR
	AORRW
	APRFM
	APRFUM
	ARBIT
	ARBITW
	AREM
	AREMW
	AREV
	AREV16
	AREV16W
	AREV32
	AREVW
	AROR
	ARORW
	ASBC
	ASBCS
	ASBCSW
	ASBCW
	ASBFIZ
	ASBFIZW
	ASBFM
	ASBFMW
	ASBFX
	ASBFXW
	ASDIV
	ASDIVW
	ASEV
	ASEVL
	ASMADDL
	ASMC
	ASMNEGL
	ASMSUBL
	ASMULH
	ASMULL
	ASTXR
	ASTXRB
	ASTXRH
	ASTXP
	ASTXPW
	ASTXRW
	ASTLP
	ASTLPW
	ASTLR
	ASTLRB
	ASTLRH
	ASTLRW
	ASTLXP
	ASTLXPW
	ASTLXR
	ASTLXRB
	ASTLXRH
	ASTLXRW
	ASTP
	ASTPW
	ASUB
	ASUBS
	ASUBSW
	ASUBW
	ASVC
	ASXTB
	ASXTBW
	ASXTH
	ASXTHW
	ASXTW
	ASYS
	ASYSL
	ATBNZ
	ATBZ
	ATLBI
	ATST
	ATSTW
	AUBFIZ
	AUBFIZW
	AUBFM
	AUBFMW
	AUBFX
	AUBFXW
	AUDIV
	AUDIVW
	AUMADDL
	AUMNEGL
	AUMSUBL
	AUMULH
	AUMULL
	AUREM
	AUREMW
	AUXTB
	AUXTH
	AUXTW
	AUXTBW
	AUXTHW
	AWFE
	AWFI
	AYIELD
	AMOVB
	AMOVBU
	AMOVH
	AMOVHU
	AMOVW
	AMOVWU
	AMOVD
	AMOVNP
	AMOVNPW
	AMOVP
	AMOVPD
	AMOVPQ
	AMOVPS
	AMOVPSW
	AMOVPW
	ASWPD
	ASWPALD
	ASWPW
	ASWPALW
	ASWPH
	ASWPALH
	ASWPB
	ASWPALB
	ABEQ
	ABNE
	ABCS
	ABHS
	ABCC
	ABLO
	ABMI
	ABPL
	ABVS
	ABVC
	ABHI
	ABLS
	ABGE
	ABLT
	ABGT
	ABLE
	AFABSD
	AFABSS
	AFADDD
	AFADDS
	AFCCMPD
	AFCCMPED
	AFCCMPS
	AFCCMPES
	AFCMPD
	AFCMPED
	AFCMPES
	AFCMPS
	AFCVTSD
	AFCVTDS
	AFCVTZSD
	AFCVTZSDW
	AFCVTZSS
	AFCVTZSSW
	AFCVTZUD
	AFCVTZUDW
	AFCVTZUS
	AFCVTZUSW
	AFDIVD
	AFDIVS
	AFLDPD
	AFLDPS
	AFMOVD
	AFMOVS
	AFMULD
	AFMULS
	AFNEGD
	AFNEGS
	AFSQRTD
	AFSQRTS
	AFSTPD
	AFSTPS
	AFSUBD
	AFSUBS
	ASCVTFD
	ASCVTFS
	ASCVTFWD
	ASCVTFWS
	AUCVTFD
	AUCVTFS
	AUCVTFWD
	AUCVTFWS
	AWORD
	ADWORD
	AFCSELS
	AFCSELD
	AFMAXS
	AFMINS
	AFMAXD
	AFMIND
	AFMAXNMS
	AFMAXNMD
	AFNMULS
	AFNMULD
	AFRINTNS
	AFRINTND
	AFRINTPS
	AFRINTPD
	AFRINTMS
	AFRINTMD
	AFRINTZS
	AFRINTZD
	AFRINTAS
	AFRINTAD
	AFRINTXS
	AFRINTXD
	AFRINTIS
	AFRINTID
	AFMADDS
	AFMADDD
	AFMSUBS
	AFMSUBD
	AFNMADDS
	AFNMADDD
	AFNMSUBS
	AFNMSUBD
	AFMINNMS
	AFMINNMD
	AFCVTDH
	AFCVTHS
	AFCVTHD
	AFCVTSH
	AAESD
	AAESE
	AAESIMC
	AAESMC
	ASHA1C
	ASHA1H
	ASHA1M
	ASHA1P
	ASHA1SU0
	ASHA1SU1
	ASHA256H
	ASHA256H2
	ASHA256SU0
	ASHA256SU1
	AVADD
	AVADDP
	AVAND
	AVCMEQ
	AVCNT
	AVEOR
	AVMOV
	AVLD1
	AVORR
	AVREV32
	AVREV64
	AVST1
	AVDUP
	AVADDV
	AVMOVI
	AVUADDLV
	AVSUB
	AVFMLA
	AVFMLS
	AVPMULL
	AVPMULL2
	AVEXT
	AVRBIT
	AVUSHR
	AVSHL
	AVSRI
	AVTBL
	AVZIP1
	AVZIP2
	ALAST
	AB  = obj.AJMP
	ABL = obj.ACALL
)
View Source
const (
	// shift types
	SHIFT_LL = 0 << 22
	SHIFT_LR = 1 << 22
	SHIFT_AR = 2 << 22
)
View Source
const (
	// arrangement types
	ARNG_8B = iota
	ARNG_16B
	ARNG_1D
	ARNG_4H
	ARNG_8H
	ARNG_2S
	ARNG_4S
	ARNG_2D
	ARNG_1Q
	ARNG_B
	ARNG_H
	ARNG_S
	ARNG_D
)

Arrangement for ARM64 SIMD instructions

View Source
const (
	S32     = 0 << 31
	S64     = 1 << 31
	Sbit    = 1 << 29
	LSL0_32 = 2 << 13
	LSL0_64 = 3 << 13
)
View Source
const (
	LFROM = 1 << 0
	LTO   = 1 << 1
)
View Source
const (
	BIG = 2048 - 8
)
View Source
const (
	REGFROM = 1
)
View Source
const REG_EXT = obj.RBaseARM64 + 1<<11
View Source
const REG_LSL = obj.RBaseARM64 + 1<<9

Not registers, but flags that can be combined with regular register constants to indicate extended register conversion. When checking, you should subtract obj.RBaseARM64 first. From this difference, bit 11 indicates extended register, bits 8-10 select the conversion mode. REG_LSL is the index shift specifier, bit 9 indicates shifted offset register.

Variables

View Source
var ARM64DWARFRegisters = map[int16]int16{
	REG_R0:  0,
	REG_R1:  1,
	REG_R2:  2,
	REG_R3:  3,
	REG_R4:  4,
	REG_R5:  5,
	REG_R6:  6,
	REG_R7:  7,
	REG_R8:  8,
	REG_R9:  9,
	REG_R10: 10,
	REG_R11: 11,
	REG_R12: 12,
	REG_R13: 13,
	REG_R14: 14,
	REG_R15: 15,
	REG_R16: 16,
	REG_R17: 17,
	REG_R18: 18,
	REG_R19: 19,
	REG_R20: 20,
	REG_R21: 21,
	REG_R22: 22,
	REG_R23: 23,
	REG_R24: 24,
	REG_R25: 25,
	REG_R26: 26,
	REG_R27: 27,
	REG_R28: 28,
	REG_R29: 29,
	REG_R30: 30,

	REG_F0:  64,
	REG_F1:  65,
	REG_F2:  66,
	REG_F3:  67,
	REG_F4:  68,
	REG_F5:  69,
	REG_F6:  70,
	REG_F7:  71,
	REG_F8:  72,
	REG_F9:  73,
	REG_F10: 74,
	REG_F11: 75,
	REG_F12: 76,
	REG_F13: 77,
	REG_F14: 78,
	REG_F15: 79,
	REG_F16: 80,
	REG_F17: 81,
	REG_F18: 82,
	REG_F19: 83,
	REG_F20: 84,
	REG_F21: 85,
	REG_F22: 86,
	REG_F23: 87,
	REG_F24: 88,
	REG_F25: 89,
	REG_F26: 90,
	REG_F27: 91,
	REG_F28: 92,
	REG_F29: 93,
	REG_F30: 94,
	REG_F31: 95,

	REG_V0:  64,
	REG_V1:  65,
	REG_V2:  66,
	REG_V3:  67,
	REG_V4:  68,
	REG_V5:  69,
	REG_V6:  70,
	REG_V7:  71,
	REG_V8:  72,
	REG_V9:  73,
	REG_V10: 74,
	REG_V11: 75,
	REG_V12: 76,
	REG_V13: 77,
	REG_V14: 78,
	REG_V15: 79,
	REG_V16: 80,
	REG_V17: 81,
	REG_V18: 82,
	REG_V19: 83,
	REG_V20: 84,
	REG_V21: 85,
	REG_V22: 86,
	REG_V23: 87,
	REG_V24: 88,
	REG_V25: 89,
	REG_V26: 90,
	REG_V27: 91,
	REG_V28: 92,
	REG_V29: 93,
	REG_V30: 94,
	REG_V31: 95,
}

http://infocenter.arm.com/help/topic/com.arm.doc.ecm0665627/abi_sve_aadwarf_100985_0000_00_en.pdf

View Source
var Anames = []string{}/* 425 elements not displayed */
View Source
var Linkarm64 = obj.LinkArch{
	Arch:           sys.ArchARM64,
	Init:           buildop,
	Preprocess:     preprocess,
	Assemble:       span7,
	Progedit:       progedit,
	UnaryDst:       unaryDst,
	DWARFRegisters: ARM64DWARFRegisters,
}

Functions

func ADR

func ADR(p uint32, o uint32, rt uint32) uint32

func DRconv

func DRconv(a int) string

func FPCCMP

func FPCCMP(m uint32, s uint32, type_ uint32, op uint32) uint32

func FPCMP

func FPCMP(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32

func FPCVTI

func FPCVTI(sf uint32, s uint32, type_ uint32, rmode uint32, op uint32) uint32

func FPOP1S

func FPOP1S(m uint32, s uint32, type_ uint32, op uint32) uint32

func FPOP2S

func FPOP2S(m uint32, s uint32, type_ uint32, op uint32) uint32

func FPOP3S

func FPOP3S(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32

func LD2STR

func LD2STR(o uint32) uint32

func LDSTR12U

func LDSTR12U(sz uint32, v uint32, opc uint32) uint32

func LDSTR9S

func LDSTR9S(sz uint32, v uint32, opc uint32) uint32

func LDSTX

func LDSTX(sz uint32, o2 uint32, l uint32, o1 uint32, o0 uint32) uint32

func MOVCONST

func MOVCONST(d int64, s int, rt int) uint32

func OPBIT

func OPBIT(x uint32) uint32

func OPBLR

func OPBLR(x uint32) uint32

func OPBcc

func OPBcc(x uint32) uint32

func OPDP2

func OPDP2(x uint32) uint32

func OPDP3

func OPDP3(sf uint32, op54 uint32, op31 uint32, o0 uint32) uint32

func SYSARG4

func SYSARG4(op1 int, Cn int, Cm int, op2 int) int

func SYSARG5

func SYSARG5(op0 int, op1 int, Cn int, Cm int, op2 int) int

form offset parameter to SYS; special register number

func SYSHINT

func SYSHINT(x uint32) uint32

func SYSOP

func SYSOP(l uint32, op0 uint32, op1 uint32, crn uint32, crm uint32, op2 uint32, rt uint32) uint32

Types

type Optab

type Optab struct {
	// contains filtered or unexported fields
}

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL