Documentation ¶
Overview ¶
Package template implements data-driven templates for generating textual output.
To generate HTML output, see package html/template, which has the same interface as this package but automatically secures HTML output against certain attacks.
Templates are executed by applying them to a data structure. Annotations in the template refer to elements of the data structure (typically a field of a struct or a key in a map) to control execution and derive values to be displayed. Execution of the template walks the structure and sets the cursor, represented by a period '.' and called "dot", to the value at the current location in the structure as execution proceeds.
The input text for a template is UTF-8-encoded text in any format. "Actions"--data evaluations or control structures--are delimited by "{{" and "}}"; all text outside actions is copied to the output unchanged. Actions may not span newlines, although comments can.
Once constructed, a template may be executed safely in parallel.
Here is a trivial example that prints "17 items are made of wool".
type Inventory struct { Material string Count uint } sweaters := Inventory{"wool", 17} tmpl, err := template.New("test").Parse("{{.Count}} items are made of {{.Material}}") if err != nil { panic(err) } err = tmpl.Execute(os.Stdout, sweaters) if err != nil { panic(err) }
More intricate examples appear below.
Actions ¶
Here is the list of actions. "Arguments" and "pipelines" are evaluations of data, defined in detail below.
{{/* a comment */}} A comment; discarded. May contain newlines. Comments do not nest. {{pipeline}} The default textual representation of the value of the pipeline is copied to the output. {{if pipeline}} T1 {{end}} If the value of the pipeline is empty, no output is generated; otherwise, T1 is executed. The empty values are false, 0, any nil pointer or interface value, and any array, slice, map, or string of length zero. Dot is unaffected. {{if pipeline}} T1 {{else}} T0 {{end}} If the value of the pipeline is empty, T0 is executed; otherwise, T1 is executed. Dot is unaffected. {{range pipeline}} T1 {{end}} The value of the pipeline must be an array, slice, or map. If the value of the pipeline has length zero, nothing is output; otherwise, dot is set to the successive elements of the array, slice, or map and T1 is executed. If the value is a map and the keys are of basic type with a defined order ("comparable"), the elements will be visited in sorted key order. {{range pipeline}} T1 {{else}} T0 {{end}} The value of the pipeline must be an array, slice, or map. If the value of the pipeline has length zero, dot is unaffected and T0 is executed; otherwise, dot is set to the successive elements of the array, slice, or map and T1 is executed. {{template "name"}} The template with the specified name is executed with nil data. {{template "name" pipeline}} The template with the specified name is executed with dot set to the value of the pipeline. {{with pipeline}} T1 {{end}} If the value of the pipeline is empty, no output is generated; otherwise, dot is set to the value of the pipeline and T1 is executed. {{with pipeline}} T1 {{else}} T0 {{end}} If the value of the pipeline is empty, dot is unaffected and T0 is executed; otherwise, dot is set to the value of the pipeline and T1 is executed.
Arguments ¶
An argument is a simple value, denoted by one of the following.
- A boolean, string, character, integer, floating-point, imaginary or complex constant in Go syntax. These behave like Go's untyped constants, although raw strings may not span newlines.
- The character '.' (period): . The result is the value of dot.
- A variable name, which is a (possibly empty) alphanumeric string preceded by a dollar sign, such as $piOver2 or $ The result is the value of the variable. Variables are described below.
- The name of a field of the data, which must be a struct, preceded by a period, such as .Field The result is the value of the field. Field invocations may be chained: .Field1.Field2 Fields can also be evaluated on variables, including chaining: $x.Field1.Field2
- The name of a key of the data, which must be a map, preceded by a period, such as .Key The result is the map element value indexed by the key. Key invocations may be chained and combined with fields to any depth: .Field1.Key1.Field2.Key2 Although the key must be an alphanumeric identifier, unlike with field names they do not need to start with an upper case letter. Keys can also be evaluated on variables, including chaining: $x.key1.key2
- The name of a niladic method of the data, preceded by a period, such as .Method The result is the value of invoking the method with dot as the receiver, dot.Method(). Such a method must have one return value (of any type) or two return values, the second of which is an error. If it has two and the returned error is non-nil, execution terminates and an error is returned to the caller as the value of Execute. Method invocations may be chained and combined with fields and keys to any depth: .Field1.Key1.Method1.Field2.Key2.Method2 Methods can also be evaluated on variables, including chaining: $x.Method1.Field
- The name of a niladic function-valued struct field of the data, preceded by a period, such as .Function Function-valued fields behave like methods (of structs) but do not pass a receiver.
- The name of a niladic function, such as fun The result is the value of invoking the function, fun(). The return types and values behave as in methods. Functions and function names are described below.
Arguments may evaluate to any type; if they are pointers the implementation automatically indirects to the base type when required.
A pipeline is a possibly chained sequence of "commands". A command is a simple value (argument) or a function or method call, possibly with multiple arguments:
Argument The result is the value of evaluating the argument. .Method [Argument...] The method can be alone or the last element of a chain but, unlike methods in the middle of a chain, it can take arguments. The result is the value of calling the method with the arguments: dot.Method(Argument1, etc.) .Function [Argument...] A function-valued field of a struct works like a method but does not pass the receiver. functionName [Argument...] The result is the value of calling the function associated with the name: function(Argument1, etc.) Functions and function names are described below.
Pipelines ¶
A pipeline may be "chained" by separating a sequence of commands with pipeline characters '|'. In a chained pipeline, the result of the each command is passed as the last argument of the following command. The output of the final command in the pipeline is the value of the pipeline.
The output of a command will be either one value or two values, the second of which has type error. If that second value is present and evaluates to non-nil, execution terminates and the error is returned to the caller of Execute.
Variables ¶
A pipeline inside an action may initialize a variable to capture the result. The initialization has syntax
$variable := pipeline
where $variable is the name of the variable. An action that declares a variable produces no output.
If a "range" action initializes a variable, the variable is set to the successive elements of the iteration. Also, a "range" may declare two variables, separated by a comma:
$index, $element := pipeline
in which case $index and $element are set to the successive values of the array/slice index or map key and element, respectively. Note that if there is only one variable, it is assigned the element; this is opposite to the convention in Go range clauses.
A variable's scope extends to the "end" action of the control structure ("if", "with", or "range") in which it is declared, or to the end of the template if there is no such control structure. A template invocation does not inherit variables from the point of its invocation.
When execution begins, $ is set to the data argument passed to Execute, that is, to the starting value of dot.
Examples ¶
Here are some example one-line templates demonstrating pipelines and variables. All produce the quoted word "output":
{{"\"output\""}} A string constant. {{`"output"`}} A raw string constant. {{printf "%q" "output"}} A function call. {{"output" | printf "%q"}} A function call whose final argument comes from the previous command. {{"put" | printf "%s%s" "out" | printf "%q"}} A more elaborate call. {{"output" | printf "%s" | printf "%q"}} A longer chain. {{with "output"}}{{printf "%q" .}}{{end}} A with action using dot. {{with $x := "output" | printf "%q"}}{{$x}}{{end}} A with action that creates and uses a variable. {{with $x := "output"}}{{printf "%q" $x}}{{end}} A with action that uses the variable in another action. {{with $x := "output"}}{{$x | printf "%q"}}{{end}} The same, but pipelined.
Functions ¶
During execution functions are found in two function maps: first in the template, then in the global function map. By default, no functions are defined in the template but the Funcs methods can be used to add them.
Predefined global functions are named as follows.
and Returns the boolean AND of its arguments by returning the first empty argument or the last argument, that is, "and x y" behaves as "if x then y else x". All the arguments are evaluated. html Returns the escaped HTML equivalent of the textual representation of its arguments. index Returns the result of indexing its first argument by the following arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each indexed item must be a map, slice, or array. js Returns the escaped JavaScript equivalent of the textual representation of its arguments. len Returns the integer length of its argument. not Returns the boolean negation of its single argument. or Returns the boolean OR of its arguments by returning the first non-empty argument or the last argument, that is, "or x y" behaves as "if x then x else y". All the arguments are evaluated. print An alias for fmt.Sprint printf An alias for fmt.Sprintf println An alias for fmt.Sprintln urlquery Returns the escaped value of the textual representation of its arguments in a form suitable for embedding in a URL query.
The boolean functions take any zero value to be false and a non-zero value to be true.
Associated templates ¶
Each template is named by a string specified when it is created. Also, each template is associated with zero or more other templates that it may invoke by name; such associations are transitive and form a name space of templates.
A template may use a template invocation to instantiate another associated template; see the explanation of the "template" action above. The name must be that of a template associated with the template that contains the invocation.
Nested template definitions ¶
When parsing a template, another template may be defined and associated with the template being parsed. Template definitions must appear at the top level of the template, much like global variables in a Go program.
The syntax of such definitions is to surround each template declaration with a "define" and "end" action.
The define action names the template being created by providing a string constant. Here is a simple example:
`{{define "T1"}}ONE{{end}} {{define "T2"}}TWO{{end}} {{define "T3"}}{{template "T1"}} {{template "T2"}}{{end}} {{template "T3"}}`
This defines two templates, T1 and T2, and a third T3 that invokes the other two when it is executed. Finally it invokes T3. If executed this template will produce the text
ONE TWO
By construction, a template may reside in only one association. If it's necessary to have a template addressable from multiple associations, the template definition must be parsed multiple times to create distinct *Template values, or must be copied with the Clone or AddParseTree method.
Parse may be called multiple times to assemble the various associated templates; see the ParseFiles and ParseGlob functions and methods for simple ways to parse related templates stored in files.
A template may be executed directly or through ExecuteTemplate, which executes an associated template identified by name. To invoke our example above, we might write,
err := tmpl.Execute(os.Stdout, "no data needed") if err != nil { log.Fatalf("execution failed: %s", err) }
or to invoke a particular template explicitly by name,
err := tmpl.ExecuteTemplate(os.Stdout, "T2", "no data needed") if err != nil { log.Fatalf("execution failed: %s", err) }
Index ¶
- func HTMLEscape(w io.Writer, b []byte)
- func HTMLEscapeString(s string) string
- func HTMLEscaper(args ...interface{}) string
- func JSEscape(w io.Writer, b []byte)
- func JSEscapeString(s string) string
- func JSEscaper(args ...interface{}) string
- func URLQueryEscaper(args ...interface{}) string
- type FuncMap
- type Template
- func (t *Template) AddParseTree(name string, tree *parse.Tree) (*Template, error)
- func (t *Template) Clone() (*Template, error)
- func (t *Template) Delims(left, right string) *Template
- func (t *Template) Execute(wr io.Writer, data interface{}) (err error)
- func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error
- func (t *Template) Funcs(funcMap FuncMap) *Template
- func (t *Template) Lookup(name string) *Template
- func (t *Template) Name() string
- func (t *Template) New(name string) *Template
- func (t *Template) Parse(text string) (*Template, error)
- func (t *Template) ParseFiles(filenames ...string) (*Template, error)
- func (t *Template) ParseGlob(pattern string) (*Template, error)
- func (t *Template) Templates() []*Template
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func HTMLEscape ¶
HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
func HTMLEscapeString ¶
HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
func HTMLEscaper ¶
func HTMLEscaper(args ...interface{}) string
HTMLEscaper returns the escaped HTML equivalent of the textual representation of its arguments.
func JSEscapeString ¶
JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
func JSEscaper ¶
func JSEscaper(args ...interface{}) string
JSEscaper returns the escaped JavaScript equivalent of the textual representation of its arguments.
func URLQueryEscaper ¶
func URLQueryEscaper(args ...interface{}) string
URLQueryEscaper returns the escaped value of the textual representation of its arguments in a form suitable for embedding in a URL query.
Types ¶
type FuncMap ¶
type FuncMap map[string]interface{}
FuncMap is the type of the map defining the mapping from names to functions. Each function must have either a single return value, or two return values of which the second has type error. In that case, if the second (error) argument evaluates to non-nil during execution, execution terminates and Execute returns that error.
type Template ¶
Template is the representation of a parsed template. The *parse.Tree field is exported only for use by html/template and should be treated as unexported by all other clients.
Example ¶
package main import ( "log" "os" "text/template" ) func main() { // Define a template. const letter = ` Dear {{.Name}}, {{if .Attended}} It was a pleasure to see you at the wedding.{{else}} It is a shame you couldn't make it to the wedding.{{end}} {{with .Gift}}Thank you for the lovely {{.}}. {{end}} Best wishes, Josie ` // Prepare some data to insert into the template. type Recipient struct { Name, Gift string Attended bool } var recipients = []Recipient{ {"Aunt Mildred", "bone china tea set", true}, {"Uncle John", "moleskin pants", false}, {"Cousin Rodney", "", false}, } // Create a new template and parse the letter into it. t := template.Must(template.New("letter").Parse(letter)) // Execute the template for each recipient. for _, r := range recipients { err := t.Execute(os.Stdout, r) if err != nil { log.Println("executing template:", err) } } }
Output: Dear Aunt Mildred, It was a pleasure to see you at the wedding. Thank you for the lovely bone china tea set. Best wishes, Josie Dear Uncle John, It is a shame you couldn't make it to the wedding. Thank you for the lovely moleskin pants. Best wishes, Josie Dear Cousin Rodney, It is a shame you couldn't make it to the wedding. Best wishes, Josie
Example (Func) ¶
This example demonstrates a custom function to process template text. It installs the strings.Title function and uses it to Make Title Text Look Good In Our Template's Output.
package main import ( "log" "os" "strings" "text/template" ) func main() { // First we create a FuncMap with which to register the function. funcMap := template.FuncMap{ // The name "title" is what the function will be called in the template text. "title": strings.Title, } // A simple template definition to test our function. // We print the input text several ways: // - the original // - title-cased // - title-cased and then printed with %q // - printed with %q and then title-cased. const templateText = ` Input: {{printf "%q" .}} Output 0: {{title .}} Output 1: {{title . | printf "%q"}} Output 2: {{printf "%q" . | title}} ` // Create a template, add the function map, and parse the text. tmpl, err := template.New("titleTest").Funcs(funcMap).Parse(templateText) if err != nil { log.Fatalf("parsing: %s", err) } // Run the template to verify the output. err = tmpl.Execute(os.Stdout, "the go programming language") if err != nil { log.Fatalf("execution: %s", err) } }
Output: Input: "the go programming language" Output 0: The Go Programming Language Output 1: "The Go Programming Language" Output 2: "The Go Programming Language"
func Must ¶
Must is a helper that wraps a call to a function returning (*Template, error) and panics if the error is non-nil. It is intended for use in variable initializations such as
var t = template.Must(template.New("name").Parse("text"))
func ParseFiles ¶
ParseFiles creates a new Template and parses the template definitions from the named files. The returned template's name will have the (base) name and (parsed) contents of the first file. There must be at least one file. If an error occurs, parsing stops and the returned *Template is nil.
func ParseGlob ¶
ParseGlob creates a new Template and parses the template definitions from the files identified by the pattern, which must match at least one file. The returned template will have the (base) name and (parsed) contents of the first file matched by the pattern. ParseGlob is equivalent to calling ParseFiles with the list of files matched by the pattern.
func (*Template) AddParseTree ¶
AddParseTree creates a new template with the name and parse tree and associates it with t.
func (*Template) Clone ¶
Clone returns a duplicate of the template, including all associated templates. The actual representation is not copied, but the name space of associated templates is, so further calls to Parse in the copy will add templates to the copy but not to the original. Clone can be used to prepare common templates and use them with variant definitions for other templates by adding the variants after the clone is made.
func (*Template) Delims ¶
Delims sets the action delimiters to the specified strings, to be used in subsequent calls to Parse, ParseFiles, or ParseGlob. Nested template definitions will inherit the settings. An empty delimiter stands for the corresponding default: {{ or }}. The return value is the template, so calls can be chained.
func (*Template) Execute ¶
Execute applies a parsed template to the specified data object, and writes the output to wr.
func (*Template) ExecuteTemplate ¶
ExecuteTemplate applies the template associated with t that has the given name to the specified data object and writes the output to wr.
func (*Template) Funcs ¶
Funcs adds the elements of the argument map to the template's function map. It panics if a value in the map is not a function with appropriate return type. However, it is legal to overwrite elements of the map. The return value is the template, so calls can be chained.
func (*Template) Lookup ¶
Lookup returns the template with the given name that is associated with t, or nil if there is no such template.
func (*Template) New ¶
New allocates a new template associated with the given one and with the same delimiters. The association, which is transitive, allows one template to invoke another with a {{template}} action.
func (*Template) Parse ¶
Parse parses a string into a template. Nested template definitions will be associated with the top-level template t. Parse may be called multiple times to parse definitions of templates to associate with t. It is an error if a resulting template is non-empty (contains content other than template definitions) and would replace a non-empty template with the same name. (In multiple calls to Parse with the same receiver template, only one call can contain text other than space, comments, and template definitions.)
func (*Template) ParseFiles ¶
ParseFiles parses the named files and associates the resulting templates with t. If an error occurs, parsing stops and the returned template is nil; otherwise it is t. There must be at least one file.
func (*Template) ParseGlob ¶
ParseGlob parses the template definitions in the files identified by the pattern and associates the resulting templates with t. The pattern is processed by filepath.Glob and must match at least one file. ParseGlob is equivalent to calling t.ParseFiles with the list of files matched by the pattern.