Documentation ¶
Index ¶
Constants ¶
View Source
const ( // Define energy source PlatformEnergySource = "acpi" ComponentEnergySource = "intel_rapl" TrainedPowerModelSource = "trained_power_model" // KeplerModelServerSync: define regressor trainer name. LinearRegressionTrainer = "SGDRegressorTrainer" LogarithmicTrainer = "LogarithmicRegressionTrainer" LogisticTrainer = "LogisticRegressionTrainer" ExponentialTrainer = "ExponentialRegressionTrainer" )
Variables ¶
View Source
var ( WeightSupportedTrainers = []string{ LinearRegressionTrainer, LogarithmicTrainer, LogisticTrainer, ExponentialTrainer, } )
Functions ¶
This section is empty.
Types ¶
type ModelConfig ¶
type ModelConfig struct { // model configuration ModelType ModelType ModelOutputType ModelOutputType TrainerName string EnergySource string SelectFilter string InitModelURL string InitModelFilepath string IsNodePowerModel bool // initial samples to start the model ProcessFeatureNames []string NodeFeatureNames []string SystemMetaDataFeatureNames []string SystemMetaDataFeatureValues []string }
func (*ModelConfig) SourceURL ¶ added in v0.7.12
func (c *ModelConfig) SourceURL() string
type ModelOutputType ¶
type ModelOutputType int
const ( // Power Model Output types // Absolute Power Model (AbsPower): is the power model trained by measured power (including the idle power) // Dynamic Power Model (DynPower): is the power model trained by dynamic power (AbsPower - idle power) AbsPower ModelOutputType = iota + 1 DynPower Unsupported )
func (ModelOutputType) String ¶
func (s ModelOutputType) String() string
type ModelType ¶ added in v0.5.4
type ModelType int
const ( // Power Model types Ratio ModelType = iota + 1 // estimation happens within kepler without using Model Server Regressor // estimation happens within kepler, but pre-trained model parameters are downloaded externally EstimatorSidecar // estimation happens in the sidecar with a loaded pre-trained power model )
Click to show internal directories.
Click to hide internal directories.