aikit

module
v0.10.0 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jun 6, 2024 License: MIT

README ΒΆ

AIKit ✨


AIKit is a one-stop shop to quickly get started to host, deploy, build and fine-tune large language models (LLMs).

AIKit offers two main capabilities:

  • Inference: AIKit uses LocalAI, which supports a wide range of inference capabilities and formats. LocalAI provides a drop-in replacement REST API that is OpenAI API compatible, so you can use any OpenAI API compatible client, such as Kubectl AI, Chatbot-UI and many more, to send requests to open LLMs!

  • Fine Tuning: AIKit offers an extensible fine tuning interface. It supports Unsloth for fast, memory efficient, and easy fine-tuning experience.

πŸ‘‰ For full documentation, please see AIKit website!

Features

Quick Start

You can get started with AIKit quickly on your local machine without a GPU!

docker run -d --rm -p 8080:8080 ghcr.io/sozercan/llama3:8b
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
    "model": "llama-3-8b-instruct",
    "messages": [{"role": "user", "content": "explain kubernetes in a sentence"}]
  }'

Output should be similar to:

{
  // ...
    "model": "llama-3-8b-instruct",
    "choices": [
        {
            "index": 0,
            "finish_reason": "stop",
            "message": {
                "role": "assistant",
                "content": "Kubernetes is an open-source container orchestration system that automates the deployment, scaling, and management of applications and services, allowing developers to focus on writing code rather than managing infrastructure."
            }
        }
    ],
  // ...
}

That's it! πŸŽ‰ API is OpenAI compatible so this is a drop-in replacement for any OpenAI API compatible client.

Pre-made Models

AIKit comes with pre-made models that you can use out-of-the-box!

If it doesn't include a specific model, you can always create your own images, and host in a container registry of your choice!

CPU

Model Optimization Parameters Command Model Name License
πŸ¦™ Llama 3 Instruct 8B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/llama3:8b llama-3-8b-instruct Llama
πŸ¦™ Llama 3 Instruct 70B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/llama3:70b llama-3-70b-instruct Llama
πŸ¦™ Llama 2 Chat 7B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/llama2:7b llama-2-7b-chat Llama
πŸ¦™ Llama 2 Chat 13B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/llama2:13b llama-2-13b-chat Llama
Ⓜ️ Mixtral Instruct 8x7B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/mixtral:8x7b mixtral-8x7b-instruct Apache
πŸ…ΏοΈ Phi 3 Instruct 3.8B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/phi3:3.8b phi-3-3.8b MIT
πŸ”‘ Gemma 1.1 Instruct 2B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/gemma:2b gemma-2b-instruct Gemma
⌨️ Codestral 0.1 Code 22B docker run -d --rm -p 8080:8080 ghcr.io/sozercan/codestral:22b codestral-22b MNLP
NVIDIA CUDA

[!NOTE] To enable GPU acceleration, please see GPU Acceleration. Please note that only difference between CPU and GPU section is the --gpus all flag in the command to enable GPU acceleration.

Model Optimization Parameters Command Model Name License
πŸ¦™ Llama 3 Instruct 8B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/llama3:8b llama-3-8b-instruct Llama
πŸ¦™ Llama 3 Instruct 70B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/llama3:70b llama-3-70b-instruct Llama
πŸ¦™ Llama 2 Chat 7B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/llama2:7b llama-2-7b-chat Llama
πŸ¦™ Llama 2 Chat 13B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/llama2:13b llama-2-13b-chat Llama
Ⓜ️ Mixtral Instruct 8x7B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/mixtral:8x7b mixtral-8x7b-instruct Apache
πŸ…ΏοΈ Phi 3 Instruct 3.8B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/phi3:3.8b phi-3-3.8b MIT
πŸ”‘ Gemma 1.1 Instruct 2B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/gemma:2b gemma-2b-instruct Gemma
⌨️ Codestral 0.1 Code 22B docker run -d --rm --gpus all -p 8080:8080 ghcr.io/sozercan/codestral:22b codestral-22b MNLP

What's next?

πŸ‘‰ For more information and how to fine tune models or create your own images, please see AIKit website!

Directories ΒΆ

Path Synopsis
cmd
pkg

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL