Documentation ¶
Overview ¶
Package diam provides support for the Diameter Base Protocol for Go. See RFC 6733 for details.
go-diameter is minimalist implementation of the Diameter Base Protocol, organized in sub-packages with specific functionality:
diam: the main package, provides the capability of encoding and decoding messages, and a client and server API similar to net/http.
diam/diamtest: Server test API analogous to net/http/httptest.
diam/avp: Diameter attribute-value-pairs codes and flags.
diam/datatype: AVP data types (e.g. Unsigned32, OctetString).
diam/dict: a dictionary parser that supports collections of dictionaries.
If you're looking to go right into code, see the examples subdirectory for applications like clients and servers.
Diameter Applications ¶
All diameter applications require at least the following:
- A dictionary with the application id, its commands and message formats
- A program that implements the application, driven by the dictionary
The diam/dict sub-package supports the base application (id 0, RFC 6733) and the credit control application (id 4, RFC 4006). Each application has its own commands and messages, and their pre-defined AVPs.
AVP data have specific data types, like UTF8String, Unsigned32 and so on. Fortunately, those data types map well with Go types, which makes things easier for us. However, the AVP data types have specific properties like padding for certain strings, which have to be taken care of. The sub-package diam/datatype handles it all.
At last, the diam package is used to build clients and servers using an API very similar to the one of net/http. To initiate the client or server, you'll have to pass a dictionary. Messages sent and received are encoded and decoded using the dictionary automatically.
The API of clients and servers require that you assign handlers for certain messages, similar to how you route HTTP endpoints. In the handlers, you'll receive messages already decoded.
Index ¶
- Constants
- Variables
- func ErrorReports() <-chan *ErrorReport
- func Handle(cmd string, handler Handler)
- func HandleFunc(cmd string, handler func(Conn, *Message))
- func Listen(network, address string) (net.Listener, error)
- func ListenAndServe(addr string, handler Handler, dp *dict.Parser) error
- func ListenAndServeNetwork(network, addr string, handler Handler, dp *dict.Parser) error
- func ListenAndServeNetworkTLS(network, addr string, certFile string, keyFile string, handler Handler, ...) error
- func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler, dp *dict.Parser) error
- func Serve(l net.Listener, handler Handler) error
- func TLSConfigClone(cfg *tls.Config) *tls.Config
- type AVP
- type CloseNotifier
- type CommandIndex
- type Conn
- func Dial(addr string, handler Handler, dp *dict.Parser) (Conn, error)
- func DialNetwork(network, addr string, handler Handler, dp *dict.Parser) (Conn, error)
- func DialNetworkTLS(network, addr, certFile, keyFile string, handler Handler, dp *dict.Parser) (Conn, error)
- func DialNetworkTimeout(network, addr string, handler Handler, dp *dict.Parser, timeout time.Duration) (Conn, error)
- func DialTLS(addr, certFile, keyFile string, handler Handler, dp *dict.Parser) (Conn, error)
- func DialTLSTimeout(addr, certFile, keyFile string, handler Handler, dp *dict.Parser, ...) (Conn, error)
- func DialTimeout(addr string, handler Handler, dp *dict.Parser, timeout time.Duration) (Conn, error)
- func NewConn(rw net.Conn, addr string, handler Handler, dp *dict.Parser) (Conn, error)
- type Dialer
- type ErrorReport
- type ErrorReporter
- type GroupedAVP
- type Handler
- type HandlerFunc
- type Header
- type Message
- func (m *Message) AddAVP(a *AVP)
- func (m *Message) Answer(resultCode uint32) *Message
- func (m *Message) Dictionary() *dict.Parser
- func (m *Message) FindAVP(code interface{}, vendorID uint32) (*AVP, error)
- func (m *Message) FindAVPs(code interface{}, vendorID uint32) ([]*AVP, error)
- func (m *Message) FindAVPsWithPath(path []interface{}, vendorID uint32) ([]*AVP, error)
- func (m *Message) InsertAVP(a *AVP)
- func (m *Message) Len() int
- func (m *Message) Marshal(src interface{}) error
- func (m *Message) NewAVP(code interface{}, flags uint8, vendor uint32, data datatype.Type) (*AVP, error)
- func (m *Message) Serialize() ([]byte, error)
- func (m *Message) SerializeTo(b []byte) (err error)
- func (m *Message) String() string
- func (m *Message) Unmarshal(dst interface{}) error
- func (m *Message) WriteTo(writer io.Writer) (int64, error)
- type ServeMux
- func (mux *ServeMux) Error(err *ErrorReport)
- func (mux *ServeMux) ErrorReports() <-chan *ErrorReport
- func (mux *ServeMux) Handle(shortCmd string, handler Handler)
- func (mux *ServeMux) HandleFunc(cmd string, handler func(Conn, *Message))
- func (mux *ServeMux) HandleIdx(cmd CommandIndex, handler Handler)
- func (mux *ServeMux) ServeDIAM(c Conn, m *Message)
- type Server
Constants ¶
const ( BASE_APP_ID = 0 NETWORK_ACCESS_APP_ID = 1 BASE_ACCOUNTING_APP_ID = 3 CHARGING_CONTROL_APP_ID = 4 TGPP_APP_ID = 4 TGPP_S6A_APP_ID = 16777251 )
Diameter application IDs.
const ( MultiRoundAuth = 1001 Success = 2001 LimitedSuccess = 2002 CommandUnsupported = 3001 UnableToDeliver = 3002 RealmNotServed = 3003 TooBusy = 3004 LoopDetected = 3005 RedirectIndication = 3006 ApplicationUnsupported = 3007 InvalidHDRBits = 3008 InvalidAVPBits = 3009 UnknownPeer = 3010 AuthenticationRejected = 4001 OutOfSpace = 4002 ElectionLost = 4003 AVPUnsupported = 5001 UnknownSessionID = 5002 AuthorizationRejected = 5003 InvalidAVPValue = 5004 MissingAVP = 5005 ResourcesExceeded = 5006 ContradictingAVPs = 5007 AVPNotAllowed = 5008 AVPOccursTooManyTimes = 5009 NoCommonApplication = 5010 UnsupportedVersion = 5011 UnableToComply = 5012 InvalidBitInHeader = 5013 InvalidAVPLenght = 5014 InvalidMessageLength = 5015 InvalidAVPBitCombo = 5016 NoCommonSecurity = 5017 )
Diameter codes for the Result-Code AVP.
const ( AA = 265 AbortSession = 274 Accounting = 271 AuthenticationInformation = 318 CancelLocation = 317 CapabilitiesExchange = 257 CreditControl = 272 DeviceWatchdog = 280 DisconnectPeer = 282 Notify = 323 PurgeUE = 321 ReAuth = 258 SessionTermination = 275 UpdateLocation = 316 )
Diameter command codes.
const ( AAA = "AAA" AAR = "AAR" ACA = "ACA" ACR = "ACR" AIA = "AIA" AIR = "AIR" ASA = "ASA" ASR = "ASR" CCA = "CCA" CCR = "CCR" CEA = "CEA" CER = "CER" CLA = "CLA" CLR = "CLR" DPA = "DPA" DPR = "DPR" DWA = "DWA" DWR = "DWR" NOA = "NOA" NOR = "NOR" PUA = "PUA" PUR = "PUR" RAA = "RAA" RAR = "RAR" STA = "STA" STR = "STR" ULA = "ULA" ULR = "ULR" )
Short Command Names
const ( RequestFlag = 1 << 7 ProxiableFlag = 1 << 6 ErrorFlag = 1 << 5 RetransmittedFlag = 1 << 4 )
Command flags.
const GroupedAVPType = 50
GroupedAVPType is the identifier of the GroupedAVP data type. It must not conflict with other values from the datatype package.
const HeaderLength = 20
HeaderLength is the length of a Diameter header data structure.
Variables ¶
var ALL_CMD_INDEX = CommandIndex{^uint32(0), ^uint32(0), false}
var DefaultServeMux = NewServeMux()
DefaultServeMux is the default ServeMux used by Serve.
var MessageBufferLength = 1 << 10
MessageBufferLength is the default buffer length for Diameter messages.
Functions ¶
func ErrorReports ¶
func ErrorReports() <-chan *ErrorReport
ErrorReports returns the ErrorReport channel of the DefaultServeMux.
func HandleFunc ¶
HandleFunc registers the handler function for the given command in the DefaultServeMux.
func ListenAndServe ¶
ListenAndServe listens on the TCP network address addr and then calls Serve with handler to handle requests on incoming connections.
If handler is nil, DefaultServeMux is used.
If dict is nil, dict.Default is used.
func ListenAndServeNetwork ¶
ListenAndServeNetwork listens on the network & addr and then calls Serve with handler to handle requests on incoming connections.
If handler is nil, DefaultServeMux is used.
If dict is nil, dict.Default is used.
func ListenAndServeNetworkTLS ¶
func ListenAndServeNetworkTLS(network, addr string, certFile string, keyFile string, handler Handler, dp *dict.Parser) error
ListenAndServeNetworkTLS acts identically to ListenAndServeNetwork, except that it expects SSL connections. Additionally, files containing a certificate and matching private key for the server must be provided. If the certificate is signed by a certificate authority, the certFile should be the concatenation of the server's certificate followed by the CA's certificate.
One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
func ListenAndServeTLS ¶
func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler, dp *dict.Parser) error
ListenAndServeTLS acts identically to ListenAndServe, except that it expects SSL connections. Additionally, files containing a certificate and matching private key for the server must be provided. If the certificate is signed by a certificate authority, the certFile should be the concatenation of the server's certificate followed by the CA's certificate.
One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
Types ¶
type AVP ¶
type AVP struct { Code uint32 // Code of this AVP Flags uint8 // Flags of this AVP Length int // Length of this AVP's payload VendorID uint32 // VendorId of this AVP Data datatype.Type // Data of this AVP (payload) }
AVP is a Diameter attribute-value-pair.
func DecodeAVP ¶
DecodeAVP decodes the bytes of a Diameter AVP. It uses the given application id and dictionary for decoding the bytes.
func (*AVP) DecodeFromBytes ¶
DecodeFromBytes decodes the bytes of a Diameter AVP. It uses the given application id and dictionary for decoding the bytes.
func (*AVP) Serialize ¶
Serialize returns the byte sequence that represents this AVP. It requires at least the Code, Flags and Data fields set.
func (*AVP) SerializeTo ¶
SerializeTo writes the byte sequence that represents this AVP to a byte array.
type CloseNotifier ¶
type CloseNotifier interface { // CloseNotify returns a channel that is closed // when the client connection has gone away. CloseNotify() <-chan struct{} }
The CloseNotifier interface is implemented by Conns which allow detecting when the underlying connection has gone away.
This mechanism can be used to detect if a peer has disconnected.
type CommandIndex ¶
type Conn ¶
type Conn interface { Write(b []byte) (int, error) // Writes a msg to the connection Close() // Close the connection LocalAddr() net.Addr // Returns the local IP RemoteAddr() net.Addr // Returns the remote IP TLS() *tls.ConnectionState // TLS or nil when not using TLS Dictionary() *dict.Parser // Dictionary parser of the connection Context() context.Context // Returns the internal context SetContext(ctx context.Context) // Stores a new context Connection() net.Conn // Returns network connection }
Conn interface is used by a handler to send diameter messages.
func Dial ¶
Dial connects to the peer pointed to by addr and returns the Conn that can be used to send diameter messages. Incoming messages are handled by the handler, which is typically nil and DefaultServeMux is used. If dict is nil, dict.Default is used.
func DialNetwork ¶
DialNetwork connects to the peer pointed to by network & addr and returns the Conn that can be used to send diameter messages. Incoming messages are handled by the handler, which is typically nil and DefaultServeMux is used. If dict is nil, dict.Default is used.
func DialNetworkTLS ¶
func DialNetworkTLS(network, addr, certFile, keyFile string, handler Handler, dp *dict.Parser) (Conn, error)
DialNetworkTLS is the same as DialNetwork, but for TLS.
func DialNetworkTimeout ¶
func DialTLSTimeout ¶
func DialTLSTimeout(addr, certFile, keyFile string, handler Handler, dp *dict.Parser, timeout time.Duration) (Conn, error)
DialTLSTimeout is the same as DialTimeout, but for TLS.
func DialTimeout ¶
type ErrorReport ¶
type ErrorReport struct { Conn Conn // Peer that caused the error Message *Message // Message that caused the error Error error // Error message }
ErrorReport is sent out of the server in case it fails to read messages due to a bad dictionary or network errors.
func (*ErrorReport) String ¶
func (er *ErrorReport) String() string
String returns an error message. It does not render the Message field.
type ErrorReporter ¶
type ErrorReporter interface { // Error writes an error to the reporter. Error(err *ErrorReport) // ErrorReports returns a channel that receives // errors from the connection. ErrorReports() <-chan *ErrorReport }
The ErrorReporter interface is implemented by Handlers that allow reading errors from the underlying connection, like parsing diameter messages or connection errors.
type GroupedAVP ¶
type GroupedAVP struct {
AVP []*AVP
}
GroupedAVP that is different from the dummy datatype.Grouped.
func DecodeGrouped ¶
func DecodeGrouped(data datatype.Grouped, application uint32, dictionary *dict.Parser) (*GroupedAVP, error)
DecodeGrouped decodes a Grouped AVP from a datatype.Grouped (byte array).
func (*GroupedAVP) AddAVP ¶
func (g *GroupedAVP) AddAVP(a *AVP)
AddAVP adds the AVP to the GroupedAVP. It is not safe for concurrent calls.
func (*GroupedAVP) Padding ¶
func (g *GroupedAVP) Padding() int
Padding implements the datatype.Type interface.
func (*GroupedAVP) Serialize ¶
func (g *GroupedAVP) Serialize() []byte
Serialize implements the datatype.Type interface.
func (*GroupedAVP) String ¶
func (g *GroupedAVP) String() string
String implements the datatype.Type interface.
func (*GroupedAVP) Type ¶
func (g *GroupedAVP) Type() datatype.TypeID
Type implements the datatype.Type interface.
type Handler ¶
type Handler interface { // ServeDIAM should write messages to the Conn and then return. // Returning signals that the request is finished and that the // server can move on to the next request on the connection. ServeDIAM(Conn, *Message) }
The Handler interface allow arbitrary objects to be registered to serve particular messages like CER, DWR.
type HandlerFunc ¶
The HandlerFunc type is an adapter to allow the use of ordinary functions as diameter handlers. If f is a function with the appropriate signature, HandlerFunc(f) is a Handler object that calls f.
func (HandlerFunc) ServeDIAM ¶
func (f HandlerFunc) ServeDIAM(c Conn, m *Message)
ServeDIAM calls f(c, m).
type Header ¶
type Header struct { Version uint8 MessageLength uint32 CommandFlags uint8 CommandCode uint32 ApplicationID uint32 HopByHopID uint32 EndToEndID uint32 }
Header is the header representation of a Diameter message.
func DecodeHeader ¶
DecodeHeader decodes the bytes of a Diameter Header.
func (*Header) DecodeFromBytes ¶
DecodeFromBytes decodes the bytes of a Diameter Header.
func (*Header) SerializeTo ¶
SerializeTo serializes the header to a byte sequence in network byte order.
type Message ¶
type Message struct { Header *Header AVP []*AVP // AVPs in this message. // contains filtered or unexported fields }
Message represents a Diameter message.
func NewMessage ¶
func NewMessage(cmd uint32, flags uint8, appid, hopbyhop, endtoend uint32, dictionary *dict.Parser) *Message
NewMessage creates and initializes a Message.
func NewRequest ¶
NewRequest creates a new Message with the Request bit set.
func ReadMessage ¶
ReadMessage reads a binary stream from the reader and uses the given dictionary to parse it.
func (*Message) Answer ¶
Answer creates an answer for the current Message with an embedded Result-Code AVP.
func (*Message) Dictionary ¶
Dictionary returns the dictionary parser object associated with this message. This dictionary is used to encode and decode the message. If no dictionary is associated then it returns the default dictionary.
func (*Message) FindAVP ¶
FindAVP searches the Message for a specific AVP. The code can be either the AVP code (int, uint32) or name (string).
Example:
avp, err := m.FindAVP(264) avp, err := m.FindAVP(avp.OriginHost) avp, err := m.FindAVP("Origin-Host")
func (*Message) FindAVPs ¶
FindAVPs searches the Message for all avps that match the search criteria. The code can be either the AVP code (int, uint32) or name (string).
Example:
avps, err := m.FindAVPs(264) avps, err := m.FindAVPs(avp.OriginHost) avps, err := m.FindAVPs("Origin-Host")
func (*Message) FindAVPsWithPath ¶
FindAVPsWithPath searches the Message for AVPs on specific path. Used for example on group hierarchies. The path elements can be either AVP code (int, uint32), name (string) or combination of them.
Example:
avp, err := m.FindAVPsWithPath([]interface{}{264}) avp, err := m.FindAVPsWithPath([]interface{}{avp.OriginHost}) avp, err := m.FindAVPsWithPath([]interface{}{"Origin-Host"})
func (*Message) InsertAVP ¶
InsertAVP inserts the AVP to the Message as the first AVP. It is not safe for concurrent calls.
func (*Message) NewAVP ¶
func (m *Message) NewAVP(code interface{}, flags uint8, vendor uint32, data datatype.Type) (*AVP, error)
NewAVP creates and initializes a new AVP and adds it to the Message. It is not safe for concurrent calls.
func (*Message) SerializeTo ¶
SerializeTo writes the serialized bytes of the Message into b.
func (*Message) Unmarshal ¶
Unmarshal stores the result of a diameter message in the struct pointed to by dst.
Unmarshal can not only decode AVPs into the struct, but also their Go equivalent data types, directly.
For example:
type CER struct { OriginHost AVP `avp:"Origin-Host"` .. or OriginHost *AVP `avp:"Origin-Host"` .. or OriginHost string `avp:"Origin-Host"` } var d CER err := diam.Unmarshal(&d)
This decodes the Origin-Host AVP as three different types. The first, AVP, makes a copy of the AVP in the message and stores in the struct. The second, *AVP, stores a pointer to the original AVP in the message. If you change the values of it, you're actually changing the message. The third decodes the inner contents of AVP.Data, which in this case is a format.DiameterIdentity, and stores the value of it in the struct.
Unmarshal supports all the basic Go types, including slices, for multiple AVPs of the same type) and structs, for grouped AVPs.
Slices:
type CER struct { Vendors []*AVP `avp:"Supported-Vendor-Id"` } var d CER err := diam.Unmarshal(&d)
Slices have the same principles of other types. If they're of type []*AVP it'll store references in the struct, while []AVP makes copies and []int (or []string, etc) decodes the AVP data for you.
Grouped AVPs:
type VSA struct { AuthAppID int `avp:"Auth-Application-Id"` VendorID int `avp:"Vendor-Id"` } type CER struct { VSA VSA `avp:"Vendor-Specific-Application-Id"` .. or VSA *VSA `avp:"Vendor-Specific-Application-Id"` .. or VSA struct { AuthAppID int `avp:"Auth-Application-Id"` VendorID int `avp:"Vendor-Id"` } `avp:"Vendor-Specific-Application-Id"` } var d CER err := m.Unmarshal(&d)
Other types are supported as well, such as net.IP and time.Time where applicable. See the format sub-package for details. Usually, you want to decode values to their native Go type when the AVPs don't have to be re-used in an answer, such as Origin-Host and friends. The ones that are usually added to responses, such as Origin-State-Id are better decoded to just AVP or *AVP, making it easier to re-use them in the answer.
Note that decoding values to *AVP is much faster and more efficient than decoding to AVP or the native Go types.
type ServeMux ¶
type ServeMux struct {
// contains filtered or unexported fields
}
ServeMux is a diameter message multiplexer. It matches the command from the incoming message against a list of registered commands and calls the handler.
func (*ServeMux) Error ¶
func (mux *ServeMux) Error(err *ErrorReport)
Error implements the ErrorReporter interface.
func (*ServeMux) ErrorReports ¶
func (mux *ServeMux) ErrorReports() <-chan *ErrorReport
ErrorReports implement the ErrorReporter interface.
func (*ServeMux) Handle ¶
Handle registers the handler for the given code. If a handler already exists for code, Handle panics.
func (*ServeMux) HandleFunc ¶
HandleFunc registers the handler function for the given command. Special cmd "ALL" may be used as a catch all.
func (*ServeMux) HandleIdx ¶
func (mux *ServeMux) HandleIdx(cmd CommandIndex, handler Handler)
Handle registers the handler for the given code. If a handler already exists for code, Handle panics.
type Server ¶
type Server struct { Network string // network of the address - empty string defaults to tcp Addr string // address to listen on, ":3868" if empty Handler Handler // handler to invoke, DefaultServeMux if nil Dict *dict.Parser // diameter dictionaries for this server ReadTimeout time.Duration // maximum duration before timing out read of the request WriteTimeout time.Duration // maximum duration before timing out write of the response TLSConfig *tls.Config // optional TLS config, used by ListenAndServeTLS }
A Server defines parameters for running a diameter server.
func (*Server) ListenAndServe ¶
ListenAndServe listens on the network address srv.Addr and then calls Serve to handle requests on incoming connections. If
If srv.Network is blank, "tcp" is used If srv.Addr is blank, ":3868" is used.
func (*Server) ListenAndServeTLS ¶
ListenAndServeTLS listens on the network address srv.Addr and then calls Serve to handle requests on incoming TLS connections.
Filenames containing a certificate and matching private key for the server must be provided. If the certificate is signed by a certificate authority, the certFile should be the concatenation of the server's certificate followed by the CA's certificate.
If srv.Network is blank, "tcp" is used If srv.Addr is blank, ":3868" is used.
Source Files ¶
Directories ¶
Path | Synopsis |
---|---|
Package avp provides Diameter AVP constants and flags.
|
Package avp provides Diameter AVP constants and flags. |
Package datatype provides data types for Diameter AVPs.
|
Package datatype provides data types for Diameter AVPs. |
Package diamtest provides utilities for Diameter testing.
|
Package diamtest provides utilities for Diameter testing. |
Package dict provides a Diameter dictionary parser.
|
Package dict provides a Diameter dictionary parser. |
Package sm provides diameter state machines for clients and servers.
|
Package sm provides diameter state machines for clients and servers. |
smparser
Package smparser provides message parsers for the state machine.
|
Package smparser provides message parsers for the state machine. |
smpeer
Package smpeer provides functions for extracting information from a CER or CEA, and associating with a Context.
|
Package smpeer provides functions for extracting information from a CER or CEA, and associating with a Context. |