Documentation ¶
Overview ¶
Parallactic: Chapter 14, The Parallactic Angle, and three other Topics.
Index ¶
- func DiurnalPathAtHorizon(δ, φ unit.Angle) (J unit.Angle)
- func EclipticAtEquator(λ, ε unit.Angle) unit.Angle
- func EclipticAtHorizon(ε, φ unit.Angle, θ unit.Time) (λ1, λ2, I unit.Angle)
- func ParallacticAngle(φ, δ unit.Angle, H unit.HourAngle) unit.Angle
- func ParallacticAngleOnHorizon(φ, δ unit.Angle) unit.Angle
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func DiurnalPathAtHorizon ¶
DiurnalPathAtHorizon computes the angle of the path a celestial object relative to the horizon at the time of its rising or setting.
δ is declination of the object. φ is geographic latitude of observer.
func EclipticAtEquator ¶
EclipticAtEquator computes the angle between the ecliptic and the parallels of ecliptic latitude at a given ecliptic longitude.
(The function name EclipticAtEquator is for consistency with the Meeus text, and works if you consider the equator a nominal parallel of latitude.)
λ is ecliptic longitude. ε is obliquity of the ecliptic.
func EclipticAtHorizon ¶
EclipticAtHorizon computes how the plane of the ecliptic intersects the horizon at a given local sidereal time as observed from a given geographic latitude.
ε is obliquity of the ecliptic. φ is geographic latitude of observer. θ is local sidereal time. λ1 and λ2 are ecliptic longitudes where the ecliptic intersects the horizon. I is the angle at which the ecliptic intersects the horizon.
Example ¶
ε := unit.AngleFromDeg(23.44) φ := unit.AngleFromDeg(51) θ := unit.TimeFromHour(5) λ1, λ2, I := parallactic.EclipticAtHorizon(ε, φ, θ) fmt.Println(sexa.FmtAngle(λ1)) fmt.Println(sexa.FmtAngle(λ2)) fmt.Println(sexa.FmtAngle(I))
Output: 169°21′30″ 349°21′30″ 61°53′14″
func ParallacticAngle ¶
ParallacticAngle returns parallactic angle of a celestial object.
φ is geographic latitude of observer. δ is declination of observed object. H is hour angle of observed object.
Types ¶
This section is empty.