common

package
v0.0.0-...-80b9cc1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 19, 2023 License: MIT Imports: 17 Imported by: 2

Documentation

Index

Constants

This section is empty.

Variables

View Source
var File_protob_shared_proto protoreflect.FileDescriptor
View Source
var Logger = log.Logger("tss-lib")

Functions

func BigIntsToBytes

func BigIntsToBytes(bigInts []*big.Int) [][]byte

func ByteSlicesToBigInts

func ByteSlicesToBigInts(bytes [][]byte) []*big.Int

func GetRandomGeneratorOfTheQuadraticResidue

func GetRandomGeneratorOfTheQuadraticResidue(n *big.Int) *big.Int
Return a random generator of RQn with high probability.
THIS METHOD ONLY WORKS IF N IS THE PRODUCT OF TWO SAFE PRIMES!

https://github.com/didiercrunch/paillier/blob/d03e8850a8e4c53d04e8016a2ce8762af3278b71/utils.go#L39

func GetRandomPositiveInt

func GetRandomPositiveInt(upper *big.Int) *big.Int

func GetRandomPositiveRelativelyPrimeInt

func GetRandomPositiveRelativelyPrimeInt(n *big.Int) *big.Int

Generate a random element in the group of all the elements in Z/nZ that has a multiplicative inverse.

func GetRandomPrimeInt

func GetRandomPrimeInt(bits int) *big.Int

func IsNumberInMultiplicativeGroup

func IsNumberInMultiplicativeGroup(n, v *big.Int) bool

func ModInt

func ModInt(mod *big.Int) *modInt

func MustGetRandomInt

func MustGetRandomInt(bits int) *big.Int

MustGetRandomInt panics if it is unable to gather entropy from `rand.Reader` or when `bits` is <= 0

func NonEmptyBytes

func NonEmptyBytes(bz []byte, minByteLen ...int) bool

Returns true when the byte slice is non-nil and non-empty

func NonEmptyMultiBytes

func NonEmptyMultiBytes(bzs [][]byte, expectLen ...int) bool

Returns true when all of the slices in the multi-dimensional byte slice are non-nil and non-empty

func RejectionSample

func RejectionSample(q *big.Int, eHash *big.Int) *big.Int

RejectionSample implements the rejection sampling logic for converting a SHA512/256 hash to a value between 0-q

func SHA512_256

func SHA512_256(in ...[]byte) []byte

SHA-512/256 is protected against length extension attacks and is more performant than SHA-256 on 64-bit architectures. https://en.wikipedia.org/wiki/Template:Comparison_of_SHA_functions

func SHA512_256i

func SHA512_256i(in ...*big.Int) *big.Int

func SHA512_256iOne

func SHA512_256iOne(in *big.Int) *big.Int

Types

type ECPoint

type ECPoint struct {
	X []byte `protobuf:"bytes,1,opt,name=x,proto3" json:"x,omitempty"`
	Y []byte `protobuf:"bytes,2,opt,name=y,proto3" json:"y,omitempty"`
	// contains filtered or unexported fields
}

func (*ECPoint) Descriptor deprecated

func (*ECPoint) Descriptor() ([]byte, []int)

Deprecated: Use ECPoint.ProtoReflect.Descriptor instead.

func (*ECPoint) GetX

func (x *ECPoint) GetX() []byte

func (*ECPoint) GetY

func (x *ECPoint) GetY() []byte

func (*ECPoint) ProtoMessage

func (*ECPoint) ProtoMessage()

func (*ECPoint) ProtoReflect

func (x *ECPoint) ProtoReflect() protoreflect.Message

func (*ECPoint) Reset

func (x *ECPoint) Reset()

func (*ECPoint) String

func (x *ECPoint) String() string

func (*ECPoint) ValidateBasic

func (x *ECPoint) ValidateBasic() bool

type ECSignature

type ECSignature struct {
	Signature []byte `protobuf:"bytes,1,opt,name=signature,proto3" json:"signature,omitempty"`
	// Ethereum-style Recovery ID: Used to enable extracting the public key from the signature.
	SignatureRecovery []byte `protobuf:"bytes,2,opt,name=signature_recovery,json=signatureRecovery,proto3" json:"signature_recovery,omitempty"`
	// Signature components R, S
	R []byte `protobuf:"bytes,3,opt,name=r,proto3" json:"r,omitempty"`
	S []byte `protobuf:"bytes,4,opt,name=s,proto3" json:"s,omitempty"`
	// M represents the original message digest that was signed M
	M []byte `protobuf:"bytes,5,opt,name=m,proto3" json:"m,omitempty"`
	// contains filtered or unexported fields
}

func (*ECSignature) Descriptor deprecated

func (*ECSignature) Descriptor() ([]byte, []int)

Deprecated: Use ECSignature.ProtoReflect.Descriptor instead.

func (*ECSignature) GetM

func (x *ECSignature) GetM() []byte

func (*ECSignature) GetR

func (x *ECSignature) GetR() []byte

func (*ECSignature) GetS

func (x *ECSignature) GetS() []byte

func (*ECSignature) GetSignature

func (x *ECSignature) GetSignature() []byte

func (*ECSignature) GetSignatureRecovery

func (x *ECSignature) GetSignatureRecovery() []byte

func (*ECSignature) ProtoMessage

func (*ECSignature) ProtoMessage()

func (*ECSignature) ProtoReflect

func (x *ECSignature) ProtoReflect() protoreflect.Message

func (*ECSignature) Reset

func (x *ECSignature) Reset()

func (*ECSignature) String

func (x *ECSignature) String() string

type GermainSafePrime

type GermainSafePrime struct {
	// contains filtered or unexported fields
}

func GetRandomSafePrimesConcurrent

func GetRandomSafePrimesConcurrent(bitLen, numPrimes int, timeout time.Duration, concurrency int) ([]*GermainSafePrime, error)

GetRandomSafePrimesConcurrent tries to find safe primes concurrently. The returned results are safe primes `p` and prime `q` such that `p=2q+1`. Concurrency level can be controlled with the `concurrencyLevel` parameter. If a safe prime could not be found in the specified `timeout`, the error is returned. Also, if at least one search process failed, error is returned as well.

How fast we generate a prime number is mostly a matter of luck and it depends on how lucky we are with drawing the first bytes. With today's multi-core processors, we can execute the process on multiple cores concurrently, accept the first valid result and cancel the rest of work. This way, with the same finding algorithm, we can get the result faster.

Concurrency level should be set depending on what `bitLen` of prime is expected. For example, as of today, on a typical workstation, for 512-bit safe prime, `concurrencyLevel` should be set to `1` as generating the prime of this length is a matter of milliseconds for a single core. For 1024-bit safe prime, `concurrencyLevel` should be usually set to at least `2` and for 2048-bit safe prime, `concurrencyLevel` must be set to at least `4` to get the result in a reasonable time.

This function generates safe primes of at least 6 `bitLen`. For every generated safe prime, the two most significant bits are always set to `1` - we don't want the generated number to be too small.

func (*GermainSafePrime) Prime

func (sgp *GermainSafePrime) Prime() *big.Int

func (*GermainSafePrime) SafePrime

func (sgp *GermainSafePrime) SafePrime() *big.Int

func (*GermainSafePrime) Validate

func (sgp *GermainSafePrime) Validate() bool

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL