Documentation ¶
Overview ¶
Package prediction provides access to the Prediction API.
See https://developers.google.com/prediction/docs/developer-guide
Usage example:
import "code.google.com/p/google-api-go-client/prediction/v1.6" ... predictionService, err := prediction.New(oauthHttpClient)
Index ¶
- Constants
- type Analyze
- type AnalyzeDataDescription
- type AnalyzeDataDescriptionFeatures
- type AnalyzeDataDescriptionFeaturesCategorical
- type AnalyzeDataDescriptionFeaturesCategoricalValues
- type AnalyzeDataDescriptionFeaturesNumeric
- type AnalyzeDataDescriptionFeaturesText
- type AnalyzeDataDescriptionOutputFeature
- type AnalyzeDataDescriptionOutputFeatureNumeric
- type AnalyzeDataDescriptionOutputFeatureText
- type AnalyzeModelDescription
- type AnalyzeModelDescriptionConfusionMatrix
- type HostedmodelsPredictCall
- type HostedmodelsService
- type Input
- type InputInput
- type Insert
- type Insert2
- type Insert2ModelInfo
- type InsertTrainingInstances
- type InsertUtility
- type List
- type Output
- type OutputOutputMulti
- type Service
- type TrainedmodelsAnalyzeCall
- type TrainedmodelsDeleteCall
- type TrainedmodelsGetCall
- type TrainedmodelsInsertCall
- type TrainedmodelsListCall
- func (c *TrainedmodelsListCall) Do() (*List, error)
- func (c *TrainedmodelsListCall) Fields(s ...googleapi.Field) *TrainedmodelsListCall
- func (c *TrainedmodelsListCall) MaxResults(maxResults int64) *TrainedmodelsListCall
- func (c *TrainedmodelsListCall) PageToken(pageToken string) *TrainedmodelsListCall
- type TrainedmodelsPredictCall
- type TrainedmodelsService
- func (r *TrainedmodelsService) Analyze(project string, id string) *TrainedmodelsAnalyzeCall
- func (r *TrainedmodelsService) Delete(project string, id string) *TrainedmodelsDeleteCall
- func (r *TrainedmodelsService) Get(project string, id string) *TrainedmodelsGetCall
- func (r *TrainedmodelsService) Insert(project string, insert *Insert) *TrainedmodelsInsertCall
- func (r *TrainedmodelsService) List(project string) *TrainedmodelsListCall
- func (r *TrainedmodelsService) Predict(project string, id string, input *Input) *TrainedmodelsPredictCall
- func (r *TrainedmodelsService) Update(project string, id string, update *Update) *TrainedmodelsUpdateCall
- type TrainedmodelsUpdateCall
- type Update
Constants ¶
const ( // Manage your data and permissions in Google Cloud Storage DevstorageFull_controlScope = "https://www.googleapis.com/auth/devstorage.full_control" // View your data in Google Cloud Storage DevstorageRead_onlyScope = "https://www.googleapis.com/auth/devstorage.read_only" // Manage your data in Google Cloud Storage DevstorageRead_writeScope = "https://www.googleapis.com/auth/devstorage.read_write" // Manage your data in the Google Prediction API PredictionScope = "https://www.googleapis.com/auth/prediction" )
OAuth2 scopes used by this API.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Analyze ¶
type Analyze struct { // DataDescription: Description of the data the model was trained on. DataDescription *AnalyzeDataDescription `json:"dataDescription,omitempty"` // Errors: List of errors with the data. Errors []map[string]string `json:"errors,omitempty"` // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // ModelDescription: Description of the model. ModelDescription *AnalyzeModelDescription `json:"modelDescription,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` }
type AnalyzeDataDescription ¶
type AnalyzeDataDescription struct { // Features: Description of the input features in the data set. Features []*AnalyzeDataDescriptionFeatures `json:"features,omitempty"` // OutputFeature: Description of the output value or label. OutputFeature *AnalyzeDataDescriptionOutputFeature `json:"outputFeature,omitempty"` }
type AnalyzeDataDescriptionFeatures ¶
type AnalyzeDataDescriptionFeatures struct { // Categorical: Description of the categorical values of this feature. Categorical *AnalyzeDataDescriptionFeaturesCategorical `json:"categorical,omitempty"` // Index: The feature index. Index int64 `json:"index,omitempty,string"` // Numeric: Description of the numeric values of this feature. Numeric *AnalyzeDataDescriptionFeaturesNumeric `json:"numeric,omitempty"` // Text: Description of multiple-word text values of this feature. Text *AnalyzeDataDescriptionFeaturesText `json:"text,omitempty"` }
type AnalyzeDataDescriptionFeaturesCategorical ¶
type AnalyzeDataDescriptionFeaturesCategorical struct { // Count: Number of categorical values for this feature in the data. Count int64 `json:"count,omitempty,string"` // Values: List of all the categories for this feature in the data set. Values []*AnalyzeDataDescriptionFeaturesCategoricalValues `json:"values,omitempty"` }
type AnalyzeDataDescriptionFeaturesNumeric ¶
type AnalyzeDataDescriptionFeaturesNumeric struct { // Count: Number of numeric values for this feature in the data set. Count int64 `json:"count,omitempty,string"` // Mean: Mean of the numeric values of this feature in the data set. Mean string `json:"mean,omitempty"` // Variance: Variance of the numeric values of this feature in the data // set. Variance string `json:"variance,omitempty"` }
type AnalyzeDataDescriptionFeaturesText ¶
type AnalyzeDataDescriptionFeaturesText struct { // Count: Number of multiple-word text values for this feature. Count int64 `json:"count,omitempty,string"` }
type AnalyzeDataDescriptionOutputFeature ¶
type AnalyzeDataDescriptionOutputFeature struct { // Numeric: Description of the output values in the data set. Numeric *AnalyzeDataDescriptionOutputFeatureNumeric `json:"numeric,omitempty"` // Text: Description of the output labels in the data set. Text []*AnalyzeDataDescriptionOutputFeatureText `json:"text,omitempty"` }
type AnalyzeDataDescriptionOutputFeatureNumeric ¶
type AnalyzeDataDescriptionOutputFeatureNumeric struct { // Count: Number of numeric output values in the data set. Count int64 `json:"count,omitempty,string"` // Mean: Mean of the output values in the data set. Mean string `json:"mean,omitempty"` // Variance: Variance of the output values in the data set. Variance string `json:"variance,omitempty"` }
type AnalyzeModelDescription ¶
type AnalyzeModelDescription struct { // ConfusionMatrix: An output confusion matrix. This shows an estimate // for how this model will do in predictions. This is first indexed by // the true class label. For each true class label, this provides a pair // {predicted_label, count}, where count is the estimated number of // times the model will predict the predicted label given the true // label. Will not output if more then 100 classes (Categorical models // only). ConfusionMatrix *AnalyzeModelDescriptionConfusionMatrix `json:"confusionMatrix,omitempty"` // ConfusionMatrixRowTotals: A list of the confusion matrix row totals. ConfusionMatrixRowTotals map[string]string `json:"confusionMatrixRowTotals,omitempty"` // Modelinfo: Basic information about the model. Modelinfo *Insert2 `json:"modelinfo,omitempty"` }
type AnalyzeModelDescriptionConfusionMatrix ¶
type AnalyzeModelDescriptionConfusionMatrix struct { }
type HostedmodelsPredictCall ¶
type HostedmodelsPredictCall struct {
// contains filtered or unexported fields
}
func (*HostedmodelsPredictCall) Do ¶
func (c *HostedmodelsPredictCall) Do() (*Output, error)
func (*HostedmodelsPredictCall) Fields ¶
func (c *HostedmodelsPredictCall) Fields(s ...googleapi.Field) *HostedmodelsPredictCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type HostedmodelsService ¶
type HostedmodelsService struct {
// contains filtered or unexported fields
}
func NewHostedmodelsService ¶
func NewHostedmodelsService(s *Service) *HostedmodelsService
func (*HostedmodelsService) Predict ¶
func (r *HostedmodelsService) Predict(project string, hostedModelName string, input *Input) *HostedmodelsPredictCall
Predict: Submit input and request an output against a hosted model.
type Input ¶
type Input struct { // Input: Input to the model for a prediction. Input *InputInput `json:"input,omitempty"` }
type InputInput ¶
type InputInput struct { // CsvInstance: A list of input features, these can be strings or // doubles. CsvInstance []interface{} `json:"csvInstance,omitempty"` }
type Insert ¶
type Insert struct { // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // ModelType: Type of predictive model (classification or regression). ModelType string `json:"modelType,omitempty"` // SourceModel: The Id of the model to be copied over. SourceModel string `json:"sourceModel,omitempty"` // StorageDataLocation: Google storage location of the training data // file. StorageDataLocation string `json:"storageDataLocation,omitempty"` // StoragePMMLLocation: Google storage location of the preprocessing // pmml file. StoragePMMLLocation string `json:"storagePMMLLocation,omitempty"` // StoragePMMLModelLocation: Google storage location of the pmml model // file. StoragePMMLModelLocation string `json:"storagePMMLModelLocation,omitempty"` // TrainingInstances: Instances to train model on. TrainingInstances []*InsertTrainingInstances `json:"trainingInstances,omitempty"` // Utility: A class weighting function, which allows the importance // weights for class labels to be specified (Categorical models only). Utility []*InsertUtility `json:"utility,omitempty"` }
type Insert2 ¶
type Insert2 struct { // Created: Insert time of the model (as a RFC 3339 timestamp). Created string `json:"created,omitempty"` // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // ModelInfo: Model metadata. ModelInfo *Insert2ModelInfo `json:"modelInfo,omitempty"` // ModelType: Type of predictive model (CLASSIFICATION or REGRESSION). ModelType string `json:"modelType,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` // StorageDataLocation: Google storage location of the training data // file. StorageDataLocation string `json:"storageDataLocation,omitempty"` // StoragePMMLLocation: Google storage location of the preprocessing // pmml file. StoragePMMLLocation string `json:"storagePMMLLocation,omitempty"` // StoragePMMLModelLocation: Google storage location of the pmml model // file. StoragePMMLModelLocation string `json:"storagePMMLModelLocation,omitempty"` // TrainingComplete: Training completion time (as a RFC 3339 timestamp). TrainingComplete string `json:"trainingComplete,omitempty"` // TrainingStatus: The current status of the training job. This can be // one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND TrainingStatus string `json:"trainingStatus,omitempty"` }
type Insert2ModelInfo ¶
type Insert2ModelInfo struct { // ClassWeightedAccuracy: Estimated accuracy of model taking utility // weights into account (Categorical models only). ClassWeightedAccuracy string `json:"classWeightedAccuracy,omitempty"` // ClassificationAccuracy: A number between 0.0 and 1.0, where 1.0 is // 100% accurate. This is an estimate, based on the amount and quality // of the training data, of the estimated prediction accuracy. You can // use this is a guide to decide whether the results are accurate enough // for your needs. This estimate will be more reliable if your real // input data is similar to your training data (Categorical models // only). ClassificationAccuracy string `json:"classificationAccuracy,omitempty"` // MeanSquaredError: An estimated mean squared error. The can be used to // measure the quality of the predicted model (Regression models only). MeanSquaredError string `json:"meanSquaredError,omitempty"` // ModelType: Type of predictive model (CLASSIFICATION or REGRESSION). ModelType string `json:"modelType,omitempty"` // NumberInstances: Number of valid data instances used in the trained // model. NumberInstances int64 `json:"numberInstances,omitempty,string"` // NumberLabels: Number of class labels in the trained model // (Categorical models only). NumberLabels int64 `json:"numberLabels,omitempty,string"` }
type InsertTrainingInstances ¶
type InsertTrainingInstances struct { // CsvInstance: The input features for this instance. CsvInstance []interface{} `json:"csvInstance,omitempty"` // Output: The generic output value - could be regression or class // label. Output string `json:"output,omitempty"` }
type InsertUtility ¶
type InsertUtility struct { }
type List ¶
type List struct { // Items: List of models. Items []*Insert2 `json:"items,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // NextPageToken: Pagination token to fetch the next page, if one // exists. NextPageToken string `json:"nextPageToken,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` }
type Output ¶
type Output struct { // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // OutputLabel: The most likely class label (Categorical models only). OutputLabel string `json:"outputLabel,omitempty"` // OutputMulti: A list of class labels with their estimated // probabilities (Categorical models only). OutputMulti []*OutputOutputMulti `json:"outputMulti,omitempty"` // OutputValue: The estimated regression value (Regression models only). OutputValue string `json:"outputValue,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` }
type OutputOutputMulti ¶
type Service ¶
type Service struct { BasePath string // API endpoint base URL Hostedmodels *HostedmodelsService Trainedmodels *TrainedmodelsService // contains filtered or unexported fields }
type TrainedmodelsAnalyzeCall ¶
type TrainedmodelsAnalyzeCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsAnalyzeCall) Do ¶
func (c *TrainedmodelsAnalyzeCall) Do() (*Analyze, error)
func (*TrainedmodelsAnalyzeCall) Fields ¶
func (c *TrainedmodelsAnalyzeCall) Fields(s ...googleapi.Field) *TrainedmodelsAnalyzeCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsDeleteCall ¶
type TrainedmodelsDeleteCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsDeleteCall) Do ¶
func (c *TrainedmodelsDeleteCall) Do() error
func (*TrainedmodelsDeleteCall) Fields ¶
func (c *TrainedmodelsDeleteCall) Fields(s ...googleapi.Field) *TrainedmodelsDeleteCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsGetCall ¶
type TrainedmodelsGetCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsGetCall) Do ¶
func (c *TrainedmodelsGetCall) Do() (*Insert2, error)
func (*TrainedmodelsGetCall) Fields ¶
func (c *TrainedmodelsGetCall) Fields(s ...googleapi.Field) *TrainedmodelsGetCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsInsertCall ¶
type TrainedmodelsInsertCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsInsertCall) Do ¶
func (c *TrainedmodelsInsertCall) Do() (*Insert2, error)
func (*TrainedmodelsInsertCall) Fields ¶
func (c *TrainedmodelsInsertCall) Fields(s ...googleapi.Field) *TrainedmodelsInsertCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsListCall ¶
type TrainedmodelsListCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsListCall) Do ¶
func (c *TrainedmodelsListCall) Do() (*List, error)
func (*TrainedmodelsListCall) Fields ¶
func (c *TrainedmodelsListCall) Fields(s ...googleapi.Field) *TrainedmodelsListCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
func (*TrainedmodelsListCall) MaxResults ¶
func (c *TrainedmodelsListCall) MaxResults(maxResults int64) *TrainedmodelsListCall
MaxResults sets the optional parameter "maxResults": Maximum number of results to return.
func (*TrainedmodelsListCall) PageToken ¶
func (c *TrainedmodelsListCall) PageToken(pageToken string) *TrainedmodelsListCall
PageToken sets the optional parameter "pageToken": Pagination token.
type TrainedmodelsPredictCall ¶
type TrainedmodelsPredictCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsPredictCall) Do ¶
func (c *TrainedmodelsPredictCall) Do() (*Output, error)
func (*TrainedmodelsPredictCall) Fields ¶
func (c *TrainedmodelsPredictCall) Fields(s ...googleapi.Field) *TrainedmodelsPredictCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsService ¶
type TrainedmodelsService struct {
// contains filtered or unexported fields
}
func NewTrainedmodelsService ¶
func NewTrainedmodelsService(s *Service) *TrainedmodelsService
func (*TrainedmodelsService) Analyze ¶
func (r *TrainedmodelsService) Analyze(project string, id string) *TrainedmodelsAnalyzeCall
Analyze: Get analysis of the model and the data the model was trained on.
func (*TrainedmodelsService) Delete ¶
func (r *TrainedmodelsService) Delete(project string, id string) *TrainedmodelsDeleteCall
Delete: Delete a trained model.
func (*TrainedmodelsService) Get ¶
func (r *TrainedmodelsService) Get(project string, id string) *TrainedmodelsGetCall
Get: Check training status of your model.
func (*TrainedmodelsService) Insert ¶
func (r *TrainedmodelsService) Insert(project string, insert *Insert) *TrainedmodelsInsertCall
Insert: Train a Prediction API model.
func (*TrainedmodelsService) List ¶
func (r *TrainedmodelsService) List(project string) *TrainedmodelsListCall
List: List available models.
func (*TrainedmodelsService) Predict ¶
func (r *TrainedmodelsService) Predict(project string, id string, input *Input) *TrainedmodelsPredictCall
Predict: Submit model id and request a prediction.
func (*TrainedmodelsService) Update ¶
func (r *TrainedmodelsService) Update(project string, id string, update *Update) *TrainedmodelsUpdateCall
Update: Add new data to a trained model.
type TrainedmodelsUpdateCall ¶
type TrainedmodelsUpdateCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsUpdateCall) Do ¶
func (c *TrainedmodelsUpdateCall) Do() (*Insert2, error)
func (*TrainedmodelsUpdateCall) Fields ¶
func (c *TrainedmodelsUpdateCall) Fields(s ...googleapi.Field) *TrainedmodelsUpdateCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.