Documentation ¶
Overview ¶
Package prediction provides access to the Prediction API.
See https://developers.google.com/prediction/docs/developer-guide
Usage example:
import "google.golang.org/api/prediction/v1.4" ... predictionService, err := prediction.New(oauthHttpClient)
Index ¶
- Constants
- type HostedmodelsPredictCall
- type HostedmodelsService
- type Input
- type InputInput
- type Output
- type OutputOutputMulti
- type Service
- type TrainedmodelsDeleteCall
- type TrainedmodelsGetCall
- type TrainedmodelsInsertCall
- type TrainedmodelsPredictCall
- type TrainedmodelsService
- func (r *TrainedmodelsService) Delete(id string) *TrainedmodelsDeleteCall
- func (r *TrainedmodelsService) Get(id string) *TrainedmodelsGetCall
- func (r *TrainedmodelsService) Insert(training *Training) *TrainedmodelsInsertCall
- func (r *TrainedmodelsService) Predict(id string, input *Input) *TrainedmodelsPredictCall
- func (r *TrainedmodelsService) Update(id string, update *Update) *TrainedmodelsUpdateCall
- type TrainedmodelsUpdateCall
- type Training
- type TrainingDataAnalysis
- type TrainingModelInfo
- type TrainingModelInfoConfusionMatrix
- type TrainingModelInfoConfusionMatrixRowTotals
- type TrainingUtility
- type Update
Constants ¶
const ( // Manage your data and permissions in Google Cloud Storage DevstorageFull_controlScope = "https://www.googleapis.com/auth/devstorage.full_control" // View your data in Google Cloud Storage DevstorageRead_onlyScope = "https://www.googleapis.com/auth/devstorage.read_only" // Manage your data in Google Cloud Storage DevstorageRead_writeScope = "https://www.googleapis.com/auth/devstorage.read_write" // Manage your data in the Google Prediction API PredictionScope = "https://www.googleapis.com/auth/prediction" )
OAuth2 scopes used by this API.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type HostedmodelsPredictCall ¶
type HostedmodelsPredictCall struct {
// contains filtered or unexported fields
}
func (*HostedmodelsPredictCall) Do ¶
func (c *HostedmodelsPredictCall) Do() (*Output, error)
func (*HostedmodelsPredictCall) Fields ¶
func (c *HostedmodelsPredictCall) Fields(s ...googleapi.Field) *HostedmodelsPredictCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type HostedmodelsService ¶
type HostedmodelsService struct {
// contains filtered or unexported fields
}
func NewHostedmodelsService ¶
func NewHostedmodelsService(s *Service) *HostedmodelsService
func (*HostedmodelsService) Predict ¶
func (r *HostedmodelsService) Predict(hostedModelName string, input *Input) *HostedmodelsPredictCall
Predict: Submit input and request an output against a hosted model.
type Input ¶
type Input struct { // Input: Input to the model for a prediction Input *InputInput `json:"input,omitempty"` }
type InputInput ¶
type InputInput struct { // CsvInstance: A list of input features, these can be strings or // doubles. CsvInstance []interface{} `json:"csvInstance,omitempty"` }
type Output ¶
type Output struct { // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // OutputLabel: The most likely class label [Categorical models only]. OutputLabel string `json:"outputLabel,omitempty"` // OutputMulti: A list of class labels with their estimated // probabilities [Categorical models only]. OutputMulti []*OutputOutputMulti `json:"outputMulti,omitempty"` // OutputValue: The estimated regression value [Regression models only]. OutputValue float64 `json:"outputValue,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` }
type OutputOutputMulti ¶
type Service ¶
type Service struct { BasePath string // API endpoint base URL Hostedmodels *HostedmodelsService Trainedmodels *TrainedmodelsService // contains filtered or unexported fields }
type TrainedmodelsDeleteCall ¶
type TrainedmodelsDeleteCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsDeleteCall) Do ¶
func (c *TrainedmodelsDeleteCall) Do() error
func (*TrainedmodelsDeleteCall) Fields ¶
func (c *TrainedmodelsDeleteCall) Fields(s ...googleapi.Field) *TrainedmodelsDeleteCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsGetCall ¶
type TrainedmodelsGetCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsGetCall) Do ¶
func (c *TrainedmodelsGetCall) Do() (*Training, error)
func (*TrainedmodelsGetCall) Fields ¶
func (c *TrainedmodelsGetCall) Fields(s ...googleapi.Field) *TrainedmodelsGetCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsInsertCall ¶
type TrainedmodelsInsertCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsInsertCall) Do ¶
func (c *TrainedmodelsInsertCall) Do() (*Training, error)
func (*TrainedmodelsInsertCall) Fields ¶
func (c *TrainedmodelsInsertCall) Fields(s ...googleapi.Field) *TrainedmodelsInsertCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsPredictCall ¶
type TrainedmodelsPredictCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsPredictCall) Do ¶
func (c *TrainedmodelsPredictCall) Do() (*Output, error)
func (*TrainedmodelsPredictCall) Fields ¶
func (c *TrainedmodelsPredictCall) Fields(s ...googleapi.Field) *TrainedmodelsPredictCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type TrainedmodelsService ¶
type TrainedmodelsService struct {
// contains filtered or unexported fields
}
func NewTrainedmodelsService ¶
func NewTrainedmodelsService(s *Service) *TrainedmodelsService
func (*TrainedmodelsService) Delete ¶
func (r *TrainedmodelsService) Delete(id string) *TrainedmodelsDeleteCall
Delete: Delete a trained model.
func (*TrainedmodelsService) Get ¶
func (r *TrainedmodelsService) Get(id string) *TrainedmodelsGetCall
Get: Check training status of your model.
func (*TrainedmodelsService) Insert ¶
func (r *TrainedmodelsService) Insert(training *Training) *TrainedmodelsInsertCall
Insert: Begin training your model.
func (*TrainedmodelsService) Predict ¶
func (r *TrainedmodelsService) Predict(id string, input *Input) *TrainedmodelsPredictCall
Predict: Submit model id and request a prediction
func (*TrainedmodelsService) Update ¶
func (r *TrainedmodelsService) Update(id string, update *Update) *TrainedmodelsUpdateCall
Update: Add new data to a trained model.
type TrainedmodelsUpdateCall ¶
type TrainedmodelsUpdateCall struct {
// contains filtered or unexported fields
}
func (*TrainedmodelsUpdateCall) Do ¶
func (c *TrainedmodelsUpdateCall) Do() (*Training, error)
func (*TrainedmodelsUpdateCall) Fields ¶
func (c *TrainedmodelsUpdateCall) Fields(s ...googleapi.Field) *TrainedmodelsUpdateCall
Fields allows partial responses to be retrieved. See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse for more information.
type Training ¶
type Training struct { // DataAnalysis: Data Analysis. DataAnalysis *TrainingDataAnalysis `json:"dataAnalysis,omitempty"` // Id: The unique name for the predictive model. Id string `json:"id,omitempty"` // Kind: What kind of resource this is. Kind string `json:"kind,omitempty"` // ModelInfo: Model metadata. ModelInfo *TrainingModelInfo `json:"modelInfo,omitempty"` // SelfLink: A URL to re-request this resource. SelfLink string `json:"selfLink,omitempty"` // StorageDataLocation: Google storage location of the training data // file. StorageDataLocation string `json:"storageDataLocation,omitempty"` // StoragePMMLLocation: Google storage location of the preprocessing // pmml file. StoragePMMLLocation string `json:"storagePMMLLocation,omitempty"` // StoragePMMLModelLocation: Google storage location of the pmml model // file. StoragePMMLModelLocation string `json:"storagePMMLModelLocation,omitempty"` // TrainingStatus: The current status of the training job. This can be // one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND TrainingStatus string `json:"trainingStatus,omitempty"` // Utility: A class weighting function, which allows the importance // weights for class labels to be specified [Categorical models only]. Utility []*TrainingUtility `json:"utility,omitempty"` }
type TrainingDataAnalysis ¶
type TrainingDataAnalysis struct {
Warnings []string `json:"warnings,omitempty"`
}
type TrainingModelInfo ¶
type TrainingModelInfo struct { // ClassWeightedAccuracy: Estimated accuracy of model taking utility // weights into account [Categorical models only]. ClassWeightedAccuracy float64 `json:"classWeightedAccuracy,omitempty"` // ClassificationAccuracy: A number between 0.0 and 1.0, where 1.0 is // 100% accurate. This is an estimate, based on the amount and quality // of the training data, of the estimated prediction accuracy. You can // use this is a guide to decide whether the results are accurate enough // for your needs. This estimate will be more reliable if your real // input data is similar to your training data [Categorical models // only]. ClassificationAccuracy float64 `json:"classificationAccuracy,omitempty"` // ConfusionMatrix: An output confusion matrix. This shows an estimate // for how this model will do in predictions. This is first indexed by // the true class label. For each true class label, this provides a pair // {predicted_label, count}, where count is the estimated number of // times the model will predict the predicted label given the true // label. Will not output if more then 100 classes [Categorical models // only]. ConfusionMatrix *TrainingModelInfoConfusionMatrix `json:"confusionMatrix,omitempty"` // ConfusionMatrixRowTotals: A list of the confusion matrix row totals ConfusionMatrixRowTotals *TrainingModelInfoConfusionMatrixRowTotals `json:"confusionMatrixRowTotals,omitempty"` // MeanSquaredError: An estimated mean squared error. The can be used to // measure the quality of the predicted model [Regression models only]. MeanSquaredError float64 `json:"meanSquaredError,omitempty"` // ModelType: Type of predictive model (CLASSIFICATION or REGRESSION) ModelType string `json:"modelType,omitempty"` // NumberInstances: Number of valid data instances used in the trained // model. NumberInstances int64 `json:"numberInstances,omitempty,string"` // NumberLabels: Number of class labels in the trained model // [Categorical models only]. NumberLabels int64 `json:"numberLabels,omitempty,string"` }
type TrainingModelInfoConfusionMatrix ¶
type TrainingModelInfoConfusionMatrix struct { }
type TrainingModelInfoConfusionMatrixRowTotals ¶
type TrainingModelInfoConfusionMatrixRowTotals struct { }
type TrainingUtility ¶
type TrainingUtility struct { }
type Update ¶
type Update struct { // CsvInstance: The input features for this instance CsvInstance []interface{} `json:"csvInstance,omitempty"` // Label: The class label of this instance Label string `json:"label,omitempty"` // Output: The generic output value - could be regression value or class // label Output string `json:"output,omitempty"` }