Documentation ¶
Overview ¶
Example (SignMessage) ¶
This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature.
package main import ( "encoding/hex" "fmt" "github.com/sat20-labs/satsnet_btcd/btcec" "github.com/sat20-labs/satsnet_btcd/btcec/ecdsa" "github.com/sat20-labs/satsnet_btcd/chaincfg/chainhash" ) func main() { // Decode a hex-encoded private key. pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" + "20ee63e502ee2869afab7de234b80c") if err != nil { fmt.Println(err) return } privKey, pubKey := btcec.PrivKeyFromBytes(pkBytes) // Sign a message using the private key. message := "test message" messageHash := chainhash.DoubleHashB([]byte(message)) signature := ecdsa.Sign(privKey, messageHash) // Serialize and display the signature. fmt.Printf("Serialized Signature: %x\n", signature.Serialize()) // Verify the signature for the message using the public key. verified := signature.Verify(messageHash, pubKey) fmt.Printf("Signature Verified? %v\n", verified) }
Output: Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d Signature Verified? true
Example (VerifySignature) ¶
This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
package main import ( "encoding/hex" "fmt" "github.com/sat20-labs/satsnet_btcd/btcec" "github.com/sat20-labs/satsnet_btcd/btcec/ecdsa" "github.com/sat20-labs/satsnet_btcd/chaincfg/chainhash" ) func main() { // Decode hex-encoded serialized public key. pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" + "6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5") if err != nil { fmt.Println(err) return } pubKey, err := btcec.ParsePubKey(pubKeyBytes) if err != nil { fmt.Println(err) return } // Decode hex-encoded serialized signature. sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" + "8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" + "1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479") if err != nil { fmt.Println(err) return } signature, err := ecdsa.ParseSignature(sigBytes) if err != nil { fmt.Println(err) return } // Verify the signature for the message using the public key. message := "test message" messageHash := chainhash.DoubleHashB([]byte(message)) verified := signature.Verify(messageHash, pubKey) fmt.Println("Signature Verified?", verified) }
Output: Signature Verified? true
Index ¶
Examples ¶
Constants ¶
const ( // MinSigLen is the minimum length of a DER encoded signature and is when both R // and S are 1 byte each. // 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte> MinSigLen = 8 // MaxSigLen is the maximum length of a DER encoded signature and is // when both R and S are 33 bytes each. It is 33 bytes because a // 256-bit integer requires 32 bytes and an additional leading null byte // might be required if the high bit is set in the value. // // 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes> MaxSigLen = 72 )
Variables ¶
This section is empty.
Functions ¶
func RecoverCompact ¶
RecoverCompact verifies the compact signature "signature" of "hash" for the Koblitz curve in "curve". If the signature matches then the recovered public key will be returned as well as a boolean if the original key was compressed or not, else an error will be returned.
func SignCompact ¶
func SignCompact(key *btcec.PrivateKey, hash []byte, isCompressedKey bool) []byte
SignCompact produces a compact signature of the data in hash with the given private key on the given koblitz curve. The isCompressed parameter should be used to detail if the given signature should reference a compressed public key or not. If successful the bytes of the compact signature will be returned in the format: <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S> where the R and S parameters are padde up to the bitlengh of the curve.
Types ¶
type Error ¶
type Error = secp_ecdsa.ErrorKind
Error identifies an error related to an ECDSA signature. It has full support for errors.Is and errors.As, so the caller can ascertain the specific reason for the error by checking the underlying error.
type ErrorKind ¶
type ErrorKind = secp_ecdsa.ErrorKind
ErrorKind identifies a kind of error. It has full support for errors.Is and errors.As, so the caller can directly check against an error kind when determining the reason for an error.
type Signature ¶
type Signature = secp_ecdsa.Signature
Signature is a type representing an ecdsa signature.
func NewSignature ¶
func NewSignature(r, s *btcec.ModNScalar) *Signature
NewSignature instantiates a new signature given some r and s values.
func ParseDERSignature ¶
ParseDERSignature parses a signature in DER format for the curve type `curve` into a Signature type. If parsing according to the less strict BER format is needed, use ParseSignature.
func ParseSignature ¶
ParseSignature parses a signature in BER format for the curve type `curve' into a Signature type, performing some basic sanity checks. If parsing according to the more strict DER format is needed, use ParseDERSignature.
func Sign ¶
func Sign(key *btcec.PrivateKey, hash []byte) *Signature
Sign generates an ECDSA signature over the secp256k1 curve for the provided hash (which should be the result of hashing a larger message) using the given private key. The produced signature is deterministic (same message and same key yield the same signature) and canonical in accordance with RFC6979 and BIP0062.