Documentation ¶
Overview ¶
Package elf : arch.go implements architecture specific relocation types
Package elf : elf32.go implements the main structures of the 32-bit ELF file format. spec : https://refspecs.linuxbase.org/elf/elf.pdf
Package elf : elf64.go implements the main structures of the 64-bit ELF file format. spec : https://uclibc.org/docs/elf-64-gen.pdf
Package elf : err.go implements the main error handling code & error strings.
Package elf : flags.go implements a parser for ELF binaries. The current file documents the flags as defined in : https://refspecs.linuxbase.org/elf/elf.pdf
Package elf: gnuver.go implements the GNU Version table specification.
Package elf : stringer.go implements various string related utilites and stringer interface implementation for all custom types.
Index ¶
- Constants
- Variables
- func ByteOrder(b Data) binary.ByteOrder
- func IsValidByteOrder(b Data) bool
- func IsValidELFClass(c Class) bool
- func IsValidVersion(b Version) bool
- func R_INFO(sym, typ uint32) uint64
- func R_INFO32(sym, typ uint32) uint32
- func R_SYM32(info uint32) uint32
- func R_SYM64(info uint64) uint32
- func R_TYPE32(info uint32) uint32
- func R_TYPE64(info uint64) uint32
- func ST_INFO(bind SymBind, typ SymType) uint8
- type ABIVersion
- type Class
- type CompressionType
- type Data
- type DynFlag
- type DynTag
- type ELF32CompressionHeader
- type ELF32DynamicTableEntry
- type ELF32Header
- func (h ELF32Header) GetEntry() uint32
- func (h ELF32Header) GetIdent() [EI_NIDENT]byte
- func (h ELF32Header) GetMachine() uint16
- func (h ELF32Header) GetType() uint16
- func (h ELF32Header) ProgramHeadersOffset() uint32
- func (h ELF32Header) SectionHeadersEntSize() uint16
- func (h ELF32Header) SectionHeadersNum() uint16
- func (h ELF32Header) SectionHeadersOffset() uint32
- func (h ELF32Header) Size() uint16
- type ELF32ProgramHeader
- type ELF32Section
- type ELF32SectionHeader
- type ELF32SymbolTableEntry
- type ELF64CompressionHeader
- type ELF64DynamicTableEntry
- type ELF64Header
- func (h ELF64Header) GetEntry() uint64
- func (h ELF64Header) GetIdent() [elf.EI_NIDENT]byte
- func (h ELF64Header) GetMachine() uint16
- func (h ELF64Header) GetType() uint16
- func (h ELF64Header) ProgramHeadersOffset() uint64
- func (h ELF64Header) SectionHeadersEntSize() uint16
- func (h ELF64Header) SectionHeadersNum() uint16
- func (h ELF64Header) SectionHeadersOffset() uint64
- func (h ELF64Header) Size() uint16
- type ELF64ProgramHeader
- type ELF64Section
- type ELF64SectionHeader
- type ELF64SymbolTableEntry
- type ELFBin32
- type ELFBin64
- type ELFSymbols
- type File
- type FileHeader
- type FileIdent
- type FormatError
- type GNUVersion
- type ImportedSymbol
- type Machine
- type Magic
- type NType
- type OSABI
- type Parser
- func (p *Parser) ApplyRelocations(dst []byte, rels []byte) error
- func (p *Parser) CloseFile() error
- func (p *Parser) DumpRawJSON() (string, error)
- func (p *Parser) Parse() error
- func (p *Parser) ParseELFHeader(c Class) error
- func (p *Parser) ParseELFProgramHeaders(c Class) error
- func (p *Parser) ParseELFSectionHeaders(c Class) error
- func (p *Parser) ParseELFSections(c Class) error
- func (p *Parser) ParseELFSymbols(c Class, typ SectionType) error
- func (p *Parser) ParseGNUVersionTable(str []byte) error
- func (p *Parser) ParseIdent() error
- type ProgFlag
- type ProgType
- type R_386
- type R_390
- type R_AARCH64
- type R_ALPHA
- type R_ARM
- type R_MIPS
- type R_PPC
- type R_PPC64
- type R_RISCV
- type R_SPARC
- type R_X86_64
- type Rel32
- type Rel64
- type Rela32
- type Rela64
- type SectionFlag
- type SectionIndex
- type SectionType
- type SymBind
- type SymType
- type SymVis
- type Symbol
- type Type
- type Version
Constants ¶
const ( EI_MAG0 = 0 // Start of magic bytes 0x7f EI_MAG1 = 1 // 'E' EI_MAG2 = 2 // 'L' EI_MAG3 = 3 // 'F' EI_CLASS = 4 // Class of machine. EI_DATA = 5 // Data format. EI_VERSION = 6 // ELF format version. EI_OSABI = 7 // Operating system / ABI identification EI_ABIVERSION = 8 // ABI version EI_PAD = 9 // Start of padding (per SVR4 ABI). EI_NIDENT = 16 // Size of e_ident array. )
Indexes in Ident array.
const ARM_MAGIC_TRAMP_NUMBER = 0x5c000003
Magic number for the elf trampoline, chosen wisely to be an immediate value.
const (
ELFABIVersion_CURRENT = 0
)
const (
// ELFMAG is the constant prelude to every ELF binary.
ELFMAG = "\177ELF"
)
const Sym32Size = 16
const Sym64Size = 24
Variables ¶
var ErrBadELFClass = errors.New("bad elf class")
ErrBadELFClass is returned if the ELF class is unknown.
var ErrNoSymbols = errors.New("no symbol section")
ErrNoSymbols is returned by File.Symbols and File.DynamicSymbols if there is no such section in the File.
Functions ¶
func IsValidByteOrder ¶
IsValidByteOrder validates the ELF byte order field.
func IsValidELFClass ¶
IsValidELFClass validates the ELF class of the binary.
func IsValidVersion ¶
IsValidVersion validates against the current default version flag EV_CURRENT.
Types ¶
type ABIVersion ¶
type ABIVersion byte
ABIVersion specifies the ELF ABI Version it indicates the specific version of the OS ABI that the binary targets.
type Class ¶
type Class byte
Class takes values of 1 or 2 depending on the architecture 32-bit or 64-bit.
type CompressionType ¶
type CompressionType int
Section compression type.
const ( COMPRESS_ZLIB CompressionType = 1 // ZLIB compression. COMPRESS_LOOS CompressionType = 0x60000000 // First OS-specific. COMPRESS_HIOS CompressionType = 0x6fffffff // Last OS-specific. COMPRESS_LOPROC CompressionType = 0x70000000 // First processor-specific type. COMPRESS_HIPROC CompressionType = 0x7fffffff // Last processor-specific type. )
func (CompressionType) GoString ¶
func (ct CompressionType) GoString() string
func (CompressionType) String ¶
func (ct CompressionType) String() string
type Data ¶
type Data byte
Data takes values of 1 or 2 depending on whether its a little endian or big endian architecture.
const ( // ELFDATANONE specifes an unknown architecture. ELFDATANONE Data = 0 // DATA2LSB specifies a little-endian architecture 2's complement values lsb at lowest address. ELFDATA2LSB Data = 1 // ELFDATA2MSB specifies a big-endian architecture 2's complement value msb at at lowest address. ELFDATA2MSB Data = 2 )
type DynFlag ¶
type DynFlag int
DT_FLAGS values.
const ( DF_ORIGIN DynFlag = 0x0001 /* Indicates that the object being loaded may make reference to the $ORIGIN substitution string */ DF_SYMBOLIC DynFlag = 0x0002 /* Indicates "symbolic" linking. */ DF_TEXTREL DynFlag = 0x0004 /* Indicates there may be relocations in non-writable segments. */ DF_BIND_NOW DynFlag = 0x0008 /* Indicates that the dynamic linker should process all relocations for the object containing this entry before transferring control to the program. */ DF_STATIC_TLS DynFlag = 0x0010 /* Indicates that the shared object or executable contains code using a static thread-local storage scheme. */ )
type DynTag ¶
type DynTag int
DynTag
const ( DT_NULL DynTag = 0 /* Terminating entry. */ DT_NEEDED DynTag = 1 /* String table offset of a needed shared library. */ DT_PLTRELSZ DynTag = 2 /* Total size in bytes of PLT relocations. */ DT_PLTGOT DynTag = 3 /* Processor-dependent address. */ DT_HASH DynTag = 4 /* Address of symbol hash table. */ DT_STRTAB DynTag = 5 /* Address of string table. */ DT_SYMTAB DynTag = 6 /* Address of symbol table. */ DT_RELA DynTag = 7 /* Address of ElfNN_Rela relocations. */ DT_RELASZ DynTag = 8 /* Total size of ElfNN_Rela relocations. */ DT_RELAENT DynTag = 9 /* Size of each ElfNN_Rela relocation entry. */ DT_STRSZ DynTag = 10 /* Size of string table. */ DT_SYMENT DynTag = 11 /* Size of each symbol table entry. */ DT_INIT DynTag = 12 /* Address of initialization function. */ DT_FINI DynTag = 13 /* Address of finalization function. */ DT_SONAME DynTag = 14 /* String table offset of shared object name. */ DT_RPATH DynTag = 15 /* String table offset of library path. [sup] */ DT_SYMBOLIC DynTag = 16 /* Indicates "symbolic" linking. [sup] */ DT_REL DynTag = 17 /* Address of ElfNN_Rel relocations. */ DT_RELSZ DynTag = 18 /* Total size of ElfNN_Rel relocations. */ DT_RELENT DynTag = 19 /* Size of each ElfNN_Rel relocation. */ DT_PLTREL DynTag = 20 /* Type of relocation used for PLT. */ DT_DEBUG DynTag = 21 /* Reserved (not used). */ DT_TEXTREL DynTag = 22 /* Indicates there may be relocations in non-writable segments. [sup] */ DT_JMPREL DynTag = 23 /* Address of PLT relocations. */ DT_BIND_NOW DynTag = 24 /* [sup] */ DT_INIT_ARRAY DynTag = 25 /* Address of the array of pointers to initialization functions */ DT_FINI_ARRAY DynTag = 26 /* Address of the array of pointers to termination functions */ DT_INIT_ARRAYSZ DynTag = 27 /* Size in bytes of the array of initialization functions. */ DT_FINI_ARRAYSZ DynTag = 28 /* Size in bytes of the array of termination functions. */ DT_RUNPATH DynTag = 29 /* String table offset of a null-terminated library search path string. */ DT_FLAGS DynTag = 30 /* Object specific flag values. */ DT_ENCODING DynTag = 32 /* Values greater than or equal to DT_ENCODING and less than DT_LOOS follow the rules for the interpretation of the d_un union as follows: even == 'd_ptr', even == 'd_val' or none */ DT_PREINIT_ARRAY DynTag = 32 /* Address of the array of pointers to pre-initialization functions. */ DT_PREINIT_ARRAYSZ DynTag = 33 /* Size in bytes of the array of pre-initialization functions. */ DT_SYMTAB_SHNDX DynTag = 34 /* Address of SHT_SYMTAB_SHNDX section. */ DT_LOOS DynTag = 0x6000000d /* First OS-specific */ DT_HIOS DynTag = 0x6ffff000 /* Last OS-specific */ DT_VALRNGLO DynTag = 0x6ffffd00 DT_GNU_PRELINKED DynTag = 0x6ffffdf5 DT_GNU_CONFLICTSZ DynTag = 0x6ffffdf6 DT_GNU_LIBLISTSZ DynTag = 0x6ffffdf7 DT_CHECKSUM DynTag = 0x6ffffdf8 DT_PLTPADSZ DynTag = 0x6ffffdf9 DT_MOVEENT DynTag = 0x6ffffdfa DT_MOVESZ DynTag = 0x6ffffdfb DT_FEATURE DynTag = 0x6ffffdfc DT_POSFLAG_1 DynTag = 0x6ffffdfd DT_SYMINSZ DynTag = 0x6ffffdfe DT_SYMINENT DynTag = 0x6ffffdff DT_VALRNGHI DynTag = 0x6ffffdff DT_ADDRRNGLO DynTag = 0x6ffffe00 DT_GNU_HASH DynTag = 0x6ffffef5 DT_TLSDESC_PLT DynTag = 0x6ffffef6 DT_TLSDESC_GOT DynTag = 0x6ffffef7 DT_GNU_CONFLICT DynTag = 0x6ffffef8 DT_GNU_LIBLIST DynTag = 0x6ffffef9 DT_CONFIG DynTag = 0x6ffffefa DT_DEPAUDIT DynTag = 0x6ffffefb DT_AUDIT DynTag = 0x6ffffefc DT_PLTPAD DynTag = 0x6ffffefd DT_MOVETAB DynTag = 0x6ffffefe DT_SYMINFO DynTag = 0x6ffffeff DT_ADDRRNGHI DynTag = 0x6ffffeff DT_VERSYM DynTag = 0x6ffffff0 DT_RELACOUNT DynTag = 0x6ffffff9 DT_RELCOUNT DynTag = 0x6ffffffa DT_FLAGS_1 DynTag = 0x6ffffffb DT_VERDEF DynTag = 0x6ffffffc DT_VERDEFNUM DynTag = 0x6ffffffd DT_VERNEED DynTag = 0x6ffffffe DT_VERNEEDNUM DynTag = 0x6fffffff DT_LOPROC DynTag = 0x70000000 /* First processor-specific type. */ DT_MIPS_RLD_VERSION DynTag = 0x70000001 DT_MIPS_TIME_STAMP DynTag = 0x70000002 DT_MIPS_ICHECKSUM DynTag = 0x70000003 DT_MIPS_IVERSION DynTag = 0x70000004 DT_MIPS_FLAGS DynTag = 0x70000005 DT_MIPS_BASE_ADDRESS DynTag = 0x70000006 DT_MIPS_MSYM DynTag = 0x70000007 DT_MIPS_CONFLICT DynTag = 0x70000008 DT_MIPS_LIBLIST DynTag = 0x70000009 DT_MIPS_LOCAL_GOTNO DynTag = 0x7000000a DT_MIPS_CONFLICTNO DynTag = 0x7000000b DT_MIPS_LIBLISTNO DynTag = 0x70000010 DT_MIPS_SYMTABNO DynTag = 0x70000011 DT_MIPS_UNREFEXTNO DynTag = 0x70000012 DT_MIPS_GOTSYM DynTag = 0x70000013 DT_MIPS_HIPAGENO DynTag = 0x70000014 DT_MIPS_RLD_MAP DynTag = 0x70000016 DT_MIPS_DELTA_CLASS DynTag = 0x70000017 DT_MIPS_DELTA_CLASS_NO DynTag = 0x70000018 DT_MIPS_DELTA_INSTANCE DynTag = 0x70000019 DT_MIPS_DELTA_INSTANCE_NO DynTag = 0x7000001a DT_MIPS_DELTA_RELOC DynTag = 0x7000001b DT_MIPS_DELTA_RELOC_NO DynTag = 0x7000001c DT_MIPS_DELTA_SYM DynTag = 0x7000001d DT_MIPS_DELTA_SYM_NO DynTag = 0x7000001e DT_MIPS_DELTA_CLASSSYM DynTag = 0x70000020 DT_MIPS_DELTA_CLASSSYM_NO DynTag = 0x70000021 DT_MIPS_CXX_FLAGS DynTag = 0x70000022 DT_MIPS_PIXIE_INIT DynTag = 0x70000023 DT_MIPS_SYMBOL_LIB DynTag = 0x70000024 DT_MIPS_LOCALPAGE_GOTIDX DynTag = 0x70000025 DT_MIPS_LOCAL_GOTIDX DynTag = 0x70000026 DT_MIPS_HIDDEN_GOTIDX DynTag = 0x70000027 DT_MIPS_PROTECTED_GOTIDX DynTag = 0x70000028 DT_MIPS_OPTIONS DynTag = 0x70000029 DT_MIPS_INTERFACE DynTag = 0x7000002a DT_MIPS_DYNSTR_ALIGN DynTag = 0x7000002b DT_MIPS_INTERFACE_SIZE DynTag = 0x7000002c DT_MIPS_RLD_TEXT_RESOLVE_ADDR DynTag = 0x7000002d DT_MIPS_PERF_SUFFIX DynTag = 0x7000002e DT_MIPS_COMPACT_SIZE DynTag = 0x7000002f DT_MIPS_GP_VALUE DynTag = 0x70000030 DT_MIPS_AUX_DYNAMIC DynTag = 0x70000031 DT_MIPS_PLTGOT DynTag = 0x70000032 DT_MIPS_RWPLT DynTag = 0x70000034 DT_MIPS_RLD_MAP_REL DynTag = 0x70000035 DT_PPC_GOT DynTag = 0x70000000 DT_PPC_OPT DynTag = 0x70000001 DT_PPC64_GLINK DynTag = 0x70000000 DT_PPC64_OPD DynTag = 0x70000001 DT_PPC64_OPDSZ DynTag = 0x70000002 DT_PPC64_OPT DynTag = 0x70000003 DT_SPARC_REGISTER DynTag = 0x70000001 DT_AUXILIARY DynTag = 0x7ffffffd DT_USED DynTag = 0x7ffffffe DT_FILTER DynTag = 0x7fffffff DT_HIPROC DynTag = 0x7fffffff /* Last processor-specific type. */ )
type ELF32CompressionHeader ¶
ELF32 Compression header.
type ELF32DynamicTableEntry ¶ added in v0.2.0
type ELF32DynamicTableEntry struct { Tag int32 // Identifies the type of the dynamic table entry. Val uint32 // Represents integer values }
ELF32DynamicTableEntry represents the Dynamic structure. The ".dynamic" section contains an array of them.
type ELF32Header ¶
type ELF32Header struct { Ident [16]byte // File identification. Type uint16 // File type. Machine uint16 // Machine architecture. Version uint32 // ELF format version. Entry uint32 // Entry point. Phoff uint32 // Program header file offset. Shoff uint32 // Section header file offset. Flags uint32 // Architecture-specific flags. Ehsize uint16 // Size of ELF header in bytes. Phentsize uint16 // Size of program header entry. Phnum uint16 // Number of program header entries. Shentsize uint16 // Size of section header entry. Shnum uint16 // Number of section header entries. Shstrndx uint16 // Section name strings section. }
ELF32Header represents the executable header of the ELF file format for (32-bit architecture).
func NewELF32Header ¶
func NewELF32Header() ELF32Header
NewELF32Header creates a new ELF 32-bit header.
func (ELF32Header) GetEntry ¶
func (h ELF32Header) GetEntry() uint32
GetEntry returns entrypoint (virtual address) of ELF binary.
func (ELF32Header) GetIdent ¶
func (h ELF32Header) GetIdent() [EI_NIDENT]byte
GetIdent returns identifier array EI_IDENT.
func (ELF32Header) GetMachine ¶
func (h ELF32Header) GetMachine() uint16
GetMachine returns ELF target machine.
func (ELF32Header) ProgramHeadersOffset ¶
func (h ELF32Header) ProgramHeadersOffset() uint32
ProgramHeadersOffset returns the file offset to the program headers.
func (ELF32Header) SectionHeadersEntSize ¶
func (h ELF32Header) SectionHeadersEntSize() uint16
SectionHeadersEntSize returns the size of a section headers entry
func (ELF32Header) SectionHeadersNum ¶
func (h ELF32Header) SectionHeadersNum() uint16
SectionHeadersNum returns the number of section headers is in the section headers table.
func (ELF32Header) SectionHeadersOffset ¶
func (h ELF32Header) SectionHeadersOffset() uint32
SectionHeadersOffset returns the file offset to the section headers.
func (ELF32Header) Size ¶
func (h ELF32Header) Size() uint16
Size returns the ELF Header size in bytes.
type ELF32ProgramHeader ¶
type ELF32ProgramHeader struct { Type uint32 // Segment type Off uint32 // Offset in file Vaddr uint32 // Virtual Address in memory Paddr uint32 // Reserved Filesz uint32 // Size of segment in file Memsz uint32 // Size of segment in memory Flags uint32 // Segment attributes Align uint32 // Segment alignment }
ELF32ProgramHeader represents the program header table which is an array entries describing each program segment (in executable or shared object files) sections are grouped into segments for in-memory loading.
type ELF32Section ¶
type ELF32Section struct { ELF32SectionHeader SectionName string // Size is the size of this section (compressed) in the file in bytes. Size uint32 // contains filtered or unexported fields }
ELF32Section represents a single ELF section in a 32-bit binary.
func (*ELF32Section) Data ¶
func (s *ELF32Section) Data() ([]byte, error)
Data reads and returns the contents of the ELF section. Even if the section is stored compressed in the ELF file, Data returns uncompressed data.
type ELF32SectionHeader ¶
type ELF32SectionHeader struct { Name uint32 // Section name index in the Section Header String Table. Type uint32 // Section type. Flags uint32 // Section flags. Addr uint32 // Virtual address in memory. Off uint32 // Offset in file. Size uint32 // Section size in bytes. Link uint32 // Index of a related section. Info uint32 // Miscellaneous information depends on section type. AddrAlign uint32 // Address alignment boundary. EntSize uint32 // Size of each entry in the section. }
ELF32SectionHeader represents the section header of ELF 64-bit binaries.
type ELF32SymbolTableEntry ¶ added in v0.2.0
type ELF32SymbolTableEntry struct { Name uint32 Value uint32 Size uint32 Info uint8 Other uint8 Shndx uint16 }
ELF32SymbolTableEntry represents information needed to locate and relocate a program's symbolic definitions, it's an array of SymbolTableEntry.
type ELF64CompressionHeader ¶
type ELF64CompressionHeader struct { Type uint32 Size uint64 AddrAlign uint64 // contains filtered or unexported fields }
ELF64CompressionHeader defines the compression info of the section.
type ELF64DynamicTableEntry ¶ added in v0.2.0
type ELF64DynamicTableEntry struct { Tag int64 // Identifies the type of the dynamic table entry. Val uint64 // Represents integer values }
ELF64DynamicTableEntry represents the Dynamic structure. The ".dynamic" section contains an array of them.
type ELF64Header ¶
type ELF64Header struct { Ident [16]byte // File identification. Type uint16 // File type. Machine uint16 // Machine architecture. Version uint32 // ELF format version. Entry uint64 // Entry point. Phoff uint64 // Program header file offset. Shoff uint64 // Section header file offset. Flags uint32 // Architecture-specific flags. Ehsize uint16 // Size of ELF header in bytes. Phentsize uint16 // Size of program header entry. Phnum uint16 // Number of program header entries. Shentsize uint16 // Size of section header entry. Shnum uint16 // Number of section header entries. Shstrndx uint16 // Section name strings section. }
ELF64Header represents the executable header of the ELF file format for (64-bit architecture).
func NewELF64Header ¶
func NewELF64Header() ELF64Header
NewELF64Header creates a new ELF 64-bit header.
func (ELF64Header) GetEntry ¶
func (h ELF64Header) GetEntry() uint64
GetEntry returns entrypoint (virtual address) of ELF binary.
func (ELF64Header) GetIdent ¶
func (h ELF64Header) GetIdent() [elf.EI_NIDENT]byte
GetIdent returns identifier array EI_IDENT.
func (ELF64Header) GetMachine ¶
func (h ELF64Header) GetMachine() uint16
GetMachine returns ELF target machine.
func (ELF64Header) ProgramHeadersOffset ¶
func (h ELF64Header) ProgramHeadersOffset() uint64
ProgramHeadersOffset returns the file offset to the program headers.
func (ELF64Header) SectionHeadersEntSize ¶
func (h ELF64Header) SectionHeadersEntSize() uint16
SectionHeadersEntSize returns the size of a section headers entry
func (ELF64Header) SectionHeadersNum ¶
func (h ELF64Header) SectionHeadersNum() uint16
SectionHeadersNum returns the number of section headers is in the section headers table.
func (ELF64Header) SectionHeadersOffset ¶
func (h ELF64Header) SectionHeadersOffset() uint64
SectionHeadersOffset returns the file offset to the section headers.
func (ELF64Header) Size ¶
func (h ELF64Header) Size() uint16
Size returns the ELF Header size in bytes.
type ELF64ProgramHeader ¶
type ELF64ProgramHeader struct { Type uint32 // Segment type Flags uint32 // Segment attributes Off uint64 // Offset in file Vaddr uint64 // Virtual Address in memory Paddr uint64 // Reserved Filesz uint64 // Size of segment in file Memsz uint64 // Size of segment in memory Align uint64 // Segment alignment }
ELF64ProgramHeader represents the program header table which is an array entries describing each program segment (in executable or shared object files) sections are grouped into segments for in-memory loading.
type ELF64Section ¶
type ELF64Section struct { ELF64SectionHeader SectionName string // Size is the size of this section (compressed) in the file in bytes. Size uint64 // contains filtered or unexported fields }
ELF64Section represents a single ELF section in a 32-bit binary.
func (*ELF64Section) Data ¶
func (s *ELF64Section) Data() ([]byte, error)
Data reads and returns the contents of the ELF section. Even if the section is stored compressed in the ELF file, Data returns uncompressed data.
type ELF64SectionHeader ¶
type ELF64SectionHeader struct { Name uint32 // Section name index in the Section Header String Table. Type uint32 // Section type. Flags uint64 // Section flags. Addr uint64 // Virtual address in memory. Off uint64 // Offset in file. Size uint64 // Section size in bytes. Link uint32 // Index of a related section. Info uint32 // Miscellaneous information depends on section type. AddrAlign uint64 // Address alignment boundary. EntSize uint64 // Size of each entry in the section. }
ELF64SectionHeader represents the section header of ELF 64-bit binaries.
type ELF64SymbolTableEntry ¶
type ELF64SymbolTableEntry struct { Name uint32 // String table index of name. Info uint8 // Type and binding information. Other uint8 // Reserved (not used). Shndx uint16 // Section index of symbol Value uint64 // Symbol value. Size uint64 // Size of associated object. }
ELF64SymbolTableEntry represents information needed to locate and relocate a program's symbolic definitions, it's an array of SymbolTableEntry
type ELFBin32 ¶ added in v0.2.0
type ELFBin32 struct { Header32 ELF32Header SectionHeaders32 []ELF32SectionHeader ProgramHeaders32 []ELF32ProgramHeader Sections32 []*ELF32Section Symbols32 []ELF32SymbolTableEntry }
ELFBin32 represents a 32-bit ELF binary.
type ELFBin64 ¶ added in v0.2.0
type ELFBin64 struct { Header64 ELF64Header SectionHeaders64 []ELF64SectionHeader ProgramHeaders64 []ELF64ProgramHeader Sections64 []*ELF64Section Symbols64 []ELF64SymbolTableEntry }
ELFBin64 represents a 64-bit ELF binary.
type ELFSymbols ¶ added in v0.3.0
type ELFSymbols struct { NamedSymbols []Symbol `json:",omitempty"` GNUVersion []GNUVersion `json:",omitempty"` GNUVersionSym []byte `json:",omitempty"` }
ELFSymbols represents all symbol data.
type File ¶
type File struct { FileHeader `json:",omitempty"` ELFBin32 `json:",omitempty"` ELFBin64 `json:",omitempty"` ELFSymbols `json:",omitempty"` }
File is an in-memory iterable representation of a raw elf binary. this is merely used to ease the use of the package as a library and allow feature modification and rebuilding of ELF files.
func NewBinaryFile ¶ added in v0.2.0
func NewBinaryFile() *File
func (*File) Class ¶
Class returns ELFClass of the binary (designates the target architecture of the binary x64 or x86)
func (*File) GetSectionByType ¶ added in v0.2.0
func (f *File) GetSectionByType(t SectionType) *ELF64Section
GetSectionByType returns the first section with the given type T (nil otherwise).
func (*File) IsELF64 ¶
IsELF64 returns true if the binary was compiled with an x64 architecture target.
func (*File) SectionNames ¶
SectionNames returns the list of section names
type FileHeader ¶
type FileHeader struct { Ident FileIdent // ELF Header fields Type Type `json:"type"` // object file type Machine Machine `json:"machine"` Version Version `json:"version"` Entry uint64 `json:"entrypoint"` ProgramHeaderOffset uint64 `json:"program_headers_offset"` SectionHeaderOffset uint64 `json:"section_headers_offset"` Flags uint32 `json:"processor_flag"` Size uint16 `json:"header_size"` ProgramHeaderEntrySize uint16 `json:"ph_entry_size"` ProgramHeaderNum uint16 `json:"ph_entry_num"` SectionHeaderEntrySize uint16 `json:"sh_entry_size"` SectionHeaderNum uint16 `json:"sh_entry_num"` SectionHeaderStringIdx uint16 `json:"sh_str_idx"` }
FileHeader is an in-memory representation of the raw elf header.
type FileIdent ¶
type FileIdent struct { // Ident array Magic Magic `json:"magic"` Class Class `json:"class"` Data Data `json:"data"` Version Version `json:"version"` OSABI OSABI `json:"os_abi"` ABIVersion ABIVersion `json:"abi_version"` ByteOrder binary.ByteOrder `json:"byte_order"` }
FileIdent is a representation of the raw ident array (first 16 bytes of an ELF file)
type FormatError ¶
type FormatError struct {
// contains filtered or unexported fields
}
* ELF reader
func (*FormatError) Error ¶
func (e *FormatError) Error() string
type GNUVersion ¶ added in v0.2.0
GNUVersion holds the version information
type ImportedSymbol ¶ added in v0.2.0
ImportedSymbol will hold information on external imports.
type Machine ¶
type Machine uint16
const ( EM_NONE Machine = 0 // Unknown machine. EM_M32 Machine = 1 // AT&T WE32100. EM_SPARC Machine = 2 // Sun SPARC. EM_386 Machine = 3 // Intel i386. EM_68K Machine = 4 // Motorola 68000. EM_88K Machine = 5 // Motorola 88000. EM_860 Machine = 7 // Intel i860. EM_MIPS Machine = 8 // MIPS R3000 Big-Endian only. EM_S370 Machine = 9 // IBM System/370. EM_MIPS_RS3_LE Machine = 10 // MIPS R3000 Little-Endian. EM_PARISC Machine = 15 // HP PA-RISC. EM_VPP500 Machine = 17 // Fujitsu VPP500. EM_SPARC32PLUS Machine = 18 // SPARC v8plus. EM_960 Machine = 19 // Intel 80960. EM_PPC Machine = 20 // PowerPC 32-bit. EM_PPC64 Machine = 21 // PowerPC 64-bit. EM_S390 Machine = 22 // IBM System/390. EM_V800 Machine = 36 // NEC V800. EM_FR20 Machine = 37 // Fujitsu FR20. EM_RH32 Machine = 38 // TRW RH-32. EM_RCE Machine = 39 // Motorola RCE. EM_ARM Machine = 40 // ARM. EM_SH Machine = 42 // Hitachi SH. EM_SPARCV9 Machine = 43 // SPARC v9 64-bit. EM_TRICORE Machine = 44 // Siemens TriCore embedded processor. EM_ARC Machine = 45 // Argonaut RISC Core. EM_H8_300 Machine = 46 // Hitachi H8/300. EM_H8_300H Machine = 47 // Hitachi H8/300H. EM_H8S Machine = 48 // Hitachi H8S. EM_H8_500 Machine = 49 // Hitachi H8/500. EM_IA_64 Machine = 50 // Intel IA-64 Processor. EM_MIPS_X Machine = 51 // Stanford MIPS-X. EM_COLDFIRE Machine = 52 // Motorola ColdFire. EM_68HC12 Machine = 53 // Motorola M68HC12. EM_MMA Machine = 54 // Fujitsu MMA. EM_PCP Machine = 55 // Siemens PCP. EM_NCPU Machine = 56 // Sony nCPU. EM_NDR1 Machine = 57 // Denso NDR1 microprocessor. EM_STARCORE Machine = 58 // Motorola Star*Core processor. EM_ME16 Machine = 59 // Toyota ME16 processor. EM_ST100 Machine = 60 // STMicroelectronics ST100 processor. EM_TINYJ Machine = 61 // Advanced Logic Corp. TinyJ processor. EM_X86_64 Machine = 62 // Advanced Micro Devices x86-64 EM_PDSP Machine = 63 // Sony DSP Processor EM_PDP10 Machine = 64 // Digital Equipment Corp. PDP-10 EM_PDP11 Machine = 65 // Digital Equipment Corp. PDP-11 EM_FX66 Machine = 66 // Siemens FX66 microcontroller EM_ST9PLUS Machine = 67 // STMicroelectronics ST9+ 8/16 bit microcontroller EM_ST7 Machine = 68 // STMicroelectronics ST7 8-bit microcontroller EM_68HC16 Machine = 69 // Motorola MC68HC16 Microcontroller EM_68HC11 Machine = 70 // Motorola MC68HC11 Microcontroller EM_68HC08 Machine = 71 // Motorola MC68HC08 Microcontroller EM_68HC05 Machine = 72 // Motorola MC68HC05 Microcontroller EM_SVX Machine = 73 // Silicon Graphics SVx EM_ST19 Machine = 74 // STMicroelectronics ST19 8-bit microcontroller EM_VAX Machine = 75 // Digital VAX EM_CRIS Machine = 76 // Axis Communications 32-bit embedded processor EM_JAVELIN Machine = 77 // Infineon Technologies 32-bit embedded processor EM_FIREPATH Machine = 78 // Element 14 64-bit DSP Processor EM_ZSP Machine = 79 // LSI Logic 16-bit DSP Processor EM_MMIX Machine = 80 // Donald Knuth's educational 64-bit processor EM_HUANY Machine = 81 // Harvard University machine-independent object files EM_PRISM Machine = 82 // SiTera Prism EM_AVR Machine = 83 // Atmel AVR 8-bit microcontroller EM_FR30 Machine = 84 // Fujitsu FR30 EM_D10V Machine = 85 // Mitsubishi D10V EM_D30V Machine = 86 // Mitsubishi D30V EM_V850 Machine = 87 // NEC v850 EM_M32R Machine = 88 // Mitsubishi M32R EM_MN10300 Machine = 89 // Matsushita MN10300 EM_MN10200 Machine = 90 // Matsushita MN10200 EM_PJ Machine = 91 // picoJava EM_OPENRISC Machine = 92 // OpenRISC 32-bit embedded processor EM_ARC_COMPACT Machine = 93 // ARC International ARCompact processor (old spelling/synonym: EM_ARC_A5) EM_XTENSA Machine = 94 // Tensilica Xtensa Architecture EM_VIDEOCORE Machine = 95 // Alphamosaic VideoCore processor EM_TMM_GPP Machine = 96 // Thompson Multimedia General Purpose Processor EM_NS32K Machine = 97 // National Semiconductor 32000 series EM_TPC Machine = 98 // Tenor Network TPC processor EM_SNP1K Machine = 99 // Trebia SNP 1000 processor EM_ST200 Machine = 100 // STMicroelectronics (www.st.com) ST200 microcontroller EM_IP2K Machine = 101 // Ubicom IP2xxx microcontroller family EM_MAX Machine = 102 // MAX Processor EM_CR Machine = 103 // National Semiconductor CompactRISC microprocessor EM_F2MC16 Machine = 104 // Fujitsu F2MC16 EM_MSP430 Machine = 105 // Texas Instruments embedded microcontroller msp430 EM_BLACKFIN Machine = 106 // Analog Devices Blackfin (DSP) processor EM_SE_C33 Machine = 107 // S1C33 Family of Seiko Epson processors EM_SEP Machine = 108 // Sharp embedded microprocessor EM_ARCA Machine = 109 // Arca RISC Microprocessor EM_UNICORE Machine = 110 // Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University EM_EXCESS Machine = 111 // eXcess: 16/32/64-bit configurable embedded CPU EM_DXP Machine = 112 // Icera Semiconductor Inc. Deep Execution Processor EM_ALTERA_NIOS2 Machine = 113 // Altera Nios II soft-core processor EM_CRX Machine = 114 // National Semiconductor CompactRISC CRX microprocessor EM_XGATE Machine = 115 // Motorola XGATE embedded processor EM_C166 Machine = 116 // Infineon C16x/XC16x processor EM_M16C Machine = 117 // Renesas M16C series microprocessors EM_DSPIC30F Machine = 118 // Microchip Technology dsPIC30F Digital Signal Controller EM_CE Machine = 119 // Freescale Communication Engine RISC core EM_M32C Machine = 120 // Renesas M32C series microprocessors EM_TSK3000 Machine = 131 // Altium TSK3000 core EM_RS08 Machine = 132 // Freescale RS08 embedded processor EM_SHARC Machine = 133 // Analog Devices SHARC family of 32-bit DSP processors EM_ECOG2 Machine = 134 // Cyan Technology eCOG2 microprocessor EM_SCORE7 Machine = 135 // Sunplus S+core7 RISC processor EM_DSP24 Machine = 136 // New Japan Radio (NJR) 24-bit DSP Processor EM_VIDEOCORE3 Machine = 137 // Broadcom VideoCore III processor EM_LATTICEMICO32 Machine = 138 // RISC processor for Lattice FPGA architecture EM_SE_C17 Machine = 139 // Seiko Epson C17 family EM_TI_C6000 Machine = 140 // The Texas Instruments TMS320C6000 DSP family EM_TI_C2000 Machine = 141 // The Texas Instruments TMS320C2000 DSP family EM_TI_C5500 Machine = 142 // The Texas Instruments TMS320C55x DSP family EM_TI_ARP32 Machine = 143 // Texas Instruments Application Specific RISC Processor, 32bit fetch EM_TI_PRU Machine = 144 // Texas Instruments Programmable Realtime Unit EM_MMDSP_PLUS Machine = 160 // STMicroelectronics 64bit VLIW Data Signal Processor EM_CYPRESS_M8C Machine = 161 // Cypress M8C microprocessor EM_R32C Machine = 162 // Renesas R32C series microprocessors EM_TRIMEDIA Machine = 163 // NXP Semiconductors TriMedia architecture family EM_QDSP6 Machine = 164 // QUALCOMM DSP6 Processor EM_8051 Machine = 165 // Intel 8051 and variants EM_STXP7X Machine = 166 // STMicroelectronics STxP7x family of configurable and extensible RISC processors EM_NDS32 Machine = 167 // Andes Technology compact code size embedded RISC processor family EM_ECOG1 Machine = 168 // Cyan Technology eCOG1X family EM_ECOG1X Machine = 168 // Cyan Technology eCOG1X family EM_MAXQ30 Machine = 169 // Dallas Semiconductor MAXQ30 Core Micro-controllers EM_XIMO16 Machine = 170 // New Japan Radio (NJR) 16-bit DSP Processor EM_MANIK Machine = 171 // M2000 Reconfigurable RISC Microprocessor EM_CRAYNV2 Machine = 172 // Cray Inc. NV2 vector architecture EM_RX Machine = 173 // Renesas RX family EM_METAG Machine = 174 // Imagination Technologies META processor architecture EM_MCST_ELBRUS Machine = 175 // MCST Elbrus general purpose hardware architecture EM_ECOG16 Machine = 176 // Cyan Technology eCOG16 family EM_CR16 Machine = 177 // National Semiconductor CompactRISC CR16 16-bit microprocessor EM_ETPU Machine = 178 // Freescale Extended Time Processing Unit EM_SLE9X Machine = 179 // Infineon Technologies SLE9X core EM_L10M Machine = 180 // Intel L10M EM_K10M Machine = 181 // Intel K10M EM_AARCH64 Machine = 183 // ARM 64-bit Architecture (AArch64) EM_AVR32 Machine = 185 // Atmel Corporation 32-bit microprocessor family EM_STM8 Machine = 186 // STMicroeletronics STM8 8-bit microcontroller EM_TILE64 Machine = 187 // Tilera TILE64 multicore architecture family EM_TILEPRO Machine = 188 // Tilera TILEPro multicore architecture family EM_MICROBLAZE Machine = 189 // Xilinx MicroBlaze 32-bit RISC soft processor core EM_CUDA Machine = 190 // NVIDIA CUDA architecture EM_TILEGX Machine = 191 // Tilera TILE-Gx multicore architecture family EM_CLOUDSHIELD Machine = 192 // CloudShield architecture family EM_COREA_1ST Machine = 193 // KIPO-KAIST Core-A 1st generation processor family EM_COREA_2ND Machine = 194 // KIPO-KAIST Core-A 2nd generation processor family EM_ARC_COMPACT2 Machine = 195 // Synopsys ARCompact V2 EM_OPEN8 Machine = 196 // Open8 8-bit RISC soft processor core EM_RL78 Machine = 197 // Renesas RL78 family EM_VIDEOCORE5 Machine = 198 // Broadcom VideoCore V processor EM_78KOR Machine = 199 // Renesas 78KOR family EM_56800EX Machine = 200 // Freescale 56800EX Digital Signal Controller (DSC) EM_BA1 Machine = 201 // Beyond BA1 CPU architecture EM_BA2 Machine = 202 // Beyond BA2 CPU architecture EM_XCORE Machine = 203 // XMOS xCORE processor family EM_MCHP_PIC Machine = 204 // Microchip 8-bit PIC(r) family EM_INTEL205 Machine = 205 // Reserved by Intel EM_INTEL206 Machine = 206 // Reserved by Intel EM_INTEL207 Machine = 207 // Reserved by Intel EM_INTEL208 Machine = 208 // Reserved by Intel EM_INTEL209 Machine = 209 // Reserved by Intel EM_KM32 Machine = 210 // KM211 KM32 32-bit processor EM_KMX32 Machine = 211 // KM211 KMX32 32-bit processor EM_KMX16 Machine = 212 // KM211 KMX16 16-bit processor EM_KMX8 Machine = 213 // KM211 KMX8 8-bit processor EM_KVARC Machine = 214 // KM211 KVARC processor EM_CDP Machine = 215 // Paneve CDP architecture family EM_COGE Machine = 216 // Cognitive Smart Memory Processor EM_COOL Machine = 217 // Bluechip Systems CoolEngine EM_NORC Machine = 218 // Nanoradio Optimized RISC EM_CSR_KALIMBA Machine = 219 // CSR Kalimba architecture family EM_Z80 Machine = 220 // Zilog Z80 EM_VISIUM Machine = 221 // Controls and Data Services VISIUMcore processor EM_FT32 Machine = 222 // FTDI Chip FT32 high performance 32-bit RISC architecture EM_MOXIE Machine = 223 // Moxie processor family EM_AMDGPU Machine = 224 // AMD GPU architecture EM_RISCV Machine = 243 // RISC-V EM_LANAI Machine = 244 // Lanai 32-bit processor EM_BPF Machine = 247 // Linux BPF – in-kernel virtual machine // Non-standard or deprecated. EM_486 Machine = 6 // Intel i486. EM_MIPS_RS4_BE Machine = 10 // MIPS R4000 Big-Endian EM_ALPHA_STD Machine = 41 // Digital Alpha (standard value). EM_ALPHA Machine = 0x9026 // Alpha (written in the absence of an ABI) )
type Magic ¶
type Magic [4]byte
Magic represents the 4 starting bytes representing file defining values.
type OSABI ¶
type OSABI byte
OSABI specifes the OS ABI version.
const ( ELFOSABI_NONE OSABI = 0 // UNIX System V ABI ELFOSABI_HPUX OSABI = 1 // HP-UX operating system ELFOSABI_NETBSD OSABI = 2 // NetBSD ELFOSABI_LINUX OSABI = 3 // GNU/Linux ELFOSABI_HURD OSABI = 4 // GNU/Hurd ELFOSABI_86OPEN OSABI = 5 // 86Open common IA32 ABI ELFOSABI_SOLARIS OSABI = 6 // Solaris ELFOSABI_AIX OSABI = 7 // AIX ELFOSABI_IRIX OSABI = 8 // IRIX ELFOSABI_FREEBSD OSABI = 9 // FreeBSD ELFOSABI_TRU64 OSABI = 10 // TRU64 UNIX ELFOSABI_MODESTO OSABI = 11 // Novell Modesto ELFOSABI_OPENBSD OSABI = 12 // OpenBSD ELFOSABI_OPENVMS OSABI = 13 // Open VMS ELFOSABI_NSK OSABI = 14 // HP Non-Stop Kernel ELFOSABI_AROS OSABI = 15 // Amiga Research OS ELFOSABI_FENIXOS OSABI = 16 // The FenixOS highly scalable multi-core OS ELFOSABI_CLOUDABI OSABI = 17 // Nuxi CloudABI ELFOSABI_ARM OSABI = 97 // ARM ELFOSABI_STANDALONE OSABI = 255 // Standalone (embedded) application )
type Parser ¶
type Parser struct { F *File // contains filtered or unexported fields }
Parser implements a parsing engine for the ELF file format.
func NewBytes ¶
NewBytes creates a new instance of parser from a byte slice representig the ELF binary.
func (*Parser) ApplyRelocations ¶ added in v0.2.0
ApplyRelocations will apply relocations depending on the target binary. This step essentially processes symbolic references to their definitions.
func (*Parser) DumpRawJSON ¶ added in v0.3.1
DumpRawJSON marshals the raw binary representation into JSON Format.
func (*Parser) ParseELFHeader ¶
ParseELFHeader reads the raw elf header depending on the ELF Class (32 or 64).
func (*Parser) ParseELFProgramHeaders ¶ added in v0.2.0
ParseELFProgramHeaders reads the raw elf program header.
func (*Parser) ParseELFSectionHeaders ¶ added in v0.2.0
ParseELFSectionHeaders reads the raw elf section header.
func (*Parser) ParseELFSections ¶ added in v0.2.0
ParseELFSections reads the raw elf sections.
func (*Parser) ParseELFSymbols ¶ added in v0.2.0
func (p *Parser) ParseELFSymbols(c Class, typ SectionType) error
ParseELFSymbols returns a slice of Symbols from parsing the symbol table with the given type, along with the associated string table (the null symbol at index 0 is omitted).
func (*Parser) ParseGNUVersionTable ¶ added in v0.2.0
ParseGNUVersionTable parses the GNU version tables.
func (*Parser) ParseIdent ¶
ParseIdent will parse the identification bytes at the start of the ELF File.
type ProgType ¶
type ProgType int
Prog.Type
const ( PT_NULL ProgType = 0 // Unused entry. PT_LOAD ProgType = 1 // Loadable segment. PT_DYNAMIC ProgType = 2 // Dynamic linking information segment. PT_INTERP ProgType = 3 // Pathname of interpreter. PT_NOTE ProgType = 4 // Auxiliary information. PT_SHLIB ProgType = 5 // Reserved (not used). PT_PHDR ProgType = 6 // Location of program header itself. PT_TLS ProgType = 7 // Thread local storage segment PT_LOOS ProgType = 0x60000000 // First OS-specific. PT_GNU_EH_FRAME ProgType = 0x6474e550 // Frame unwind information PT_GNU_STACK ProgType = 0x6474e551 // Stack flags PT_GNU_RELRO ProgType = 0x6474e552 // Read only after relocs PT_GNU_PROPERTY ProgType = 0x6474e553 // GNU property PT_GNU_MBIND_LO ProgType = 0x6474e555 // Mbind segments start PT_GNU_MBIND_HI ProgType = 0x6474f554 // Mbind segments finish PT_PAX_FLAGS ProgType = 0x65041580 // PAX flags PT_OPENBSD_RANDOMIZE ProgType = 0x65a3dbe6 // Random data PT_OPENBSD_WXNEEDED ProgType = 0x65a3dbe7 // W^X violations PT_OPENBSD_BOOTDATA ProgType = 0x65a41be6 // Boot arguments PT_SUNW_EH_FRAME ProgType = 0x6474e550 // Frame unwind information PT_SUNWSTACK ProgType = 0x6ffffffb // Stack segment PT_HIOS ProgType = 0x6fffffff // Last OS-specific. PT_LOPROC ProgType = 0x70000000 // First processor-specific type. PT_ARM_ARCHEXT ProgType = 0x70000000 // Architecture compatibility PT_ARM_EXIDX ProgType = 0x70000001 // Exception unwind tables PT_AARCH64_ARCHEXT ProgType = 0x70000000 // Architecture compatibility PT_AARCH64_UNWIND ProgType = 0x70000001 // Exception unwind tables PT_MIPS_REGINFO ProgType = 0x70000000 // Register usage PT_MIPS_RTPROC ProgType = 0x70000001 // Runtime procedures PT_MIPS_OPTIONS ProgType = 0x70000002 // Options PT_MIPS_ABIFLAGS ProgType = 0x70000003 // ABI flags PT_S390_PGSTE ProgType = 0x70000000 // 4k page table size PT_HIPROC ProgType = 0x7fffffff // Last processor-specific type. )
type R_386 ¶
type R_386 int
Relocation types for 386.
const ( R_386_NONE R_386 = 0 // No relocation. R_386_32 R_386 = 1 // Add symbol value. R_386_PC32 R_386 = 2 // Add PC-relative symbol value. R_386_GOT32 R_386 = 3 // Add PC-relative GOT offset. R_386_PLT32 R_386 = 4 // Add PC-relative PLT offset. R_386_COPY R_386 = 5 // Copy data from shared object. R_386_GLOB_DAT R_386 = 6 // Set GOT entry to data address. R_386_JMP_SLOT R_386 = 7 // Set GOT entry to code address. R_386_RELATIVE R_386 = 8 // Add load address of shared object. R_386_GOTOFF R_386 = 9 // Add GOT-relative symbol address. R_386_GOTPC R_386 = 10 // Add PC-relative GOT table address. R_386_32PLT R_386 = 11 R_386_TLS_TPOFF R_386 = 14 // Negative offset in static TLS block R_386_TLS_IE R_386 = 15 // Absolute address of GOT for -ve static TLS R_386_TLS_GOTIE R_386 = 16 // GOT entry for negative static TLS block R_386_TLS_LE R_386 = 17 // Negative offset relative to static TLS R_386_TLS_GD R_386 = 18 // 32 bit offset to GOT (index,off) pair R_386_TLS_LDM R_386 = 19 // 32 bit offset to GOT (index,zero) pair R_386_16 R_386 = 20 R_386_PC16 R_386 = 21 R_386_8 R_386 = 22 R_386_PC8 R_386 = 23 R_386_TLS_GD_32 R_386 = 24 // 32 bit offset to GOT (index,off) pair R_386_TLS_GD_PUSH R_386 = 25 // pushl instruction for Sun ABI GD sequence R_386_TLS_GD_CALL R_386 = 26 // call instruction for Sun ABI GD sequence R_386_TLS_GD_POP R_386 = 27 // popl instruction for Sun ABI GD sequence R_386_TLS_LDM_32 R_386 = 28 // 32 bit offset to GOT (index,zero) pair R_386_TLS_LDM_PUSH R_386 = 29 // pushl instruction for Sun ABI LD sequence R_386_TLS_LDM_CALL R_386 = 30 // call instruction for Sun ABI LD sequence R_386_TLS_LDM_POP R_386 = 31 // popl instruction for Sun ABI LD sequence R_386_TLS_LDO_32 R_386 = 32 // 32 bit offset from start of TLS block R_386_TLS_IE_32 R_386 = 33 // 32 bit offset to GOT static TLS offset entry R_386_TLS_LE_32 R_386 = 34 // 32 bit offset within static TLS block R_386_TLS_DTPMOD32 R_386 = 35 // GOT entry containing TLS index R_386_TLS_DTPOFF32 R_386 = 36 // GOT entry containing TLS offset R_386_TLS_TPOFF32 R_386 = 37 // GOT entry of -ve static TLS offset R_386_SIZE32 R_386 = 38 R_386_TLS_GOTDESC R_386 = 39 R_386_TLS_DESC_CALL R_386 = 40 R_386_TLS_DESC R_386 = 41 R_386_IRELATIVE R_386 = 42 R_386_GOT32X R_386 = 43 )
type R_390 ¶
type R_390 int
Relocation types for s390x processors.
const ( R_390_NONE R_390 = 0 R_390_8 R_390 = 1 R_390_12 R_390 = 2 R_390_16 R_390 = 3 R_390_32 R_390 = 4 R_390_PC32 R_390 = 5 R_390_GOT12 R_390 = 6 R_390_GOT32 R_390 = 7 R_390_PLT32 R_390 = 8 R_390_COPY R_390 = 9 R_390_GLOB_DAT R_390 = 10 R_390_JMP_SLOT R_390 = 11 R_390_RELATIVE R_390 = 12 R_390_GOTOFF R_390 = 13 R_390_GOTPC R_390 = 14 R_390_GOT16 R_390 = 15 R_390_PC16 R_390 = 16 R_390_PC16DBL R_390 = 17 R_390_PLT16DBL R_390 = 18 R_390_PC32DBL R_390 = 19 R_390_PLT32DBL R_390 = 20 R_390_GOTPCDBL R_390 = 21 R_390_64 R_390 = 22 R_390_PC64 R_390 = 23 R_390_GOT64 R_390 = 24 R_390_PLT64 R_390 = 25 R_390_GOTENT R_390 = 26 R_390_GOTOFF16 R_390 = 27 R_390_GOTOFF64 R_390 = 28 R_390_GOTPLT12 R_390 = 29 R_390_GOTPLT16 R_390 = 30 R_390_GOTPLT32 R_390 = 31 R_390_GOTPLT64 R_390 = 32 R_390_GOTPLTENT R_390 = 33 R_390_GOTPLTOFF16 R_390 = 34 R_390_GOTPLTOFF32 R_390 = 35 R_390_GOTPLTOFF64 R_390 = 36 R_390_TLS_LOAD R_390 = 37 R_390_TLS_GDCALL R_390 = 38 R_390_TLS_LDCALL R_390 = 39 R_390_TLS_GD32 R_390 = 40 R_390_TLS_GD64 R_390 = 41 R_390_TLS_GOTIE12 R_390 = 42 R_390_TLS_GOTIE32 R_390 = 43 R_390_TLS_GOTIE64 R_390 = 44 R_390_TLS_LDM32 R_390 = 45 R_390_TLS_LDM64 R_390 = 46 R_390_TLS_IE32 R_390 = 47 R_390_TLS_IE64 R_390 = 48 R_390_TLS_IEENT R_390 = 49 R_390_TLS_LE32 R_390 = 50 R_390_TLS_LE64 R_390 = 51 R_390_TLS_LDO32 R_390 = 52 R_390_TLS_LDO64 R_390 = 53 R_390_TLS_DTPMOD R_390 = 54 R_390_TLS_DTPOFF R_390 = 55 R_390_TLS_TPOFF R_390 = 56 R_390_20 R_390 = 57 R_390_GOT20 R_390 = 58 R_390_GOTPLT20 R_390 = 59 R_390_TLS_GOTIE20 R_390 = 60 )
type R_AARCH64 ¶
type R_AARCH64 int
Relocation types for AArch64 (aka arm64)
const ( R_AARCH64_NONE R_AARCH64 = 0 R_AARCH64_P32_ABS32 R_AARCH64 = 1 R_AARCH64_P32_ABS16 R_AARCH64 = 2 R_AARCH64_P32_PREL32 R_AARCH64 = 3 R_AARCH64_P32_PREL16 R_AARCH64 = 4 R_AARCH64_P32_MOVW_UABS_G0 R_AARCH64 = 5 R_AARCH64_P32_MOVW_UABS_G0_NC R_AARCH64 = 6 R_AARCH64_P32_MOVW_UABS_G1 R_AARCH64 = 7 R_AARCH64_P32_MOVW_SABS_G0 R_AARCH64 = 8 R_AARCH64_P32_LD_PREL_LO19 R_AARCH64 = 9 R_AARCH64_P32_ADR_PREL_LO21 R_AARCH64 = 10 R_AARCH64_P32_ADR_PREL_PG_HI21 R_AARCH64 = 11 R_AARCH64_P32_ADD_ABS_LO12_NC R_AARCH64 = 12 R_AARCH64_P32_LDST8_ABS_LO12_NC R_AARCH64 = 13 R_AARCH64_P32_LDST16_ABS_LO12_NC R_AARCH64 = 14 R_AARCH64_P32_LDST32_ABS_LO12_NC R_AARCH64 = 15 R_AARCH64_P32_LDST64_ABS_LO12_NC R_AARCH64 = 16 R_AARCH64_P32_LDST128_ABS_LO12_NC R_AARCH64 = 17 R_AARCH64_P32_TSTBR14 R_AARCH64 = 18 R_AARCH64_P32_CONDBR19 R_AARCH64 = 19 R_AARCH64_P32_JUMP26 R_AARCH64 = 20 R_AARCH64_P32_CALL26 R_AARCH64 = 21 R_AARCH64_P32_GOT_LD_PREL19 R_AARCH64 = 25 R_AARCH64_P32_ADR_GOT_PAGE R_AARCH64 = 26 R_AARCH64_P32_LD32_GOT_LO12_NC R_AARCH64 = 27 R_AARCH64_P32_TLSGD_ADR_PAGE21 R_AARCH64 = 81 R_AARCH64_P32_TLSGD_ADD_LO12_NC R_AARCH64 = 82 R_AARCH64_P32_TLSIE_ADR_GOTTPREL_PAGE21 R_AARCH64 = 103 R_AARCH64_P32_TLSIE_LD32_GOTTPREL_LO12_NC R_AARCH64 = 104 R_AARCH64_P32_TLSIE_LD_GOTTPREL_PREL19 R_AARCH64 = 105 R_AARCH64_P32_TLSLE_MOVW_TPREL_G1 R_AARCH64 = 106 R_AARCH64_P32_TLSLE_MOVW_TPREL_G0 R_AARCH64 = 107 R_AARCH64_P32_TLSLE_MOVW_TPREL_G0_NC R_AARCH64 = 108 R_AARCH64_P32_TLSLE_ADD_TPREL_HI12 R_AARCH64 = 109 R_AARCH64_P32_TLSLE_ADD_TPREL_LO12 R_AARCH64 = 110 R_AARCH64_P32_TLSLE_ADD_TPREL_LO12_NC R_AARCH64 = 111 R_AARCH64_P32_TLSDESC_LD_PREL19 R_AARCH64 = 122 R_AARCH64_P32_TLSDESC_ADR_PREL21 R_AARCH64 = 123 R_AARCH64_P32_TLSDESC_ADR_PAGE21 R_AARCH64 = 124 R_AARCH64_P32_TLSDESC_LD32_LO12_NC R_AARCH64 = 125 R_AARCH64_P32_TLSDESC_ADD_LO12_NC R_AARCH64 = 126 R_AARCH64_P32_TLSDESC_CALL R_AARCH64 = 127 R_AARCH64_P32_COPY R_AARCH64 = 180 R_AARCH64_P32_GLOB_DAT R_AARCH64 = 181 R_AARCH64_P32_JUMP_SLOT R_AARCH64 = 182 R_AARCH64_P32_RELATIVE R_AARCH64 = 183 R_AARCH64_P32_TLS_DTPMOD R_AARCH64 = 184 R_AARCH64_P32_TLS_DTPREL R_AARCH64 = 185 R_AARCH64_P32_TLS_TPREL R_AARCH64 = 186 R_AARCH64_P32_TLSDESC R_AARCH64 = 187 R_AARCH64_P32_IRELATIVE R_AARCH64 = 188 R_AARCH64_NULL R_AARCH64 = 256 R_AARCH64_ABS64 R_AARCH64 = 257 R_AARCH64_ABS32 R_AARCH64 = 258 R_AARCH64_ABS16 R_AARCH64 = 259 R_AARCH64_PREL64 R_AARCH64 = 260 R_AARCH64_PREL32 R_AARCH64 = 261 R_AARCH64_PREL16 R_AARCH64 = 262 R_AARCH64_MOVW_UABS_G0 R_AARCH64 = 263 R_AARCH64_MOVW_UABS_G0_NC R_AARCH64 = 264 R_AARCH64_MOVW_UABS_G1 R_AARCH64 = 265 R_AARCH64_MOVW_UABS_G1_NC R_AARCH64 = 266 R_AARCH64_MOVW_UABS_G2 R_AARCH64 = 267 R_AARCH64_MOVW_UABS_G2_NC R_AARCH64 = 268 R_AARCH64_MOVW_UABS_G3 R_AARCH64 = 269 R_AARCH64_MOVW_SABS_G0 R_AARCH64 = 270 R_AARCH64_MOVW_SABS_G1 R_AARCH64 = 271 R_AARCH64_MOVW_SABS_G2 R_AARCH64 = 272 R_AARCH64_LD_PREL_LO19 R_AARCH64 = 273 R_AARCH64_ADR_PREL_LO21 R_AARCH64 = 274 R_AARCH64_ADR_PREL_PG_HI21 R_AARCH64 = 275 R_AARCH64_ADR_PREL_PG_HI21_NC R_AARCH64 = 276 R_AARCH64_ADD_ABS_LO12_NC R_AARCH64 = 277 R_AARCH64_LDST8_ABS_LO12_NC R_AARCH64 = 278 R_AARCH64_TSTBR14 R_AARCH64 = 279 R_AARCH64_CONDBR19 R_AARCH64 = 280 R_AARCH64_JUMP26 R_AARCH64 = 282 R_AARCH64_CALL26 R_AARCH64 = 283 R_AARCH64_LDST16_ABS_LO12_NC R_AARCH64 = 284 R_AARCH64_LDST32_ABS_LO12_NC R_AARCH64 = 285 R_AARCH64_LDST64_ABS_LO12_NC R_AARCH64 = 286 R_AARCH64_LDST128_ABS_LO12_NC R_AARCH64 = 299 R_AARCH64_GOT_LD_PREL19 R_AARCH64 = 309 R_AARCH64_LD64_GOTOFF_LO15 R_AARCH64 = 310 R_AARCH64_ADR_GOT_PAGE R_AARCH64 = 311 R_AARCH64_LD64_GOT_LO12_NC R_AARCH64 = 312 R_AARCH64_LD64_GOTPAGE_LO15 R_AARCH64 = 313 R_AARCH64_TLSGD_ADR_PREL21 R_AARCH64 = 512 R_AARCH64_TLSGD_ADR_PAGE21 R_AARCH64 = 513 R_AARCH64_TLSGD_ADD_LO12_NC R_AARCH64 = 514 R_AARCH64_TLSGD_MOVW_G1 R_AARCH64 = 515 R_AARCH64_TLSGD_MOVW_G0_NC R_AARCH64 = 516 R_AARCH64_TLSLD_ADR_PREL21 R_AARCH64 = 517 R_AARCH64_TLSLD_ADR_PAGE21 R_AARCH64 = 518 R_AARCH64_TLSIE_MOVW_GOTTPREL_G1 R_AARCH64 = 539 R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC R_AARCH64 = 540 R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 R_AARCH64 = 541 R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC R_AARCH64 = 542 R_AARCH64_TLSIE_LD_GOTTPREL_PREL19 R_AARCH64 = 543 R_AARCH64_TLSLE_MOVW_TPREL_G2 R_AARCH64 = 544 R_AARCH64_TLSLE_MOVW_TPREL_G1 R_AARCH64 = 545 R_AARCH64_TLSLE_MOVW_TPREL_G1_NC R_AARCH64 = 546 R_AARCH64_TLSLE_MOVW_TPREL_G0 R_AARCH64 = 547 R_AARCH64_TLSLE_MOVW_TPREL_G0_NC R_AARCH64 = 548 R_AARCH64_TLSLE_ADD_TPREL_HI12 R_AARCH64 = 549 R_AARCH64_TLSLE_ADD_TPREL_LO12 R_AARCH64 = 550 R_AARCH64_TLSLE_ADD_TPREL_LO12_NC R_AARCH64 = 551 R_AARCH64_TLSDESC_LD_PREL19 R_AARCH64 = 560 R_AARCH64_TLSDESC_ADR_PREL21 R_AARCH64 = 561 R_AARCH64_TLSDESC_ADR_PAGE21 R_AARCH64 = 562 R_AARCH64_TLSDESC_LD64_LO12_NC R_AARCH64 = 563 R_AARCH64_TLSDESC_ADD_LO12_NC R_AARCH64 = 564 R_AARCH64_TLSDESC_OFF_G1 R_AARCH64 = 565 R_AARCH64_TLSDESC_OFF_G0_NC R_AARCH64 = 566 R_AARCH64_TLSDESC_LDR R_AARCH64 = 567 R_AARCH64_TLSDESC_ADD R_AARCH64 = 568 R_AARCH64_TLSDESC_CALL R_AARCH64 = 569 R_AARCH64_TLSLE_LDST128_TPREL_LO12 R_AARCH64 = 570 R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC R_AARCH64 = 571 R_AARCH64_TLSLD_LDST128_DTPREL_LO12 R_AARCH64 = 572 R_AARCH64_TLSLD_LDST128_DTPREL_LO12_NC R_AARCH64 = 573 R_AARCH64_COPY R_AARCH64 = 1024 R_AARCH64_GLOB_DAT R_AARCH64 = 1025 R_AARCH64_JUMP_SLOT R_AARCH64 = 1026 R_AARCH64_RELATIVE R_AARCH64 = 1027 R_AARCH64_TLS_DTPMOD64 R_AARCH64 = 1028 R_AARCH64_TLS_DTPREL64 R_AARCH64 = 1029 R_AARCH64_TLS_TPREL64 R_AARCH64 = 1030 R_AARCH64_TLSDESC R_AARCH64 = 1031 R_AARCH64_IRELATIVE R_AARCH64 = 1032 )
type R_ALPHA ¶
type R_ALPHA int
Relocation types for Alpha.
const ( R_ALPHA_NONE R_ALPHA = 0 // No reloc R_ALPHA_REFLONG R_ALPHA = 1 // Direct 32 bit R_ALPHA_REFQUAD R_ALPHA = 2 // Direct 64 bit R_ALPHA_GPREL32 R_ALPHA = 3 // GP relative 32 bit R_ALPHA_LITERAL R_ALPHA = 4 // GP relative 16 bit w/optimization R_ALPHA_LITUSE R_ALPHA = 5 // Optimization hint for LITERAL R_ALPHA_GPDISP R_ALPHA = 6 // Add displacement to GP R_ALPHA_BRADDR R_ALPHA = 7 // PC+4 relative 23 bit shifted R_ALPHA_HINT R_ALPHA = 8 // PC+4 relative 16 bit shifted R_ALPHA_SREL16 R_ALPHA = 9 // PC relative 16 bit R_ALPHA_SREL32 R_ALPHA = 10 // PC relative 32 bit R_ALPHA_SREL64 R_ALPHA = 11 // PC relative 64 bit R_ALPHA_OP_PUSH R_ALPHA = 12 // OP stack push R_ALPHA_OP_STORE R_ALPHA = 13 // OP stack pop and store R_ALPHA_OP_PSUB R_ALPHA = 14 // OP stack subtract R_ALPHA_OP_PRSHIFT R_ALPHA = 15 // OP stack right shift R_ALPHA_GPVALUE R_ALPHA = 16 R_ALPHA_GPRELHIGH R_ALPHA = 17 R_ALPHA_GPRELLOW R_ALPHA = 18 R_ALPHA_IMMED_GP_16 R_ALPHA = 19 R_ALPHA_IMMED_GP_HI32 R_ALPHA = 20 R_ALPHA_IMMED_SCN_HI32 R_ALPHA = 21 R_ALPHA_IMMED_BR_HI32 R_ALPHA = 22 R_ALPHA_IMMED_LO32 R_ALPHA = 23 R_ALPHA_COPY R_ALPHA = 24 // Copy symbol at runtime R_ALPHA_GLOB_DAT R_ALPHA = 25 // Create GOT entry R_ALPHA_JMP_SLOT R_ALPHA = 26 // Create PLT entry R_ALPHA_RELATIVE R_ALPHA = 27 // Adjust by program base )
type R_ARM ¶
type R_ARM int
Relocation types for ARM.
const ( R_ARM_NONE R_ARM = 0 // No relocation. R_ARM_PC24 R_ARM = 1 R_ARM_ABS32 R_ARM = 2 R_ARM_REL32 R_ARM = 3 R_ARM_PC13 R_ARM = 4 R_ARM_ABS16 R_ARM = 5 R_ARM_ABS12 R_ARM = 6 R_ARM_THM_ABS5 R_ARM = 7 R_ARM_ABS8 R_ARM = 8 R_ARM_SBREL32 R_ARM = 9 R_ARM_THM_PC22 R_ARM = 10 R_ARM_THM_PC8 R_ARM = 11 R_ARM_AMP_VCALL9 R_ARM = 12 R_ARM_SWI24 R_ARM = 13 R_ARM_THM_SWI8 R_ARM = 14 R_ARM_XPC25 R_ARM = 15 R_ARM_THM_XPC22 R_ARM = 16 R_ARM_TLS_DTPMOD32 R_ARM = 17 R_ARM_TLS_DTPOFF32 R_ARM = 18 R_ARM_TLS_TPOFF32 R_ARM = 19 R_ARM_COPY R_ARM = 20 // Copy data from shared object. R_ARM_GLOB_DAT R_ARM = 21 // Set GOT entry to data address. R_ARM_JUMP_SLOT R_ARM = 22 // Set GOT entry to code address. R_ARM_RELATIVE R_ARM = 23 // Add load address of shared object. R_ARM_GOTOFF R_ARM = 24 // Add GOT-relative symbol address. R_ARM_GOTPC R_ARM = 25 // Add PC-relative GOT table address. R_ARM_GOT32 R_ARM = 26 // Add PC-relative GOT offset. R_ARM_PLT32 R_ARM = 27 // Add PC-relative PLT offset. R_ARM_CALL R_ARM = 28 R_ARM_JUMP24 R_ARM = 29 R_ARM_THM_JUMP24 R_ARM = 30 R_ARM_BASE_ABS R_ARM = 31 R_ARM_ALU_PCREL_7_0 R_ARM = 32 R_ARM_ALU_PCREL_15_8 R_ARM = 33 R_ARM_ALU_PCREL_23_15 R_ARM = 34 R_ARM_LDR_SBREL_11_10_NC R_ARM = 35 R_ARM_ALU_SBREL_19_12_NC R_ARM = 36 R_ARM_ALU_SBREL_27_20_CK R_ARM = 37 R_ARM_TARGET1 R_ARM = 38 R_ARM_SBREL31 R_ARM = 39 R_ARM_V4BX R_ARM = 40 R_ARM_TARGET2 R_ARM = 41 R_ARM_PREL31 R_ARM = 42 R_ARM_MOVW_ABS_NC R_ARM = 43 R_ARM_MOVT_ABS R_ARM = 44 R_ARM_MOVW_PREL_NC R_ARM = 45 R_ARM_MOVT_PREL R_ARM = 46 R_ARM_THM_MOVW_ABS_NC R_ARM = 47 R_ARM_THM_MOVT_ABS R_ARM = 48 R_ARM_THM_MOVW_PREL_NC R_ARM = 49 R_ARM_THM_MOVT_PREL R_ARM = 50 R_ARM_THM_JUMP19 R_ARM = 51 R_ARM_THM_JUMP6 R_ARM = 52 R_ARM_THM_ALU_PREL_11_0 R_ARM = 53 R_ARM_THM_PC12 R_ARM = 54 R_ARM_ABS32_NOI R_ARM = 55 R_ARM_REL32_NOI R_ARM = 56 R_ARM_ALU_PC_G0_NC R_ARM = 57 R_ARM_ALU_PC_G0 R_ARM = 58 R_ARM_ALU_PC_G1_NC R_ARM = 59 R_ARM_ALU_PC_G1 R_ARM = 60 R_ARM_ALU_PC_G2 R_ARM = 61 R_ARM_LDR_PC_G1 R_ARM = 62 R_ARM_LDR_PC_G2 R_ARM = 63 R_ARM_LDRS_PC_G0 R_ARM = 64 R_ARM_LDRS_PC_G1 R_ARM = 65 R_ARM_LDRS_PC_G2 R_ARM = 66 R_ARM_LDC_PC_G0 R_ARM = 67 R_ARM_LDC_PC_G1 R_ARM = 68 R_ARM_LDC_PC_G2 R_ARM = 69 R_ARM_ALU_SB_G0_NC R_ARM = 70 R_ARM_ALU_SB_G0 R_ARM = 71 R_ARM_ALU_SB_G1_NC R_ARM = 72 R_ARM_ALU_SB_G1 R_ARM = 73 R_ARM_ALU_SB_G2 R_ARM = 74 R_ARM_LDR_SB_G0 R_ARM = 75 R_ARM_LDR_SB_G1 R_ARM = 76 R_ARM_LDR_SB_G2 R_ARM = 77 R_ARM_LDRS_SB_G0 R_ARM = 78 R_ARM_LDRS_SB_G1 R_ARM = 79 R_ARM_LDRS_SB_G2 R_ARM = 80 R_ARM_LDC_SB_G0 R_ARM = 81 R_ARM_LDC_SB_G1 R_ARM = 82 R_ARM_LDC_SB_G2 R_ARM = 83 R_ARM_MOVW_BREL_NC R_ARM = 84 R_ARM_MOVT_BREL R_ARM = 85 R_ARM_MOVW_BREL R_ARM = 86 R_ARM_THM_MOVW_BREL_NC R_ARM = 87 R_ARM_THM_MOVT_BREL R_ARM = 88 R_ARM_THM_MOVW_BREL R_ARM = 89 R_ARM_TLS_GOTDESC R_ARM = 90 R_ARM_TLS_CALL R_ARM = 91 R_ARM_TLS_DESCSEQ R_ARM = 92 R_ARM_THM_TLS_CALL R_ARM = 93 R_ARM_PLT32_ABS R_ARM = 94 R_ARM_GOT_ABS R_ARM = 95 R_ARM_GOT_PREL R_ARM = 96 R_ARM_GOT_BREL12 R_ARM = 97 R_ARM_GOTOFF12 R_ARM = 98 R_ARM_GOTRELAX R_ARM = 99 R_ARM_GNU_VTENTRY R_ARM = 100 R_ARM_GNU_VTINHERIT R_ARM = 101 R_ARM_THM_JUMP11 R_ARM = 102 R_ARM_THM_JUMP8 R_ARM = 103 R_ARM_TLS_GD32 R_ARM = 104 R_ARM_TLS_LDM32 R_ARM = 105 R_ARM_TLS_LDO32 R_ARM = 106 R_ARM_TLS_IE32 R_ARM = 107 R_ARM_TLS_LE32 R_ARM = 108 R_ARM_TLS_LDO12 R_ARM = 109 R_ARM_TLS_LE12 R_ARM = 110 R_ARM_TLS_IE12GP R_ARM = 111 R_ARM_PRIVATE_0 R_ARM = 112 R_ARM_PRIVATE_1 R_ARM = 113 R_ARM_PRIVATE_2 R_ARM = 114 R_ARM_PRIVATE_3 R_ARM = 115 R_ARM_PRIVATE_4 R_ARM = 116 R_ARM_PRIVATE_5 R_ARM = 117 R_ARM_PRIVATE_6 R_ARM = 118 R_ARM_PRIVATE_7 R_ARM = 119 R_ARM_PRIVATE_8 R_ARM = 120 R_ARM_PRIVATE_9 R_ARM = 121 R_ARM_PRIVATE_10 R_ARM = 122 R_ARM_PRIVATE_11 R_ARM = 123 R_ARM_PRIVATE_12 R_ARM = 124 R_ARM_PRIVATE_13 R_ARM = 125 R_ARM_PRIVATE_14 R_ARM = 126 R_ARM_PRIVATE_15 R_ARM = 127 R_ARM_ME_TOO R_ARM = 128 R_ARM_THM_TLS_DESCSEQ16 R_ARM = 129 R_ARM_THM_TLS_DESCSEQ32 R_ARM = 130 R_ARM_THM_GOT_BREL12 R_ARM = 131 R_ARM_THM_ALU_ABS_G0_NC R_ARM = 132 R_ARM_THM_ALU_ABS_G1_NC R_ARM = 133 R_ARM_THM_ALU_ABS_G2_NC R_ARM = 134 R_ARM_THM_ALU_ABS_G3 R_ARM = 135 R_ARM_IRELATIVE R_ARM = 160 R_ARM_RXPC25 R_ARM = 249 R_ARM_RSBREL32 R_ARM = 250 R_ARM_THM_RPC22 R_ARM = 251 R_ARM_RREL32 R_ARM = 252 R_ARM_RABS32 R_ARM = 253 R_ARM_RPC24 R_ARM = 254 R_ARM_RBASE R_ARM = 255 )
type R_MIPS ¶
type R_MIPS int
Relocation types for MIPS.
const ( R_MIPS_NONE R_MIPS = 0 R_MIPS_16 R_MIPS = 1 R_MIPS_32 R_MIPS = 2 R_MIPS_REL32 R_MIPS = 3 R_MIPS_26 R_MIPS = 4 R_MIPS_HI16 R_MIPS = 5 // high 16 bits of symbol value R_MIPS_LO16 R_MIPS = 6 // low 16 bits of symbol value R_MIPS_GPREL16 R_MIPS = 7 // GP-relative reference R_MIPS_LITERAL R_MIPS = 8 // Reference to literal section R_MIPS_GOT16 R_MIPS = 9 // Reference to global offset table R_MIPS_PC16 R_MIPS = 10 // 16 bit PC relative reference R_MIPS_CALL16 R_MIPS = 11 // 16 bit call through glbl offset tbl R_MIPS_GPREL32 R_MIPS = 12 R_MIPS_SHIFT5 R_MIPS = 16 R_MIPS_SHIFT6 R_MIPS = 17 R_MIPS_64 R_MIPS = 18 R_MIPS_GOT_DISP R_MIPS = 19 R_MIPS_GOT_PAGE R_MIPS = 20 R_MIPS_GOT_OFST R_MIPS = 21 R_MIPS_GOT_HI16 R_MIPS = 22 R_MIPS_GOT_LO16 R_MIPS = 23 R_MIPS_SUB R_MIPS = 24 R_MIPS_INSERT_A R_MIPS = 25 R_MIPS_INSERT_B R_MIPS = 26 R_MIPS_DELETE R_MIPS = 27 R_MIPS_HIGHER R_MIPS = 28 R_MIPS_HIGHEST R_MIPS = 29 R_MIPS_CALL_HI16 R_MIPS = 30 R_MIPS_CALL_LO16 R_MIPS = 31 R_MIPS_SCN_DISP R_MIPS = 32 R_MIPS_REL16 R_MIPS = 33 R_MIPS_ADD_IMMEDIATE R_MIPS = 34 R_MIPS_PJUMP R_MIPS = 35 R_MIPS_RELGOT R_MIPS = 36 R_MIPS_JALR R_MIPS = 37 R_MIPS_TLS_DTPMOD32 R_MIPS = 38 // Module number 32 bit R_MIPS_TLS_DTPREL32 R_MIPS = 39 // Module-relative offset 32 bit R_MIPS_TLS_DTPMOD64 R_MIPS = 40 // Module number 64 bit R_MIPS_TLS_DTPREL64 R_MIPS = 41 // Module-relative offset 64 bit R_MIPS_TLS_GD R_MIPS = 42 // 16 bit GOT offset for GD R_MIPS_TLS_LDM R_MIPS = 43 // 16 bit GOT offset for LDM R_MIPS_TLS_DTPREL_HI16 R_MIPS = 44 // Module-relative offset, high 16 bits R_MIPS_TLS_DTPREL_LO16 R_MIPS = 45 // Module-relative offset, low 16 bits R_MIPS_TLS_GOTTPREL R_MIPS = 46 // 16 bit GOT offset for IE R_MIPS_TLS_TPREL32 R_MIPS = 47 // TP-relative offset, 32 bit R_MIPS_TLS_TPREL64 R_MIPS = 48 // TP-relative offset, 64 bit R_MIPS_TLS_TPREL_HI16 R_MIPS = 49 // TP-relative offset, high 16 bits R_MIPS_TLS_TPREL_LO16 R_MIPS = 50 // TP-relative offset, low 16 bits )
type R_PPC ¶
type R_PPC int
Relocation types for PowerPC.
Values that are shared by both R_PPC and R_PPC64 are prefixed with R_POWERPC_ in the ELF standard. For the R_PPC type, the relevant shared relocations have been renamed with the prefix R_PPC_. The original name follows the value in a comment.
const ( R_PPC_NONE R_PPC = 0 // R_POWERPC_NONE R_PPC_ADDR32 R_PPC = 1 // R_POWERPC_ADDR32 R_PPC_ADDR24 R_PPC = 2 // R_POWERPC_ADDR24 R_PPC_ADDR16 R_PPC = 3 // R_POWERPC_ADDR16 R_PPC_ADDR16_LO R_PPC = 4 // R_POWERPC_ADDR16_LO R_PPC_ADDR16_HI R_PPC = 5 // R_POWERPC_ADDR16_HI R_PPC_ADDR16_HA R_PPC = 6 // R_POWERPC_ADDR16_HA R_PPC_ADDR14 R_PPC = 7 // R_POWERPC_ADDR14 R_PPC_ADDR14_BRTAKEN R_PPC = 8 // R_POWERPC_ADDR14_BRTAKEN R_PPC_ADDR14_BRNTAKEN R_PPC = 9 // R_POWERPC_ADDR14_BRNTAKEN R_PPC_REL24 R_PPC = 10 // R_POWERPC_REL24 R_PPC_REL14 R_PPC = 11 // R_POWERPC_REL14 R_PPC_REL14_BRTAKEN R_PPC = 12 // R_POWERPC_REL14_BRTAKEN R_PPC_REL14_BRNTAKEN R_PPC = 13 // R_POWERPC_REL14_BRNTAKEN R_PPC_GOT16 R_PPC = 14 // R_POWERPC_GOT16 R_PPC_GOT16_LO R_PPC = 15 // R_POWERPC_GOT16_LO R_PPC_GOT16_HI R_PPC = 16 // R_POWERPC_GOT16_HI R_PPC_GOT16_HA R_PPC = 17 // R_POWERPC_GOT16_HA R_PPC_PLTREL24 R_PPC = 18 R_PPC_COPY R_PPC = 19 // R_POWERPC_COPY R_PPC_GLOB_DAT R_PPC = 20 // R_POWERPC_GLOB_DAT R_PPC_JMP_SLOT R_PPC = 21 // R_POWERPC_JMP_SLOT R_PPC_RELATIVE R_PPC = 22 // R_POWERPC_RELATIVE R_PPC_LOCAL24PC R_PPC = 23 R_PPC_UADDR32 R_PPC = 24 // R_POWERPC_UADDR32 R_PPC_UADDR16 R_PPC = 25 // R_POWERPC_UADDR16 R_PPC_REL32 R_PPC = 26 // R_POWERPC_REL32 R_PPC_PLT32 R_PPC = 27 // R_POWERPC_PLT32 R_PPC_PLTREL32 R_PPC = 28 // R_POWERPC_PLTREL32 R_PPC_PLT16_LO R_PPC = 29 // R_POWERPC_PLT16_LO R_PPC_PLT16_HI R_PPC = 30 // R_POWERPC_PLT16_HI R_PPC_PLT16_HA R_PPC = 31 // R_POWERPC_PLT16_HA R_PPC_SDAREL16 R_PPC = 32 R_PPC_SECTOFF R_PPC = 33 // R_POWERPC_SECTOFF R_PPC_SECTOFF_LO R_PPC = 34 // R_POWERPC_SECTOFF_LO R_PPC_SECTOFF_HI R_PPC = 35 // R_POWERPC_SECTOFF_HI R_PPC_SECTOFF_HA R_PPC = 36 // R_POWERPC_SECTOFF_HA R_PPC_TLS R_PPC = 67 // R_POWERPC_TLS R_PPC_DTPMOD32 R_PPC = 68 // R_POWERPC_DTPMOD32 R_PPC_TPREL16 R_PPC = 69 // R_POWERPC_TPREL16 R_PPC_TPREL16_LO R_PPC = 70 // R_POWERPC_TPREL16_LO R_PPC_TPREL16_HI R_PPC = 71 // R_POWERPC_TPREL16_HI R_PPC_TPREL16_HA R_PPC = 72 // R_POWERPC_TPREL16_HA R_PPC_TPREL32 R_PPC = 73 // R_POWERPC_TPREL32 R_PPC_DTPREL16 R_PPC = 74 // R_POWERPC_DTPREL16 R_PPC_DTPREL16_LO R_PPC = 75 // R_POWERPC_DTPREL16_LO R_PPC_DTPREL16_HI R_PPC = 76 // R_POWERPC_DTPREL16_HI R_PPC_DTPREL16_HA R_PPC = 77 // R_POWERPC_DTPREL16_HA R_PPC_DTPREL32 R_PPC = 78 // R_POWERPC_DTPREL32 R_PPC_GOT_TLSGD16 R_PPC = 79 // R_POWERPC_GOT_TLSGD16 R_PPC_GOT_TLSGD16_LO R_PPC = 80 // R_POWERPC_GOT_TLSGD16_LO R_PPC_GOT_TLSGD16_HI R_PPC = 81 // R_POWERPC_GOT_TLSGD16_HI R_PPC_GOT_TLSGD16_HA R_PPC = 82 // R_POWERPC_GOT_TLSGD16_HA R_PPC_GOT_TLSLD16 R_PPC = 83 // R_POWERPC_GOT_TLSLD16 R_PPC_GOT_TLSLD16_LO R_PPC = 84 // R_POWERPC_GOT_TLSLD16_LO R_PPC_GOT_TLSLD16_HI R_PPC = 85 // R_POWERPC_GOT_TLSLD16_HI R_PPC_GOT_TLSLD16_HA R_PPC = 86 // R_POWERPC_GOT_TLSLD16_HA R_PPC_GOT_TPREL16 R_PPC = 87 // R_POWERPC_GOT_TPREL16 R_PPC_GOT_TPREL16_LO R_PPC = 88 // R_POWERPC_GOT_TPREL16_LO R_PPC_GOT_TPREL16_HI R_PPC = 89 // R_POWERPC_GOT_TPREL16_HI R_PPC_GOT_TPREL16_HA R_PPC = 90 // R_POWERPC_GOT_TPREL16_HA R_PPC_EMB_NADDR32 R_PPC = 101 R_PPC_EMB_NADDR16 R_PPC = 102 R_PPC_EMB_NADDR16_LO R_PPC = 103 R_PPC_EMB_NADDR16_HI R_PPC = 104 R_PPC_EMB_NADDR16_HA R_PPC = 105 R_PPC_EMB_SDAI16 R_PPC = 106 R_PPC_EMB_SDA2I16 R_PPC = 107 R_PPC_EMB_SDA2REL R_PPC = 108 R_PPC_EMB_SDA21 R_PPC = 109 R_PPC_EMB_MRKREF R_PPC = 110 R_PPC_EMB_RELSEC16 R_PPC = 111 R_PPC_EMB_RELST_LO R_PPC = 112 R_PPC_EMB_RELST_HI R_PPC = 113 R_PPC_EMB_RELST_HA R_PPC = 114 R_PPC_EMB_BIT_FLD R_PPC = 115 R_PPC_EMB_RELSDA R_PPC = 116 )
type R_PPC64 ¶
type R_PPC64 int
Relocation types for 64-bit PowerPC or Power Architecture processors.
Values that are shared by both R_PPC and R_PPC64 are prefixed with R_POWERPC_ in the ELF standard. For the R_PPC64 type, the relevant shared relocations have been renamed with the prefix R_PPC64_. The original name follows the value in a comment.
const ( R_PPC64_NONE R_PPC64 = 0 // R_POWERPC_NONE R_PPC64_ADDR32 R_PPC64 = 1 // R_POWERPC_ADDR32 R_PPC64_ADDR24 R_PPC64 = 2 // R_POWERPC_ADDR24 R_PPC64_ADDR16 R_PPC64 = 3 // R_POWERPC_ADDR16 R_PPC64_ADDR16_LO R_PPC64 = 4 // R_POWERPC_ADDR16_LO R_PPC64_ADDR16_HI R_PPC64 = 5 // R_POWERPC_ADDR16_HI R_PPC64_ADDR16_HA R_PPC64 = 6 // R_POWERPC_ADDR16_HA R_PPC64_ADDR14 R_PPC64 = 7 // R_POWERPC_ADDR14 R_PPC64_ADDR14_BRTAKEN R_PPC64 = 8 // R_POWERPC_ADDR14_BRTAKEN R_PPC64_ADDR14_BRNTAKEN R_PPC64 = 9 // R_POWERPC_ADDR14_BRNTAKEN R_PPC64_REL24 R_PPC64 = 10 // R_POWERPC_REL24 R_PPC64_REL14 R_PPC64 = 11 // R_POWERPC_REL14 R_PPC64_REL14_BRTAKEN R_PPC64 = 12 // R_POWERPC_REL14_BRTAKEN R_PPC64_REL14_BRNTAKEN R_PPC64 = 13 // R_POWERPC_REL14_BRNTAKEN R_PPC64_GOT16 R_PPC64 = 14 // R_POWERPC_GOT16 R_PPC64_GOT16_LO R_PPC64 = 15 // R_POWERPC_GOT16_LO R_PPC64_GOT16_HI R_PPC64 = 16 // R_POWERPC_GOT16_HI R_PPC64_GOT16_HA R_PPC64 = 17 // R_POWERPC_GOT16_HA R_PPC64_JMP_SLOT R_PPC64 = 21 // R_POWERPC_JMP_SLOT R_PPC64_REL32 R_PPC64 = 26 // R_POWERPC_REL32 R_PPC64_ADDR64 R_PPC64 = 38 R_PPC64_ADDR16_HIGHER R_PPC64 = 39 R_PPC64_ADDR16_HIGHERA R_PPC64 = 40 R_PPC64_ADDR16_HIGHEST R_PPC64 = 41 R_PPC64_ADDR16_HIGHESTA R_PPC64 = 42 R_PPC64_REL64 R_PPC64 = 44 R_PPC64_TOC16 R_PPC64 = 47 R_PPC64_TOC16_LO R_PPC64 = 48 R_PPC64_TOC16_HI R_PPC64 = 49 R_PPC64_TOC16_HA R_PPC64 = 50 R_PPC64_TOC R_PPC64 = 51 R_PPC64_PLTGOT16 R_PPC64 = 52 R_PPC64_PLTGOT16_LO R_PPC64 = 53 R_PPC64_PLTGOT16_HI R_PPC64 = 54 R_PPC64_PLTGOT16_HA R_PPC64 = 55 R_PPC64_ADDR16_DS R_PPC64 = 56 R_PPC64_ADDR16_LO_DS R_PPC64 = 57 R_PPC64_GOT16_DS R_PPC64 = 58 R_PPC64_GOT16_LO_DS R_PPC64 = 59 R_PPC64_PLT16_LO_DS R_PPC64 = 60 R_PPC64_SECTOFF_DS R_PPC64 = 61 R_PPC64_SECTOFF_LO_DS R_PPC64 = 61 R_PPC64_TOC16_DS R_PPC64 = 63 R_PPC64_TOC16_LO_DS R_PPC64 = 64 R_PPC64_PLTGOT16_DS R_PPC64 = 65 R_PPC64_PLTGOT_LO_DS R_PPC64 = 66 R_PPC64_TLS R_PPC64 = 67 // R_POWERPC_TLS R_PPC64_DTPMOD64 R_PPC64 = 68 // R_POWERPC_DTPMOD64 R_PPC64_TPREL16 R_PPC64 = 69 // R_POWERPC_TPREL16 R_PPC64_TPREL16_LO R_PPC64 = 70 // R_POWERPC_TPREL16_LO R_PPC64_TPREL16_HI R_PPC64 = 71 // R_POWERPC_TPREL16_HI R_PPC64_TPREL16_HA R_PPC64 = 72 // R_POWERPC_TPREL16_HA R_PPC64_TPREL64 R_PPC64 = 73 // R_POWERPC_TPREL64 R_PPC64_DTPREL16 R_PPC64 = 74 // R_POWERPC_DTPREL16 R_PPC64_DTPREL16_LO R_PPC64 = 75 // R_POWERPC_DTPREL16_LO R_PPC64_DTPREL16_HI R_PPC64 = 76 // R_POWERPC_DTPREL16_HI R_PPC64_DTPREL16_HA R_PPC64 = 77 // R_POWERPC_DTPREL16_HA R_PPC64_DTPREL64 R_PPC64 = 78 // R_POWERPC_DTPREL64 R_PPC64_GOT_TLSGD16 R_PPC64 = 79 // R_POWERPC_GOT_TLSGD16 R_PPC64_GOT_TLSGD16_LO R_PPC64 = 80 // R_POWERPC_GOT_TLSGD16_LO R_PPC64_GOT_TLSGD16_HI R_PPC64 = 81 // R_POWERPC_GOT_TLSGD16_HI R_PPC64_GOT_TLSGD16_HA R_PPC64 = 82 // R_POWERPC_GOT_TLSGD16_HA R_PPC64_GOT_TLSLD16 R_PPC64 = 83 // R_POWERPC_GOT_TLSLD16 R_PPC64_GOT_TLSLD16_LO R_PPC64 = 84 // R_POWERPC_GOT_TLSLD16_LO R_PPC64_GOT_TLSLD16_HI R_PPC64 = 85 // R_POWERPC_GOT_TLSLD16_HI R_PPC64_GOT_TLSLD16_HA R_PPC64 = 86 // R_POWERPC_GOT_TLSLD16_HA R_PPC64_GOT_TPREL16_DS R_PPC64 = 87 // R_POWERPC_GOT_TPREL16_DS R_PPC64_GOT_TPREL16_LO_DS R_PPC64 = 88 // R_POWERPC_GOT_TPREL16_LO_DS R_PPC64_GOT_TPREL16_HI R_PPC64 = 89 // R_POWERPC_GOT_TPREL16_HI R_PPC64_GOT_TPREL16_HA R_PPC64 = 90 // R_POWERPC_GOT_TPREL16_HA R_PPC64_GOT_DTPREL16_DS R_PPC64 = 91 // R_POWERPC_GOT_DTPREL16_DS R_PPC64_GOT_DTPREL16_LO_DS R_PPC64 = 92 // R_POWERPC_GOT_DTPREL16_LO_DS R_PPC64_GOT_DTPREL16_HI R_PPC64 = 93 // R_POWERPC_GOT_DTPREL16_HI R_PPC64_GOT_DTPREL16_HA R_PPC64 = 94 // R_POWERPC_GOT_DTPREL16_HA R_PPC64_TPREL16_DS R_PPC64 = 95 R_PPC64_TPREL16_LO_DS R_PPC64 = 96 R_PPC64_TPREL16_HIGHER R_PPC64 = 97 R_PPC64_TPREL16_HIGHERA R_PPC64 = 98 R_PPC64_TPREL16_HIGHEST R_PPC64 = 99 R_PPC64_TPREL16_HIGHESTA R_PPC64 = 100 R_PPC64_DTPREL16_DS R_PPC64 = 101 R_PPC64_DTPREL16_LO_DS R_PPC64 = 102 R_PPC64_DTPREL16_HIGHER R_PPC64 = 103 R_PPC64_DTPREL16_HIGHERA R_PPC64 = 104 R_PPC64_DTPREL16_HIGHEST R_PPC64 = 105 R_PPC64_DTPREL16_HIGHESTA R_PPC64 = 106 R_PPC64_TLSGD R_PPC64 = 107 R_PPC64_TLSLD R_PPC64 = 108 R_PPC64_TOCSAVE R_PPC64 = 109 R_PPC64_ADDR16_HIGH R_PPC64 = 110 R_PPC64_ADDR16_HIGHA R_PPC64 = 111 R_PPC64_TPREL16_HIGH R_PPC64 = 112 R_PPC64_TPREL16_HIGHA R_PPC64 = 113 R_PPC64_DTPREL16_HIGH R_PPC64 = 114 R_PPC64_DTPREL16_HIGHA R_PPC64 = 115 R_PPC64_REL24_NOTOC R_PPC64 = 116 R_PPC64_ADDR64_LOCAL R_PPC64 = 117 R_PPC64_ENTRY R_PPC64 = 118 R_PPC64_REL16DX_HA R_PPC64 = 246 // R_POWERPC_REL16DX_HA R_PPC64_JMP_IREL R_PPC64 = 247 R_PPC64_IRELATIVE R_PPC64 = 248 // R_POWERPC_IRELATIVE R_PPC64_REL16 R_PPC64 = 249 // R_POWERPC_REL16 R_PPC64_REL16_LO R_PPC64 = 250 // R_POWERPC_REL16_LO R_PPC64_REL16_HI R_PPC64 = 251 // R_POWERPC_REL16_HI R_PPC64_REL16_HA R_PPC64 = 252 // R_POWERPC_REL16_HA )
type R_RISCV ¶
type R_RISCV int
Relocation types for RISC-V processors.
const ( R_RISCV_NONE R_RISCV = 0 // No relocation. R_RISCV_32 R_RISCV = 1 // Add 32 bit zero extended symbol value R_RISCV_64 R_RISCV = 2 // Add 64 bit symbol value. R_RISCV_RELATIVE R_RISCV = 3 // Add load address of shared object. R_RISCV_COPY R_RISCV = 4 // Copy data from shared object. R_RISCV_JUMP_SLOT R_RISCV = 5 // Set GOT entry to code address. R_RISCV_TLS_DTPMOD32 R_RISCV = 6 // 32 bit ID of module containing symbol R_RISCV_TLS_DTPMOD64 R_RISCV = 7 // ID of module containing symbol R_RISCV_TLS_DTPREL32 R_RISCV = 8 // 32 bit relative offset in TLS block R_RISCV_TLS_DTPREL64 R_RISCV = 9 // Relative offset in TLS block R_RISCV_TLS_TPREL32 R_RISCV = 10 // 32 bit relative offset in static TLS block R_RISCV_TLS_TPREL64 R_RISCV = 11 // Relative offset in static TLS block R_RISCV_BRANCH R_RISCV = 16 // PC-relative branch R_RISCV_JAL R_RISCV = 17 // PC-relative jump R_RISCV_CALL R_RISCV = 18 // PC-relative call R_RISCV_CALL_PLT R_RISCV = 19 // PC-relative call (PLT) R_RISCV_GOT_HI20 R_RISCV = 20 // PC-relative GOT reference R_RISCV_TLS_GOT_HI20 R_RISCV = 21 // PC-relative TLS IE GOT offset R_RISCV_TLS_GD_HI20 R_RISCV = 22 // PC-relative TLS GD reference R_RISCV_PCREL_HI20 R_RISCV = 23 // PC-relative reference R_RISCV_PCREL_LO12_I R_RISCV = 24 // PC-relative reference R_RISCV_PCREL_LO12_S R_RISCV = 25 // PC-relative reference R_RISCV_HI20 R_RISCV = 26 // Absolute address R_RISCV_LO12_I R_RISCV = 27 // Absolute address R_RISCV_LO12_S R_RISCV = 28 // Absolute address R_RISCV_TPREL_HI20 R_RISCV = 29 // TLS LE thread offset R_RISCV_TPREL_LO12_I R_RISCV = 30 // TLS LE thread offset R_RISCV_TPREL_LO12_S R_RISCV = 31 // TLS LE thread offset R_RISCV_TPREL_ADD R_RISCV = 32 // TLS LE thread usage R_RISCV_ADD8 R_RISCV = 33 // 8-bit label addition R_RISCV_ADD16 R_RISCV = 34 // 16-bit label addition R_RISCV_ADD32 R_RISCV = 35 // 32-bit label addition R_RISCV_ADD64 R_RISCV = 36 // 64-bit label addition R_RISCV_SUB8 R_RISCV = 37 // 8-bit label subtraction R_RISCV_SUB16 R_RISCV = 38 // 16-bit label subtraction R_RISCV_SUB32 R_RISCV = 39 // 32-bit label subtraction R_RISCV_SUB64 R_RISCV = 40 // 64-bit label subtraction R_RISCV_GNU_VTINHERIT R_RISCV = 41 // GNU C++ vtable hierarchy R_RISCV_GNU_VTENTRY R_RISCV = 42 // GNU C++ vtable member usage R_RISCV_ALIGN R_RISCV = 43 // Alignment statement R_RISCV_RVC_BRANCH R_RISCV = 44 // PC-relative branch offset R_RISCV_RVC_JUMP R_RISCV = 45 // PC-relative jump offset R_RISCV_RVC_LUI R_RISCV = 46 // Absolute address R_RISCV_GPREL_I R_RISCV = 47 // GP-relative reference R_RISCV_GPREL_S R_RISCV = 48 // GP-relative reference R_RISCV_TPREL_I R_RISCV = 49 // TP-relative TLS LE load R_RISCV_TPREL_S R_RISCV = 50 // TP-relative TLS LE store R_RISCV_RELAX R_RISCV = 51 // Instruction pair can be relaxed R_RISCV_SUB6 R_RISCV = 52 // Local label subtraction R_RISCV_SET6 R_RISCV = 53 // Local label subtraction R_RISCV_SET8 R_RISCV = 54 // Local label subtraction R_RISCV_SET16 R_RISCV = 55 // Local label subtraction R_RISCV_SET32 R_RISCV = 56 // Local label subtraction R_RISCV_32_PCREL R_RISCV = 57 // 32-bit PC relative )
type R_SPARC ¶
type R_SPARC int
Relocation types for SPARC.
const ( R_SPARC_NONE R_SPARC = 0 R_SPARC_8 R_SPARC = 1 R_SPARC_16 R_SPARC = 2 R_SPARC_32 R_SPARC = 3 R_SPARC_DISP8 R_SPARC = 4 R_SPARC_DISP16 R_SPARC = 5 R_SPARC_DISP32 R_SPARC = 6 R_SPARC_WDISP30 R_SPARC = 7 R_SPARC_WDISP22 R_SPARC = 8 R_SPARC_HI22 R_SPARC = 9 R_SPARC_22 R_SPARC = 10 R_SPARC_13 R_SPARC = 11 R_SPARC_LO10 R_SPARC = 12 R_SPARC_GOT10 R_SPARC = 13 R_SPARC_GOT13 R_SPARC = 14 R_SPARC_GOT22 R_SPARC = 15 R_SPARC_PC10 R_SPARC = 16 R_SPARC_PC22 R_SPARC = 17 R_SPARC_WPLT30 R_SPARC = 18 R_SPARC_COPY R_SPARC = 19 R_SPARC_GLOB_DAT R_SPARC = 20 R_SPARC_JMP_SLOT R_SPARC = 21 R_SPARC_RELATIVE R_SPARC = 22 R_SPARC_UA32 R_SPARC = 23 R_SPARC_PLT32 R_SPARC = 24 R_SPARC_HIPLT22 R_SPARC = 25 R_SPARC_LOPLT10 R_SPARC = 26 R_SPARC_PCPLT32 R_SPARC = 27 R_SPARC_PCPLT22 R_SPARC = 28 R_SPARC_PCPLT10 R_SPARC = 29 R_SPARC_10 R_SPARC = 30 R_SPARC_11 R_SPARC = 31 R_SPARC_64 R_SPARC = 32 R_SPARC_OLO10 R_SPARC = 33 R_SPARC_HH22 R_SPARC = 34 R_SPARC_HM10 R_SPARC = 35 R_SPARC_LM22 R_SPARC = 36 R_SPARC_PC_HH22 R_SPARC = 37 R_SPARC_PC_HM10 R_SPARC = 38 R_SPARC_PC_LM22 R_SPARC = 39 R_SPARC_WDISP16 R_SPARC = 40 R_SPARC_WDISP19 R_SPARC = 41 R_SPARC_GLOB_JMP R_SPARC = 42 R_SPARC_7 R_SPARC = 43 R_SPARC_5 R_SPARC = 44 R_SPARC_6 R_SPARC = 45 R_SPARC_DISP64 R_SPARC = 46 R_SPARC_PLT64 R_SPARC = 47 R_SPARC_HIX22 R_SPARC = 48 R_SPARC_LOX10 R_SPARC = 49 R_SPARC_H44 R_SPARC = 50 R_SPARC_M44 R_SPARC = 51 R_SPARC_L44 R_SPARC = 52 R_SPARC_REGISTER R_SPARC = 53 R_SPARC_UA64 R_SPARC = 54 R_SPARC_UA16 R_SPARC = 55 )
type R_X86_64 ¶
type R_X86_64 int
Relocation types for x86-64.
const ( R_X86_64_NONE R_X86_64 = 0 // No relocation. R_X86_64_64 R_X86_64 = 1 // Add 64 bit symbol value. R_X86_64_PC32 R_X86_64 = 2 // PC-relative 32 bit signed sym value. R_X86_64_GOT32 R_X86_64 = 3 // PC-relative 32 bit GOT offset. R_X86_64_PLT32 R_X86_64 = 4 // PC-relative 32 bit PLT offset. R_X86_64_COPY R_X86_64 = 5 // Copy data from shared object. R_X86_64_GLOB_DAT R_X86_64 = 6 // Set GOT entry to data address. R_X86_64_JMP_SLOT R_X86_64 = 7 // Set GOT entry to code address. R_X86_64_RELATIVE R_X86_64 = 8 // Add load address of shared object. R_X86_64_GOTPCREL R_X86_64 = 9 // Add 32 bit signed pcrel offset to GOT. R_X86_64_32 R_X86_64 = 10 // Add 32 bit zero extended symbol value R_X86_64_32S R_X86_64 = 11 // Add 32 bit sign extended symbol value R_X86_64_16 R_X86_64 = 12 // Add 16 bit zero extended symbol value R_X86_64_PC16 R_X86_64 = 13 // Add 16 bit signed extended pc relative symbol value R_X86_64_8 R_X86_64 = 14 // Add 8 bit zero extended symbol value R_X86_64_PC8 R_X86_64 = 15 // Add 8 bit signed extended pc relative symbol value R_X86_64_DTPMOD64 R_X86_64 = 16 // ID of module containing symbol R_X86_64_DTPOFF64 R_X86_64 = 17 // Offset in TLS block R_X86_64_TPOFF64 R_X86_64 = 18 // Offset in static TLS block R_X86_64_TLSGD R_X86_64 = 19 // PC relative offset to GD GOT entry R_X86_64_TLSLD R_X86_64 = 20 // PC relative offset to LD GOT entry R_X86_64_DTPOFF32 R_X86_64 = 21 // Offset in TLS block R_X86_64_GOTTPOFF R_X86_64 = 22 // PC relative offset to IE GOT entry R_X86_64_TPOFF32 R_X86_64 = 23 // Offset in static TLS block R_X86_64_PC64 R_X86_64 = 24 // PC relative 64-bit sign extended symbol value. R_X86_64_GOTOFF64 R_X86_64 = 25 R_X86_64_GOTPC32 R_X86_64 = 26 R_X86_64_GOT64 R_X86_64 = 27 R_X86_64_GOTPCREL64 R_X86_64 = 28 R_X86_64_GOTPC64 R_X86_64 = 29 R_X86_64_GOTPLT64 R_X86_64 = 30 R_X86_64_PLTOFF64 R_X86_64 = 31 R_X86_64_SIZE32 R_X86_64 = 32 R_X86_64_SIZE64 R_X86_64 = 33 R_X86_64_GOTPC32_TLSDESC R_X86_64 = 34 R_X86_64_TLSDESC_CALL R_X86_64 = 35 R_X86_64_TLSDESC R_X86_64 = 36 R_X86_64_IRELATIVE R_X86_64 = 37 R_X86_64_RELATIVE64 R_X86_64 = 38 R_X86_64_PC32_BND R_X86_64 = 39 R_X86_64_PLT32_BND R_X86_64 = 40 R_X86_64_GOTPCRELX R_X86_64 = 41 R_X86_64_REX_GOTPCRELX R_X86_64 = 42 )
type Rel32 ¶
type Rel32 struct { Off uint32 // Location to be relocated. Info uint32 // Relocation type and symbol index. }
ELF32 Relocations that don't need an addend field.
type Rel64 ¶
type Rel64 struct { Off uint64 // Location to be relocated. Info uint64 // Relocation type and symbol index. }
ELF64 relocations that don't need an addend field.
type Rela32 ¶
type Rela32 struct { Off uint32 // Location to be relocated. Info uint32 // Relocation type and symbol index. Addend int32 // Addend. }
ELF32 Relocations that need an addend field.
type Rela64 ¶
type Rela64 struct { Off uint64 // Location to be relocated. Info uint64 // Relocation type and symbol index. Addend int64 // Addend. }
ELF64 relocations that need an addend field.
type SectionFlag ¶
type SectionFlag uint32
Section flags.
const ( SHF_NONE SectionFlag = 0x0 // Undefined section flag SHF_WRITE SectionFlag = 0x1 // Section contains writable data. SHF_ALLOC SectionFlag = 0x2 // Section occupies memory. SHF_EXECINSTR SectionFlag = 0x4 // Section contains instructions. SHF_MERGE SectionFlag = 0x10 // Section may be merged. SHF_STRINGS SectionFlag = 0x20 // Section contains strings. SHF_INFO_LINK SectionFlag = 0x40 // sh_info holds section index. SHF_LINK_ORDER SectionFlag = 0x80 // Special ordering requirements. SHF_OS_NONCONFORMING SectionFlag = 0x100 // OS-specific processing required. SHF_GROUP SectionFlag = 0x200 // Member of section group. SHF_TLS SectionFlag = 0x400 // Section contains TLS data. SHF_COMPRESSED SectionFlag = 0x800 // Section is compressed. SHF_MASKOS SectionFlag = 0x0ff00000 // OS-specific semantics. SHF_MASKPROC SectionFlag = 0xf0000000 // Processor-specific semantics. )
func (SectionFlag) GoString ¶
func (sf SectionFlag) GoString() string
func (SectionFlag) String ¶
func (sf SectionFlag) String() string
type SectionIndex ¶
type SectionIndex int
Special section indices.
const ( SHN_UNDEF SectionIndex = 0 // Undefined, missing, irrelevant. SHN_LORESERVE SectionIndex = 0xff00 // First of reserved range. SHN_LOPROC SectionIndex = 0xff00 // First processor-specific. SHN_HIPROC SectionIndex = 0xff1f // Last processor-specific. SHN_LOOS SectionIndex = 0xff20 // First operating system-specific. SHN_HIOS SectionIndex = 0xff3f // Last operating system-specific. SHN_ABS SectionIndex = 0xfff1 // Absolute values. SHN_COMMON SectionIndex = 0xfff2 // Common data. SHN_XINDEX SectionIndex = 0xffff // Escape; index stored elsewhere. SHN_HIRESERVE SectionIndex = 0xffff // Last of reserved range. )
func (SectionIndex) GoString ¶
func (si SectionIndex) GoString() string
func (SectionIndex) String ¶
func (si SectionIndex) String() string
type SectionType ¶
type SectionType uint32
Section type.
const ( SHT_NULL SectionType = 0 // inactive SHT_PROGBITS SectionType = 1 // program defined information SHT_SYMTAB SectionType = 2 // symbol table section SHT_STRTAB SectionType = 3 // string table section SHT_RELA SectionType = 4 // relocation section with addends SHT_HASH SectionType = 5 // symbol hash table section SHT_DYNAMIC SectionType = 6 // dynamic section SHT_NOTE SectionType = 7 // note section SHT_NOBITS SectionType = 8 // no space section SHT_REL SectionType = 9 // relocation section - no addends SHT_SHLIB SectionType = 10 // reserved - purpose unknown SHT_DYNSYM SectionType = 11 // dynamic symbol table section SHT_INIT_ARRAY SectionType = 14 // Initialization function pointers. SHT_FINI_ARRAY SectionType = 15 // Termination function pointers. SHT_PREINIT_ARRAY SectionType = 16 // Pre-initialization function ptrs. SHT_GROUP SectionType = 17 // Section group. SHT_SYMTAB_SHNDX SectionType = 18 // Section indexes (see SHN_XINDEX). SHT_LOOS SectionType = 0x60000000 // First of OS specific semantics SHT_GNU_ATTRIBUTES SectionType = 0x6ffffff5 // GNU object attributes SHT_GNU_HASH SectionType = 0x6ffffff6 // GNU hash table SHT_GNU_LIBLIST SectionType = 0x6ffffff7 // GNU prelink library list SHT_GNU_VERDEF SectionType = 0x6ffffffd // GNU version definition section SHT_GNU_VERNEED SectionType = 0x6ffffffe // GNU version needs section SHT_GNU_VERSYM SectionType = 0x6fffffff // GNU version symbol table SHT_HIOS SectionType = 0x6fffffff // Last of OS specific semantics SHT_LOPROC SectionType = 0x70000000 // reserved range for processor SHT_HIPROC SectionType = 0x7fffffff // specific section header types SHT_LOUSER SectionType = 0x80000000 // reserved range for application SHT_HIUSER SectionType = 0xffffffff // specific indexes )
func (SectionType) GoString ¶
func (st SectionType) GoString() string
func (SectionType) String ¶
func (st SectionType) String() string
type SymBind ¶
type SymBind int
Symbol Binding - ELFNN_ST_BIND - st_info
const ( STB_LOCAL SymBind = 0 /* Local symbol */ STB_GLOBAL SymBind = 1 /* Global symbol */ STB_WEAK SymBind = 2 /* like global - lower precedence */ STB_LOOS SymBind = 10 /* Reserved range for operating system */ STB_HIOS SymBind = 12 /* specific semantics. */ STB_LOPROC SymBind = 13 /* reserved range for processor */ STB_HIPROC SymBind = 15 /* specific semantics. */ )
type SymType ¶
type SymType int
Symbol type - ELFNN_ST_TYPE - st_info
const ( STT_NOTYPE SymType = 0 /* Unspecified type. */ STT_OBJECT SymType = 1 /* Data object. */ STT_FUNC SymType = 2 /* Function. */ STT_SECTION SymType = 3 /* Section. */ STT_FILE SymType = 4 /* Source file. */ STT_COMMON SymType = 5 /* Uninitialized common block. */ STT_TLS SymType = 6 /* TLS object. */ STT_LOOS SymType = 10 /* Reserved range for operating system */ STT_HIOS SymType = 12 /* specific semantics. */ STT_LOPROC SymType = 13 /* reserved range for processor */ STT_HIPROC SymType = 15 /* specific semantics. */ )
type SymVis ¶
type SymVis int
Symbol visibility - ELFNN_ST_VISIBILITY - st_other
func ST_VISIBILITY ¶ added in v0.2.0
type Symbol ¶ added in v0.2.0
type Symbol struct { Name string `json:"symbol_name"` Info byte `json:"symbol_info"` Other byte `json:"symbol_other"` Index SectionIndex `json:"symbol_index"` Value uint64 `json:"symbol_value"` Size uint64 `json:"symbol_size"` // Version and Library are present only for the dynamic symbol // table. Version string `json:"symbol_version"` Library string `json:"symbol_library"` }
A Symbol represents an entry in an ELF symbol table section.
type Type ¶
type Type uint16
Type specifies the current binary type (Relocatable object file or Executable binary...)
const ( ET_NONE Type = 0 // Unknown type. ET_REL Type = 1 // Relocatable. ET_EXEC Type = 2 // Executable. ET_DYN Type = 3 // Shared object. ET_CORE Type = 4 // Core file. ET_LOOS Type = 0xfe00 // First operating system specific. ET_HIOS Type = 0xfeff // Last operating system-specific. ET_LOPROC Type = 0xff00 // First processor-specific. ET_HIPROC Type = 0xffff // Last processor-specific. )