Documentation ¶
Overview ¶
Package xmath provides math-related utilities.
Index ¶
- Constants
- func Abs[T Numeric](x T) T
- func Acos[T constraints.Float](x T) T
- func Acosh[T constraints.Float](x T) T
- func Asin[T constraints.Float](x T) T
- func Asinh[T constraints.Float](x T) T
- func Atan[T constraints.Float](x T) T
- func Atan2[T constraints.Float](y, x T) T
- func Atanh[T constraints.Float](x T) T
- func Cbrt[T constraints.Float](x T) T
- func Ceil[T Numeric](x T) T
- func Copysign[T constraints.Float](x, y T) T
- func Cos[T constraints.Float](x T) T
- func Cosh[T constraints.Float](x T) T
- func Dim[T constraints.Float](x, y T) T
- func EqualWithin[T Numeric](a, b, tolerance T) bool
- func Erf[T constraints.Float](x T) T
- func Erfc[T constraints.Float](x T) T
- func Erfcinv[T constraints.Float](x T) T
- func Erfinv[T constraints.Float](x T) T
- func Exp[T constraints.Float](x T) T
- func Exp2[T constraints.Float](x T) T
- func Expm1[T constraints.Float](x T) T
- func FMA[T constraints.Float](x, y, z T) T
- func Floor[T Numeric](x T) T
- func Frexp[T constraints.Float](f T) (frac T, exp int)
- func Gamma[T constraints.Float](x T) T
- func Hypot[T constraints.Float](p, q T) T
- func Ilogb[T constraints.Float](x T) int
- func Inf[T constraints.Float](sign int) T
- func IsInf[T constraints.Float](f T, sign int) bool
- func IsNaN[T constraints.Float](f T) bool
- func J0[T constraints.Float](x T) T
- func J1[T constraints.Float](x T) T
- func Jn[T constraints.Float](n int, x T) T
- func Ldexp[T constraints.Float](frac T, exp int) T
- func Lgamma[T constraints.Float](x T) (lgamma T, sign int)
- func Log[T constraints.Float](x T) T
- func Log10[T constraints.Float](x T) T
- func Log1p[T constraints.Float](x T) T
- func Log2[T constraints.Float](x T) T
- func Logb[T constraints.Float](x T) T
- func MaxValue[T Numeric]() T
- func MinValue[T Numeric]() T
- func Mod[T constraints.Float](x, y T) T
- func Modf[T constraints.Float](f T) (i, frac T)
- func NaN[T constraints.Float]() T
- func Nextafter[T constraints.Float](x, y T) (r T)
- func Pow[T constraints.Float](x, y T) T
- func Pow10[T constraints.Float](n int) T
- func Remainder[T constraints.Float](x, y T) T
- func Round[T constraints.Float](x T) T
- func RoundToEven[T constraints.Float](x T) T
- func Signbit[T constraints.Float](x T) bool
- func Sin[T constraints.Float](x T) T
- func Sincos[T constraints.Float](x T) (sin, cos T)
- func Sinh[T constraints.Float](x T) T
- func SmallestPositiveNonZeroValue[T Numeric]() T
- func Sqrt[T constraints.Float](x T) T
- func Tan[T constraints.Float](x T) T
- func Tanh[T constraints.Float](x T) T
- func Trunc[T constraints.Float](x T) T
- func Y0[T constraints.Float](x T) T
- func Y1[T constraints.Float](x T) T
- func Yn[T constraints.Float](n int, x T) T
- type BitSet
- func (b *BitSet) Clear(index int)
- func (b *BitSet) ClearRange(start, end int)
- func (b *BitSet) Clone() *BitSet
- func (b *BitSet) Copy(other *BitSet)
- func (b *BitSet) Count() int
- func (b *BitSet) Data() []uint64
- func (b *BitSet) EnsureCapacity(words int)
- func (b *BitSet) Equal(other *BitSet) bool
- func (b *BitSet) FirstSet() int
- func (b *BitSet) Flip(index int)
- func (b *BitSet) FlipRange(start, end int)
- func (b *BitSet) LastSet() int
- func (b *BitSet) Load(data []uint64)
- func (b *BitSet) NextClear(start int) int
- func (b *BitSet) NextSet(start int) int
- func (b *BitSet) PreviousClear(start int) int
- func (b *BitSet) PreviousSet(start int) int
- func (b *BitSet) Reset()
- func (b *BitSet) Set(index int)
- func (b *BitSet) SetRange(start, end int)
- func (b *BitSet) State(index int) bool
- func (b *BitSet) Trim()
- type Numeric
Constants ¶
const ( E = math.E Pi = math.Pi Phi = math.Phi Sqrt2 = math.Sqrt2 SqrtE = math.SqrtE SqrtPi = math.SqrtPi SqrtPhi = math.SqrtPhi Ln2 = math.Ln2 Log2E = 1 / Ln2 Ln10 = math.Ln10 Log10E = 1 / Ln10 )
Mathematical constants. Mostly just re-exported from the math package for convenience.
const ( MaxFloat32 = math.MaxFloat32 SmallestNonzeroFloat32 = math.SmallestNonzeroFloat32 MaxFloat64 = math.MaxFloat64 SmallestNonzeroFloat64 = math.SmallestNonzeroFloat64 )
Floating-point limit values. Mostly just re-exported from the math package for convenience. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type.
const ( MaxInt = math.MaxInt MinInt = math.MinInt MaxInt8 = math.MaxInt8 MinInt8 = math.MinInt8 MaxInt16 = math.MaxInt16 MinInt16 = math.MinInt16 MaxInt32 = math.MaxInt32 MinInt32 = math.MinInt32 MaxInt64 = math.MaxInt64 MinInt64 = math.MinInt64 MaxUint = math.MaxUint MaxUint8 = math.MaxUint8 MaxUint16 = math.MaxUint16 MaxUint32 = math.MaxUint32 MaxUint64 = math.MaxUint64 )
Integer limit values. Mostly just re-exported from the math package for convenience.
const ( // DegreesToRadians converts a value in degrees to radians when multiplied with the value. DegreesToRadians = math.Pi / 180 // RadiansToDegrees converts a value in radians to degrees when multiplied with the value. RadiansToDegrees = 180 / math.Pi )
Variables ¶
This section is empty.
Functions ¶
func Abs ¶ added in v1.66.0
func Abs[T Numeric](x T) T
Abs returns the absolute value of x.
Special cases are:
Abs(±Inf) = +Inf Abs(NaN) = NaN
func Acosh ¶ added in v1.66.0
func Acosh[T constraints.Float](x T) T
Acosh returns the inverse hyperbolic cosine of x.
Special cases are:
Acosh(+Inf) = +Inf Acosh(x) = NaN if x < 1 Acosh(NaN) = NaN
func Asin ¶ added in v1.66.0
func Asin[T constraints.Float](x T) T
Asin returns the arcsine, in radians, of x.
Special cases are:
Asin(±0) = ±0 Asin(x) = NaN if x < -1 or x > 1
func Asinh ¶ added in v1.66.0
func Asinh[T constraints.Float](x T) T
Asinh returns the inverse hyperbolic sine of x.
Special cases are:
Asinh(±0) = ±0 Asinh(±Inf) = ±Inf Asinh(NaN) = NaN
func Atan ¶ added in v1.66.0
func Atan[T constraints.Float](x T) T
Atan returns the arctangent, in radians, of x.
Special cases are:
Atan(±0) = ±0 Atan(±Inf) = ±Pi/2
func Atan2 ¶ added in v1.66.0
func Atan2[T constraints.Float](y, x T) T
Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.
Special cases are (in order):
Atan2(y, NaN) = NaN Atan2(NaN, x) = NaN Atan2(+0, x>=0) = +0 Atan2(-0, x>=0) = -0 Atan2(+0, x<=-0) = +Pi Atan2(-0, x<=-0) = -Pi Atan2(y>0, 0) = +Pi/2 Atan2(y<0, 0) = -Pi/2 Atan2(+Inf, +Inf) = +Pi/4 Atan2(-Inf, +Inf) = -Pi/4 Atan2(+Inf, -Inf) = 3Pi/4 Atan2(-Inf, -Inf) = -3Pi/4 Atan2(y, +Inf) = 0 Atan2(y>0, -Inf) = +Pi Atan2(y<0, -Inf) = -Pi Atan2(+Inf, x) = +Pi/2 Atan2(-Inf, x) = -Pi/2
func Atanh ¶ added in v1.66.0
func Atanh[T constraints.Float](x T) T
Atanh returns the inverse hyperbolic tangent of x.
Special cases are:
Atanh(1) = +Inf Atanh(±0) = ±0 Atanh(-1) = -Inf Atanh(x) = NaN if x < -1 or x > 1 Atanh(NaN) = NaN
func Ceil ¶ added in v1.66.0
func Ceil[T Numeric](x T) T
Ceil returns the smallest integer value greater than or equal to x.
func Copysign ¶ added in v1.66.0
func Copysign[T constraints.Float](x, y T) T
Copysign returns a value with the magnitude of x and the sign of y.
func Cos ¶ added in v1.66.0
func Cos[T constraints.Float](x T) T
Cos returns the cosine of the radian argument x.
Special cases are:
Cos(±Inf) = NaN Cos(NaN) = NaN
func Cosh ¶ added in v1.66.0
func Cosh[T constraints.Float](x T) T
Cosh returns the hyperbolic cosine of x.
Special cases are:
Cosh(±0) = 1 Cosh(±Inf) = +Inf Cosh(NaN) = NaN
func Dim ¶ added in v1.66.0
func Dim[T constraints.Float](x, y T) T
Dim returns the maximum of x-y or 0.
Special cases are:
Dim(+Inf, +Inf) = NaN Dim(-Inf, -Inf) = NaN Dim(x, NaN) = Dim(NaN, x) = NaN
func EqualWithin ¶ added in v1.89.0
EqualWithin returns true if a and b are within the given tolerance of each other.
func Erf ¶ added in v1.66.0
func Erf[T constraints.Float](x T) T
Erf returns the error function of x.
Special cases are:
Erf(+Inf) = 1 Erf(-Inf) = -1 Erf(NaN) = NaN
func Erfc ¶ added in v1.66.0
func Erfc[T constraints.Float](x T) T
Erfc returns the complementary error function of x.
Special cases are:
Erfc(+Inf) = 0 Erfc(-Inf) = 2 Erfc(NaN) = NaN
func Erfcinv ¶ added in v1.66.0
func Erfcinv[T constraints.Float](x T) T
Erfcinv returns the inverse of Erfc(x).
Special cases are:
Erfcinv(0) = +Inf Erfcinv(2) = -Inf Erfcinv(x) = NaN if x < 0 or x > 2 Erfcinv(NaN) = NaN
func Erfinv ¶ added in v1.66.0
func Erfinv[T constraints.Float](x T) T
Erfinv returns the inverse error function of x.
Special cases are:
Erfinv(1) = +Inf Erfinv(-1) = -Inf Erfinv(x) = NaN if x < -1 or x > 1 Erfinv(NaN) = NaN
func Exp ¶ added in v1.66.0
func Exp[T constraints.Float](x T) T
Exp returns e**x, the base-e exponential of x.
Special cases are:
Exp(+Inf) = +Inf Exp(NaN) = NaN
Very large values overflow to 0 or +Inf. Very small values underflow to 1.
func Exp2 ¶ added in v1.66.0
func Exp2[T constraints.Float](x T) T
Exp2 returns 2**x, the base-2 exponential of x.
Special cases are the same as Exp.
func Expm1 ¶ added in v1.66.0
func Expm1[T constraints.Float](x T) T
Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero.
Special cases are:
Expm1(+Inf) = +Inf Expm1(-Inf) = -1 Expm1(NaN) = NaN
Very large values overflow to -1 or +Inf.
func FMA ¶ added in v1.66.0
func FMA[T constraints.Float](x, y, z T) T
FMA returns x * y + z, computed with only one rounding. (That is, FMA returns the fused multiply-add of x, y, and z.)
func Floor ¶ added in v1.66.0
func Floor[T Numeric](x T) T
Floor returns the greatest integer value less than or equal to x.
func Frexp ¶ added in v1.66.0
func Frexp[T constraints.Float](f T) (frac T, exp int)
Frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1).
Special cases are:
Frexp(±0) = ±0, 0 Frexp(±Inf) = ±Inf, 0 Frexp(NaN) = NaN, 0
func Gamma ¶ added in v1.66.0
func Gamma[T constraints.Float](x T) T
Gamma returns the Gamma function of x.
Special cases are:
Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN
func Hypot ¶ added in v1.66.0
func Hypot[T constraints.Float](p, q T) T
Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow.
Special cases are:
Hypot(±Inf, q) = +Inf Hypot(p, ±Inf) = +Inf Hypot(NaN, q) = NaN Hypot(p, NaN) = NaN
func Ilogb ¶ added in v1.66.0
func Ilogb[T constraints.Float](x T) int
Ilogb returns the binary exponent of x as an integer.
Special cases are:
Ilogb(±Inf) = MaxInt32 Ilogb(0) = MinInt32 Ilogb(NaN) = MaxInt32
func Inf ¶ added in v1.66.0
func Inf[T constraints.Float](sign int) T
Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
func IsInf ¶ added in v1.66.0
func IsInf[T constraints.Float](f T, sign int) bool
IsInf reports whether f is an infinity, according to sign. If sign > 0, IsInf reports whether f is positive infinity. If sign < 0, IsInf reports whether f is negative infinity. If sign == 0, IsInf reports whether f is either infinity.
func IsNaN ¶ added in v1.66.0
func IsNaN[T constraints.Float](f T) bool
IsNaN reports whether f is a "not-a-number" value.
func J0 ¶ added in v1.66.0
func J0[T constraints.Float](x T) T
J0 returns the order-zero Bessel function of the first kind.
Special cases are:
J0(±Inf) = 0 J0(0) = 1 J0(NaN) = NaN
func J1 ¶ added in v1.66.0
func J1[T constraints.Float](x T) T
J1 returns the order-one Bessel function of the first kind.
Special cases are:
J1(±Inf) = 0 J1(NaN) = NaN
func Jn ¶ added in v1.66.0
func Jn[T constraints.Float](n int, x T) T
Jn returns the order-n Bessel function of the first kind.
Special cases are:
Jn(n, ±Inf) = 0 Jn(n, NaN) = NaN
func Ldexp ¶ added in v1.66.0
func Ldexp[T constraints.Float](frac T, exp int) T
Ldexp is the inverse of Frexp. It returns frac × 2**exp.
Special cases are:
Ldexp(±0, exp) = ±0 Ldexp(±Inf, exp) = ±Inf Ldexp(NaN, exp) = NaN
func Lgamma ¶ added in v1.66.0
func Lgamma[T constraints.Float](x T) (lgamma T, sign int)
Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
Special cases are:
Lgamma(+Inf) = +Inf Lgamma(0) = +Inf Lgamma(-integer) = +Inf Lgamma(-Inf) = -Inf Lgamma(NaN) = NaN
func Log ¶ added in v1.66.0
func Log[T constraints.Float](x T) T
Log returns the natural logarithm of x.
Special cases are:
Log(+Inf) = +Inf Log(0) = -Inf Log(x < 0) = NaN Log(NaN) = NaN
func Log10 ¶ added in v1.66.0
func Log10[T constraints.Float](x T) T
Log10 returns the decimal logarithm of x. The special cases are the same as for Log.
func Log1p ¶ added in v1.66.0
func Log1p[T constraints.Float](x T) T
Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero.
Special cases are:
Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN
func Log2 ¶ added in v1.66.0
func Log2[T constraints.Float](x T) T
Log2 returns the binary logarithm of x. The special cases are the same as for Log.
func Logb ¶ added in v1.66.0
func Logb[T constraints.Float](x T) T
Logb returns the binary exponent of x.
Special cases are:
Logb(±Inf) = +Inf Logb(0) = -Inf Logb(NaN) = NaN
func MaxValue ¶ added in v1.66.0
func MaxValue[T Numeric]() T
MaxValue returns the maximum value for the type.
func MinValue ¶ added in v1.66.0
func MinValue[T Numeric]() T
MinValue returns the minimum value for the type.
func Mod ¶ added in v1.66.0
func Mod[T constraints.Float](x, y T) T
Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.
Special cases are:
Mod(±Inf, y) = NaN Mod(NaN, y) = NaN Mod(x, 0) = NaN Mod(x, ±Inf) = x Mod(x, NaN) = NaN
func Modf ¶ added in v1.66.0
func Modf[T constraints.Float](f T) (i, frac T)
Modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f.
Special cases are:
Modf(±Inf) = ±Inf, NaN Modf(NaN) = NaN, NaN
func Nextafter ¶ added in v1.66.0
func Nextafter[T constraints.Float](x, y T) (r T)
Nextafter returns the next representable float32 value after x towards y.
Special cases are:
Nextafter(x, x) = x Nextafter(NaN, y) = NaN Nextafter(x, NaN) = NaN
func Pow ¶ added in v1.66.0
func Pow[T constraints.Float](x, y T) T
Pow returns x**y, the base-x exponential of y.
Special cases are (in order):
Pow(x, ±0) = 1 for any x Pow(1, y) = 1 for any y Pow(x, 1) = x for any x Pow(NaN, y) = NaN Pow(x, NaN) = NaN Pow(±0, y) = ±Inf for y an odd integer < 0 Pow(±0, -Inf) = +Inf Pow(±0, +Inf) = +0 Pow(±0, y) = +Inf for finite y < 0 and not an odd integer Pow(±0, y) = ±0 for y an odd integer > 0 Pow(±0, y) = +0 for finite y > 0 and not an odd integer Pow(-1, ±Inf) = 1 Pow(x, +Inf) = +Inf for |x| > 1 Pow(x, -Inf) = +0 for |x| > 1 Pow(x, +Inf) = +0 for |x| < 1 Pow(x, -Inf) = +Inf for |x| < 1 Pow(+Inf, y) = +Inf for y > 0 Pow(+Inf, y) = +0 for y < 0 Pow(-Inf, y) = Pow(-0, -y) Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow10 ¶ added in v1.66.0
func Pow10[T constraints.Float](n int) T
Pow10 returns 10**n, the base-10 exponential of n.
Special cases are:
Pow10(n) = 0 for n < -323 Pow10(n) = +Inf for n > 308
func Remainder ¶ added in v1.66.0
func Remainder[T constraints.Float](x, y T) T
Remainder returns the IEEE 754 floating-point remainder of x/y.
Special cases are:
Remainder(±Inf, y) = NaN Remainder(NaN, y) = NaN Remainder(x, 0) = NaN Remainder(x, ±Inf) = x Remainder(x, NaN) = NaN
func Round ¶
func Round[T constraints.Float](x T) T
Round returns the nearest integer, rounding half away from zero.
Special cases are:
Round(±0) = ±0 Round(±Inf) = ±Inf Round(NaN) = NaN
func RoundToEven ¶ added in v1.66.0
func RoundToEven[T constraints.Float](x T) T
RoundToEven returns the nearest integer, rounding ties to even.
Special cases are:
RoundToEven(±0) = ±0 RoundToEven(±Inf) = ±Inf RoundToEven(NaN) = NaN
func Signbit ¶ added in v1.66.0
func Signbit[T constraints.Float](x T) bool
Signbit reports whether x is negative or negative zero.
func Sin ¶ added in v1.66.0
func Sin[T constraints.Float](x T) T
Sin returns the sine of the radian argument x.
Special cases are:
Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN
func Sincos ¶ added in v1.66.0
func Sincos[T constraints.Float](x T) (sin, cos T)
Sincos returns Sin(x), Cos(x).
Special cases are:
Sincos(±0) = ±0, 1 Sincos(±Inf) = NaN, NaN Sincos(NaN) = NaN, NaN
func Sinh ¶ added in v1.66.0
func Sinh[T constraints.Float](x T) T
Sinh returns the hyperbolic sine of x.
Special cases are:
Sinh(±0) = ±0 Sinh(±Inf) = ±Inf Sinh(NaN) = NaN
func SmallestPositiveNonZeroValue ¶ added in v1.89.0
func SmallestPositiveNonZeroValue[T Numeric]() T
SmallestPositiveNonZeroValue returns the smallest, positive, non-zero value for the type.
func Sqrt ¶ added in v1.66.0
func Sqrt[T constraints.Float](x T) T
Sqrt returns the square root of x.
Special cases are:
Sqrt(+Inf) = +Inf Sqrt(±0) = ±0 Sqrt(x < 0) = NaN Sqrt(NaN) = NaN
func Tan ¶ added in v1.66.0
func Tan[T constraints.Float](x T) T
Tan returns the tangent of the radian argument x.
Special cases are:
Tan(±0) = ±0 Tan(±Inf) = NaN Tan(NaN) = NaN
func Tanh ¶ added in v1.66.0
func Tanh[T constraints.Float](x T) T
Tanh returns the hyperbolic tangent of x.
Special cases are:
Tanh(±0) = ±0 Tanh(±Inf) = ±1 Tanh(NaN) = NaN
func Trunc ¶ added in v1.66.0
func Trunc[T constraints.Float](x T) T
Trunc returns the integer value of x.
Special cases are:
Trunc(±0) = ±0 Trunc(±Inf) = ±Inf Trunc(NaN) = NaN
func Y0 ¶ added in v1.66.0
func Y0[T constraints.Float](x T) T
Y0 returns the order-zero Bessel function of the second kind.
Special cases are:
Y0(+Inf) = 0 Y0(0) = -Inf Y0(x < 0) = NaN Y0(NaN) = NaN
func Y1 ¶ added in v1.66.0
func Y1[T constraints.Float](x T) T
Y1 returns the order-one Bessel function of the second kind.
Special cases are:
Y1(+Inf) = 0 Y1(0) = -Inf Y1(x < 0) = NaN Y1(NaN) = NaN
func Yn ¶ added in v1.66.0
func Yn[T constraints.Float](n int, x T) T
Yn returns the order-n Bessel function of the second kind.
Special cases are:
Yn(n, +Inf) = 0 Yn(n ≥ 0, 0) = -Inf Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even Yn(n, x < 0) = NaN Yn(n, NaN) = NaN
Types ¶
type BitSet ¶
type BitSet struct {
// contains filtered or unexported fields
}
BitSet contains a set of bits.
func (*BitSet) ClearRange ¶
ClearRange clears the bits from 'start' to 'end', inclusive.
func (*BitSet) EnsureCapacity ¶
EnsureCapacity ensures that the BitSet has enough underlying storage to accommodate setting a bit as high as index position 'words' x 64 - 1 without needing to allocate more storage.
func (*BitSet) FirstSet ¶
FirstSet returns the first set bit. If no bits are set, then -1 is returned.
func (*BitSet) NextSet ¶
NextSet returns the next set bit starting from 'start'. If no bits are set at or beyond 'start', then -1 is returned.
func (*BitSet) PreviousClear ¶
PreviousClear returns the previous clear bit starting from 'start'. If no bits are clear at or before 'start', then -1 is returned.
func (*BitSet) PreviousSet ¶
PreviousSet returns the previous set bit starting from 'start'. If no bits are set at or before 'start', then -1 is returned.
type Numeric ¶ added in v1.66.0
type Numeric interface { constraints.Float | constraints.Integer }
Numeric is a constraint that permits any integer or float type.
Directories ¶
Path | Synopsis |
---|---|
Package geom provides geometry primitives.
|
Package geom provides geometry primitives. |
Package rand provides a Randomizer based upon the crypto/rand package.
|
Package rand provides a Randomizer based upon the crypto/rand package. |