Documentation ¶
Overview ¶
Package topo provides graph topology analysis functions.
Index ¶
- func BronKerbosch(g graph.Undirected) [][]graph.Node
- func CliqueGraph(dst Builder, g graph.Undirected)
- func ConnectedComponents(g graph.Undirected) [][]graph.Node
- func DegeneracyOrdering(g graph.Undirected) (order []graph.Node, cores [][]graph.Node)
- func DirectedCyclesIn(g graph.Directed) [][]graph.Node
- func Equal(a, b graph.Graph) bool
- func IsPathIn(g graph.Graph, path []graph.Node) bool
- func KCore(k int, g graph.Undirected) []graph.Node
- func PathExistsIn(g graph.Graph, from, to graph.Node) bool
- func Sort(g graph.Directed) (sorted []graph.Node, err error)
- func SortStabilized(g graph.Directed, order func([]graph.Node)) (sorted []graph.Node, err error)
- func TarjanSCC(g graph.Directed) [][]graph.Node
- func UndirectedCyclesIn(g graph.Undirected) [][]graph.Node
- type Builder
- type Clique
- type CliqueGraphEdge
- type Unorderable
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func BronKerbosch ¶
func BronKerbosch(g graph.Undirected) [][]graph.Node
BronKerbosch returns the set of maximal cliques of the undirected graph g.
func CliqueGraph ¶
func CliqueGraph(dst Builder, g graph.Undirected)
CliqueGraph builds the clique graph of g in dst using Clique and CliqueGraphEdge nodes and edges. The nodes returned by calls to Nodes on the nodes and edges of the constructed graph are the cliques and the common nodes between cliques respectively. The dst graph is not cleared.
func ConnectedComponents ¶
func ConnectedComponents(g graph.Undirected) [][]graph.Node
ConnectedComponents returns the connected components of the undirected graph g.
func DegeneracyOrdering ¶
DegeneracyOrdering returns the degeneracy ordering and the k-cores of the undirected graph g.
func DirectedCyclesIn ¶
DirectedCyclesIn returns the set of elementary cycles in the graph g.
func Equal ¶
Equal returns whether two graphs are topologically equal. To be considered topologically equal, a and b must have identical sets of nodes and be identically traversable.
func IsPathIn ¶
IsPathIn returns whether path is a path in g.
As special cases, IsPathIn returns true for a zero length path or for a path of length 1 when the node in path exists in the graph.
func KCore ¶
func KCore(k int, g graph.Undirected) []graph.Node
KCore returns the k-core of the undirected graph g with nodes in an optimal ordering for the coloring number.
func PathExistsIn ¶
PathExistsIn returns whether there is a path in g starting at from extending to to.
PathExistsIn exists as a helper function. If many tests for path existence are being performed, other approaches will be more efficient.
func Sort ¶
Sort performs a topological sort of the directed graph g returning the 'from' to 'to' sort order. If a topological ordering is not possible, an Unorderable error is returned listing cyclic components in g with each cyclic component's members sorted by ID. When an Unorderable error is returned, each cyclic component's topological position within the sorted nodes is marked with a nil graph.Node.
func SortStabilized ¶
SortStabilized performs a topological sort of the directed graph g returning the 'from' to 'to' sort order, or the order defined by the in place order sort function where there is no unambiguous topological ordering. If a topological ordering is not possible, an Unorderable error is returned listing cyclic components in g with each cyclic component's members sorted by the provided order function. If order is nil, nodes are ordered lexically by node ID. When an Unorderable error is returned, each cyclic component's topological position within the sorted nodes is marked with a nil graph.Node.
func TarjanSCC ¶
TarjanSCC returns the strongly connected components of the graph g using Tarjan's algorithm.
A strongly connected component of a graph is a set of vertices where it's possible to reach any vertex in the set from any other (meaning there's a cycle between them.)
Generally speaking, a directed graph where the number of strongly connected components is equal to the number of nodes is acyclic, unless you count reflexive edges as a cycle (which requires only a little extra testing.)
Example (TwoSAT) ¶
package main import ( "bufio" "fmt" "io" "log" "sort" "strings" "gonum.org/v1/gonum/graph/simple" "gonum.org/v1/gonum/graph/topo" ) var systems = []string{ // Unsatisfiable system. `𝑥_a ∨ ¬𝑥_b ¬𝑥_b ∨ 𝑥_f 𝑥_h ∨ 𝑥_i 𝑥_a ∨ 𝑥_b 𝑥_k ∨ 𝑥_c ¬𝑥_f ∨ 𝑥_h 𝑥_c ∨ 𝑥_g 𝑥_f ∨ 𝑥_g 𝑥_h ∨ ¬𝑥_l ¬𝑥_h ∨ 𝑥_i 𝑥_i ∨ 𝑥_b ¬𝑥_i ∨ ¬𝑥_h 𝑥_i ∨ ¬𝑥_c 𝑥_l ∨ 𝑥_d ¬𝑥_j ∨ ¬𝑥_i ¬𝑥_a ∨ ¬𝑥_j ¬𝑥_a ∨ 𝑥_b ¬𝑥_d ∨ 𝑥_e ¬𝑥_k ∨ 𝑥_h 𝑥_l ∨ ¬𝑥_d 𝑥_l ∨ 𝑥_d 𝑥_l ∨ ¬𝑥_f 𝑥_b ∨ 𝑥_d 𝑥_b ∨ ¬𝑥_g 𝑥_d ∨ ¬𝑥_l ¬𝑥_l ∨ ¬𝑥_k `, // Satisfiable system. `𝑥_a ∨ ¬𝑥_b ¬𝑥_b ∨ 𝑥_f 𝑥_h ∨ 𝑥_i 𝑥_a ∨ 𝑥_b 𝑥_k ∨ 𝑥_c ¬𝑥_f ∨ 𝑥_h 𝑥_c ∨ 𝑥_g 𝑥_f ∨ 𝑥_g 𝑥_h ∨ ¬𝑥_l ¬𝑥_h ∨ 𝑥_i 𝑥_i ∨ 𝑥_b ¬𝑥_i ∨ 𝑥_e 𝑥_i ∨ ¬𝑥_c ¬𝑥_g ∨ ¬𝑥_a 𝑥_l ∨ 𝑥_f ¬𝑥_j ∨ ¬𝑥_i ¬𝑥_a ∨ ¬𝑥_j ¬𝑥_a ∨ 𝑥_b ¬𝑥_d ∨ 𝑥_e 𝑥_k ∨ ¬𝑥_a 𝑥_k ∨ 𝑥_h 𝑥_l ∨ ¬𝑥_d 𝑥_l ∨ 𝑥_e 𝑥_l ∨ ¬𝑥_f 𝑥_b ∨ 𝑥_d 𝑥_b ∨ ¬𝑥_g 𝑥_d ∨ ¬𝑥_l 𝑥_l ∨ 𝑥_e `, `fun ∨ ¬fun fun ∨ ¬Gonum Gonum ∨ Gonum `, } // twoSat returns whether the system described in the data read from r is // satisfiable and a set of states that satisfies the system. // The syntax used by twoSat is "𝑥 ∨ 𝑦" where 𝑥 and 𝑦 may be negated by // leading "¬" characters. twoSat uses the implication graph approach to // system analysis. func twoSat(r io.Reader) (state map[string]bool, ok bool) { g := simple.NewDirectedGraph() sc := bufio.NewScanner(r) nodes := make(map[string]node) for count := 1; sc.Scan(); count++ { line := sc.Text() fields := strings.Split(line, "∨") if len(fields) != 2 { log.Fatalf("failed to parse on line %d %q: invalid syntax", count, line) } var variables [2]node for i, f := range fields { f = strings.TrimSpace(f) var negate bool for strings.Index(f, "¬") == 0 { f = strings.TrimPrefix(f, "¬") negate = !negate } n, ok := nodes[f] if !ok { n = node{ id: int64(len(nodes) + 1), // id must not be zero. name: f, } nodes[f] = n } if negate { n = n.negated() } variables[i] = n } // Check for tautology. if variables[0].negated().ID() == variables[1].ID() { for _, v := range variables { if g.Node(v.ID()) == nil { g.AddNode(v) } } continue } // Add implications to the graph. g.SetEdge(simple.Edge{F: variables[0].negated(), T: variables[1]}) g.SetEdge(simple.Edge{F: variables[1].negated(), T: variables[0]}) } // Find implication inconsistencies. sccs := topo.TarjanSCC(g) for _, c := range sccs { set := make(map[int64]struct{}) for _, n := range c { id := n.ID() if _, ok := set[-id]; ok { return nil, false } set[id] = struct{}{} } } // Assign states. state = make(map[string]bool) unknown: for _, c := range sccs { for _, n := range c { if _, known := state[n.(node).name]; known { continue unknown } } for _, n := range c { n := n.(node) state[n.name] = n.id > 0 } } return state, true } type node struct { id int64 name string } func (n node) ID() int64 { return n.id } func (n node) negated() node { return node{-n.id, n.name} } func main() { for i, s := range systems { state, ok := twoSat(strings.NewReader(s)) if !ok { fmt.Printf("system %d is not satisfiable\n", i) continue } var ps []string for v, t := range state { ps = append(ps, fmt.Sprintf("%s:%t", v, t)) } sort.Strings(ps) fmt.Printf("system %d is satisfiable: %s\n", i, strings.Join(ps, " ")) } }
Output: system 0 is not satisfiable system 1 is satisfiable: 𝑥_a:true 𝑥_b:true 𝑥_c:true 𝑥_d:true 𝑥_e:true 𝑥_f:true 𝑥_g:false 𝑥_h:true 𝑥_i:true 𝑥_j:false 𝑥_k:true 𝑥_l:true system 2 is satisfiable: Gonum:true fun:true
func UndirectedCyclesIn ¶
func UndirectedCyclesIn(g graph.Undirected) [][]graph.Node
UndirectedCyclesIn returns a set of cycles that forms a cycle basis in the graph g. Any cycle in g can be constructed as a symmetric difference of its elements.
Types ¶
type Clique ¶
type Clique struct {
// contains filtered or unexported fields
}
Clique is a node in a clique graph.
type CliqueGraphEdge ¶
type CliqueGraphEdge struct {
// contains filtered or unexported fields
}
CliqueGraphEdge is an edge in a clique graph.
func (CliqueGraphEdge) From ¶
func (e CliqueGraphEdge) From() graph.Node
From returns the from node of the edge.
func (CliqueGraphEdge) Nodes ¶
func (e CliqueGraphEdge) Nodes() []graph.Node
Nodes returns the common nodes in the cliques of the underlying graph corresponding to the from and to nodes in the clique graph.
func (CliqueGraphEdge) ReversedEdge ¶
func (e CliqueGraphEdge) ReversedEdge() graph.Edge
ReversedEdge returns a new CliqueGraphEdge with the edge end points swapped. The nodes of the new edge are shared with the receiver.
func (CliqueGraphEdge) To ¶
func (e CliqueGraphEdge) To() graph.Node
To returns the to node of the edge.
type Unorderable ¶
Unorderable is an error containing sets of unorderable graph.Nodes.