Documentation
¶
Overview ¶
Example (IntHeap) ¶
This example inserts several ints into an IntHeap, checks the minimum, and removes them in order of priority.
// This example demonstrates an integer heap built using the heap interface. package main import ( "container/heap" "fmt" ) // An IntHeap is a min-heap of ints. type IntHeap []int func (h IntHeap) Len() int { return len(h) } func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] } func (h IntHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *IntHeap) Push(x interface{}) { // Push and Pop use pointer receivers because they modify the slice's length, // not just its contents. *h = append(*h, x.(int)) } func (h *IntHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // This example inserts several ints into an IntHeap, checks the minimum, // and removes them in order of priority. func main() { h := &IntHeap{2, 1, 5} heap.Init(h) heap.Push(h, 3) fmt.Printf("minimum: %d\n", (*h)[0]) for h.Len() > 0 { fmt.Printf("%d ", heap.Pop(h)) } }
Output: minimum: 1 1 2 3 5
Example (PriorityQueue) ¶
This example creates a PriorityQueue with some items, adds and manipulates an item, and then removes the items in priority order.
// This example demonstrates a priority queue built using the heap interface. package main import ( "container/heap" "fmt" ) // An Item is something we manage in a priority queue. type Item struct { value string // The value of the item; arbitrary. priority int // The priority of the item in the queue. // The index is needed by update and is maintained by the heap.Interface methods. index int // The index of the item in the heap. } // A PriorityQueue implements heap.Interface and holds Items. type PriorityQueue []*Item func (pq PriorityQueue) Len() int { return len(pq) } func (pq PriorityQueue) Less(i, j int) bool { // We want Pop to give us the highest, not lowest, priority so we use greater than here. return pq[i].priority > pq[j].priority } func (pq PriorityQueue) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] pq[i].index = i pq[j].index = j } func (pq *PriorityQueue) Push(x interface{}) { n := len(*pq) item := x.(*Item) item.index = n *pq = append(*pq, item) } func (pq *PriorityQueue) Pop() interface{} { old := *pq n := len(old) item := old[n-1] old[n-1] = nil // avoid memory leak item.index = -1 // for safety *pq = old[0 : n-1] return item } // update modifies the priority and value of an Item in the queue. func (pq *PriorityQueue) update(item *Item, value string, priority int) { item.value = value item.priority = priority heap.Fix(pq, item.index) } // This example creates a PriorityQueue with some items, adds and manipulates an item, // and then removes the items in priority order. func main() { // Some items and their priorities. items := map[string]int{ "banana": 3, "apple": 2, "pear": 4, } // Create a priority queue, put the items in it, and // establish the priority queue (heap) invariants. pq := make(PriorityQueue, len(items)) i := 0 for value, priority := range items { pq[i] = &Item{ value: value, priority: priority, index: i, } i++ } heap.Init(&pq) // Insert a new item and then modify its priority. item := &Item{ value: "orange", priority: 1, } heap.Push(&pq, item) pq.update(item, item.value, 5) // Take the items out; they arrive in decreasing priority order. for pq.Len() > 0 { item := heap.Pop(&pq).(*Item) fmt.Printf("%.2d:%s ", item.priority, item.value) } }
Output: 05:orange 04:pear 03:banana 02:apple
Index ¶
- type Heap
- func (hp *Heap[T]) AppendHeap(x []*T)
- func (hp *Heap[T]) Delete(ii int) (rv *T)
- func (hp *Heap[T]) Dump(fp io.Writer)
- func (hp *Heap[T]) Fix(ii int, newValue *T)
- func (hp *Heap[T]) GetValue(ii int) (value *T)
- func (hp *Heap[T]) Heapify(n, i int)
- func (hp *Heap[T]) Len() int
- func (hp *Heap[T]) Length() int
- func (hp *Heap[T]) Peek() (rv *T)
- func (hp *Heap[T]) Pop() (rv *T)
- func (hp *Heap[T]) Push(x *T)
- func (hp *Heap[T]) Search(cmpVal *T) (rv *T, pos int, err error)
- func (hp *Heap[T]) SetValue(ii int, newValue *T)
- func (hp *Heap[T]) Truncate()
Examples ¶
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Heap ¶
type Heap[T comparable.Comparable] struct { // contains filtered or unexported fields }
The heap data is stored in a slice of type *T
func NewHeap ¶
func NewHeap[T comparable.Comparable]() *Heap[T]
Create a new heap and return it. Complexity is O(1).
func (*Heap[T]) AppendHeap ¶
func (hp *Heap[T]) AppendHeap(x []*T)
AppendHeap appends a new set of data to the heap (and leaves the heap in a non-heap state). After 1..n AppendHeap operations a call to Heapify() is necessary to re-heap the heap.
Example: `h.Heapify(h.Len(),0)` will re-build the entire heap.
func (*Heap[T]) Delete ¶
Delete removes and returns the element at the specified index `ii` from the heap. Complexity is O(log n).
func (*Heap[T]) Fix ¶
Fix re-establishes the heap ordering after a change to the value of the element at locaiton `ii`. Changing the value of the element (indrement/decrement/update) at `ii` followed by a call to Fix() is the same as hp.Delete(ii) and hp.Push(NewValue). It is less expesive to call use the Fix operation. Complexity is O(log n).
func (*Heap[T]) GetValue ¶
GetValue will return the value at index `ii` in the heap. Complexity is O(1).
func (*Heap[T]) Heapify ¶
xyzzzy- Commnet- To heapify a subtree rooted with node i which is an index in arr[]. N is size of heap Heapify starts at the sub-tree at 'i' and re-construts the heap. This is useful after an AppendHeap operation. `h.Heapify(h.Len(),0)` will re-build the entire heap.
func (*Heap[T]) Pop ¶
func (hp *Heap[T]) Pop() (rv *T)
Pop removes and returns the minimum element (using comparable.Compare). Pop is the same as hp.Remove(0). Complexity is O(log n).
func (*Heap[T]) Push ¶
func (hp *Heap[T]) Push(x *T)
Push appends the element x onto the end of the heap and re-orders the heap to be a heap. Complexity is O(log n).