deep

package module
v0.0.0-...-a277516 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Apr 27, 2023 License: MIT Imports: 4 Imported by: 26

README

go-deep

GoDoc Go Report Card CircleCI codecov

Feed forward/backpropagation neural network implementation. Currently supports:

  • Activation functions: sigmoid, hyperbolic, ReLU
  • Solvers: SGD, SGD with momentum/nesterov, Adam
  • Classification modes: regression, multi-class, multi-label, binary
  • Supports batch training in parallel
  • Bias nodes

Networks are modeled as a set of neurons connected through synapses. No GPU computations - don't use this for any large scale applications.

Install

go get -u github.com/patrikeh/go-deep

Usage

Import the go-deep package

import (
	"fmt"
	deep "github.com/patrikeh/go-deep"
	"github.com/patrikeh/go-deep/training"
)

Define some data...

var data = training.Examples{
	{[]float64{2.7810836, 2.550537003}, []float64{0}},
	{[]float64{1.465489372, 2.362125076}, []float64{0}},
	{[]float64{3.396561688, 4.400293529}, []float64{0}},
	{[]float64{1.38807019, 1.850220317}, []float64{0}},
	{[]float64{7.627531214, 2.759262235}, []float64{1}},
	{[]float64{5.332441248, 2.088626775}, []float64{1}},
	{[]float64{6.922596716, 1.77106367}, []float64{1}},
	{[]float64{8.675418651, -0.242068655}, []float64{1}},
}

Create a network with two hidden layers of size 2 and 2 respectively:

n := deep.NewNeural(&deep.Config{
	/* Input dimensionality */
	Inputs: 2,
	/* Two hidden layers consisting of two neurons each, and a single output */
	Layout: []int{2, 2, 1},
	/* Activation functions: Sigmoid, Tanh, ReLU, Linear */
	Activation: deep.ActivationSigmoid,
	/* Determines output layer activation & loss function:
	ModeRegression: linear outputs with MSE loss
	ModeMultiClass: softmax output with Cross Entropy loss
	ModeMultiLabel: sigmoid output with Cross Entropy loss
	ModeBinary: sigmoid output with binary CE loss */
	Mode: deep.ModeBinary,
	/* Weight initializers: {deep.NewNormal(μ, σ), deep.NewUniform(μ, σ)} */
	Weight: deep.NewNormal(1.0, 0.0),
	/* Apply bias */
	Bias: true,
})

Train:

// params: learning rate, momentum, alpha decay, nesterov
optimizer := training.NewSGD(0.05, 0.1, 1e-6, true)
// params: optimizer, verbosity (print stats at every 50th iteration)
trainer := training.NewTrainer(optimizer, 50)

training, heldout := data.Split(0.5)
trainer.Train(n, training, heldout, 1000) // training, validation, iterations

resulting in:

Epochs        Elapsed       Error
---           ---           ---
5             12.938µs      0.36438
10            125.691µs     0.02261
15            177.194µs     0.00404
...
1000          10.703839ms   0.00000

Finally, make some predictions:

fmt.Println(data[0].Input, "=>", n.Predict(data[0].Input))
fmt.Println(data[5].Input, "=>", n.Predict(data[5].Input))

Alternatively, batch training can be performed in parallell:

optimizer := NewAdam(0.001, 0.9, 0.999, 1e-8)
// params: optimizer, verbosity (print info at every n:th iteration), batch-size, number of workers
trainer := training.NewBatchTrainer(optimizer, 1, 200, 4)

training, heldout := data.Split(0.75)
trainer.Train(n, training, heldout, 1000) // training, validation, iterations

Examples

See training/trainer_test.go for a variety of toy examples of regression, multi-class classification, binary classification, etc.

See examples/ for more realistic examples:

Dataset Topology Epochs Accuracy
wines [5 5] 10000 ~98%
mnist [50] 25 ~97%

Documentation

Index

Constants

This section is empty.

Variables

This section is empty.

Functions

func ArgMax

func ArgMax(xx []float64) int

ArgMax is the index of the largest element

func Dot

func Dot(xx, yy []float64) float64

Dot product

func Logistic

func Logistic(x, a float64) float64

Logistic is the logistic function

func Max

func Max(xx []float64) float64

Max is the largest element

func Mean

func Mean(xx []float64) float64

Mean of xx

func Min

func Min(xx []float64) float64

Min is the smallest element

func Normal

func Normal(stdDev, mean float64) float64

Normal samples a value from N(μ, σ)

func Normalize

func Normalize(xx []float64)

Normalize scales to (0,1)

func Round

func Round(x float64) float64

Round to nearest integer

func Sgn

func Sgn(x float64) float64

Sgn is signum

func Softmax

func Softmax(xx []float64) []float64

Softmax is the softmax function

func StandardDeviation

func StandardDeviation(xx []float64) float64

StandardDeviation of xx

func Standardize

func Standardize(xx []float64)

Standardize (z-score) shifts distribution to μ=0 σ=1

func Sum

func Sum(xx []float64) (sum float64)

Sum is sum

func Uniform

func Uniform(stdDev, mean float64) float64

Uniform samples a value from u(mean-stdDev/2,mean+stdDev/2)

func Variance

func Variance(xx []float64) float64

Variance of xx

Types

type ActivationType

type ActivationType int

ActivationType is represents a neuron activation function

const (
	// ActivationNone is no activation
	ActivationNone ActivationType = 0
	// ActivationSigmoid is a sigmoid activation
	ActivationSigmoid ActivationType = 1
	// ActivationTanh is hyperbolic activation
	ActivationTanh ActivationType = 2
	// ActivationReLU is rectified linear unit activation
	ActivationReLU ActivationType = 3
	// ActivationLinear is linear activation
	ActivationLinear ActivationType = 4
	// ActivationSoftmax is a softmax activation (per layer)
	ActivationSoftmax ActivationType = 5
)

func OutputActivation

func OutputActivation(c Mode) ActivationType

OutputActivation returns activation corresponding to prediction mode

type BinaryCrossEntropy

type BinaryCrossEntropy struct{}

BinaryCrossEntropy is binary CE loss

func (BinaryCrossEntropy) Df

func (l BinaryCrossEntropy) Df(estimate, ideal, activation float64) float64

Df is CE'(...)

func (BinaryCrossEntropy) F

func (l BinaryCrossEntropy) F(estimate, ideal [][]float64) float64

F is CE(...)

type Config

type Config struct {
	// Number of inputs
	Inputs int
	// Defines topology:
	// For instance, [5 3 3] signifies a network with two hidden layers
	// containing 5 and 3 nodes respectively, followed an output layer
	// containing 3 nodes.
	Layout []int
	// Activation functions: {ActivationTanh, ActivationReLU, ActivationSigmoid}
	Activation ActivationType
	// Solver modes: {ModeRegression, ModeBinary, ModeMultiClass, ModeMultiLabel}
	Mode Mode
	// Initializer for weights: {NewNormal(σ, μ), NewUniform(σ, μ)}
	Weight WeightInitializer `json:"-"`
	// Loss functions: {LossCrossEntropy, LossBinaryCrossEntropy, LossMeanSquared}
	Loss LossType
	// Apply bias nodes
	Bias bool
}

Config defines the network topology, activations, losses etc

type CrossEntropy

type CrossEntropy struct{}

CrossEntropy is CE loss

func (CrossEntropy) Df

func (l CrossEntropy) Df(estimate, ideal, activation float64) float64

Df is CE'(...)

func (CrossEntropy) F

func (l CrossEntropy) F(estimate, ideal [][]float64) float64

F is CE(...)

type Differentiable

type Differentiable interface {
	F(float64) float64
	Df(float64) float64
}

Differentiable is an activation function and its first order derivative, where the latter is expressed as a function of the former for efficiency

func GetActivation

func GetActivation(act ActivationType) Differentiable

GetActivation returns the concrete activation given an ActivationType

type Dump

type Dump struct {
	Config  *Config
	Weights [][][]float64
}

Dump is a neural network dump

type Layer

type Layer struct {
	Neurons []*Neuron
	A       ActivationType
}

Layer is a set of neurons and corresponding activation

func NewLayer

func NewLayer(n int, activation ActivationType) *Layer

NewLayer creates a new layer with n nodes

func (*Layer) ApplyBias

func (l *Layer) ApplyBias(weight WeightInitializer) []*Synapse

ApplyBias creates and returns a bias synapse for each neuron in l

func (*Layer) Connect

func (l *Layer) Connect(next *Layer, weight WeightInitializer)

Connect fully connects layer l to next, and initializes each synapse with the given weight function

func (Layer) String

func (l Layer) String() string

type Linear

type Linear struct{}

Linear is a linear activator

func (Linear) Df

func (a Linear) Df(x float64) float64

Df is constant

func (Linear) F

func (a Linear) F(x float64) float64

F is the identity function

type Loss

type Loss interface {
	F(estimate, ideal [][]float64) float64
	Df(estimate, ideal, activation float64) float64
}

Loss is satisfied by loss functions

func GetLoss

func GetLoss(loss LossType) Loss

GetLoss returns a loss function given a LossType

type LossType

type LossType int

LossType represents a loss function

const (
	// LossNone signifies unspecified loss
	LossNone LossType = 0
	// LossCrossEntropy is cross entropy loss
	LossCrossEntropy LossType = 1
	// LossBinaryCrossEntropy is the special case of binary cross entropy loss
	LossBinaryCrossEntropy LossType = 2
	// LossMeanSquared is MSE
	LossMeanSquared LossType = 3
)

func (LossType) String

func (l LossType) String() string

type MeanSquared

type MeanSquared struct{}

MeanSquared in MSE loss

func (MeanSquared) Df

func (l MeanSquared) Df(estimate, ideal, activation float64) float64

Df is MSE'(...)

func (MeanSquared) F

func (l MeanSquared) F(estimate, ideal [][]float64) float64

F is MSE(...)

type Mode

type Mode int

Mode denotes inference mode

const (
	// ModeDefault is unspecified mode
	ModeDefault Mode = 0
	// ModeMultiClass is for one-hot encoded classification, applies softmax output layer
	ModeMultiClass Mode = 1
	// ModeRegression is regression, applies linear output layer
	ModeRegression Mode = 2
	// ModeBinary is binary classification, applies sigmoid output layer
	ModeBinary Mode = 3
	// ModeMultiLabel is for multilabel classification, applies sigmoid output layer
	ModeMultiLabel Mode = 4
)

type Neural

type Neural struct {
	Layers []*Layer
	Biases [][]*Synapse
	Config *Config
}

Neural is a neural network

func FromDump

func FromDump(dump *Dump) *Neural

FromDump restores a Neural from a dump

func NewNeural

func NewNeural(c *Config) *Neural

NewNeural returns a new neural network

func Unmarshal

func Unmarshal(bytes []byte) (*Neural, error)

Unmarshal restores network from a JSON blob

func (*Neural) ApplyWeights

func (n *Neural) ApplyWeights(weights [][][]float64)

ApplyWeights sets the weights from a three-dimensional slice

func (Neural) Dump

func (n Neural) Dump() *Dump

Dump generates a network dump

func (*Neural) Forward

func (n *Neural) Forward(input []float64) error

Forward computes a forward pass

func (Neural) Marshal

func (n Neural) Marshal() ([]byte, error)

Marshal marshals to JSON from network

func (*Neural) NumWeights

func (n *Neural) NumWeights() (num int)

NumWeights returns the number of weights in the network

func (*Neural) Predict

func (n *Neural) Predict(input []float64) []float64

Predict computes a forward pass and returns a prediction

func (*Neural) String

func (n *Neural) String() string

func (Neural) Weights

func (n Neural) Weights() [][][]float64

Weights returns all weights in sequence

type Neuron

type Neuron struct {
	A     ActivationType `json:"-"`
	In    []*Synapse
	Out   []*Synapse
	Value float64 `json:"-"`
}

Neuron is a neural network node

func NewNeuron

func NewNeuron(activation ActivationType) *Neuron

NewNeuron returns a neuron with the given activation

func (*Neuron) Activate

func (n *Neuron) Activate(x float64) float64

Activate applies the neurons activation

func (*Neuron) DActivate

func (n *Neuron) DActivate(x float64) float64

DActivate applies the derivative of the neurons activation

type ReLU

type ReLU struct{}

ReLU is a rectified linear unit activator

func (ReLU) Df

func (a ReLU) Df(y float64) float64

Df is ReLU'(y), where y = ReLU(x)

func (ReLU) F

func (a ReLU) F(x float64) float64

F is ReLU(x)

type Sigmoid

type Sigmoid struct{}

Sigmoid is a logistic activator in the special case of a = 1

func (Sigmoid) Df

func (a Sigmoid) Df(y float64) float64

Df is Sigmoid'(y), where y = Sigmoid(x)

func (Sigmoid) F

func (a Sigmoid) F(x float64) float64

F is Sigmoid(x)

type Synapse

type Synapse struct {
	Weight  float64
	In, Out float64 `json:"-"`
	IsBias  bool
}

Synapse is an edge between neurons

func NewSynapse

func NewSynapse(weight float64) *Synapse

NewSynapse returns a synapse with the specified initialized weight

type Tanh

type Tanh struct{}

Tanh is a hyperbolic activator

func (Tanh) Df

func (a Tanh) Df(y float64) float64

Df is Tanh'(y), where y = Tanh(x)

func (Tanh) F

func (a Tanh) F(x float64) float64

F is Tanh(x)

type WeightInitializer

type WeightInitializer func() float64

A WeightInitializer returns a (random) weight

func NewNormal

func NewNormal(stdDev, mean float64) WeightInitializer

NewNormal returns a normal weight generator

func NewUniform

func NewUniform(stdDev, mean float64) WeightInitializer

NewUniform returns a uniform weight generator

Directories

Path Synopsis
examples

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL