parakeet

package module
v0.1.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Aug 20, 2024 License: MIT Imports: 0 Imported by: 0

README ΒΆ

🦜πŸͺΊ Parakeet

Parakeet is the simplest Go library to create GenAI apps with Ollama.

A GenAI app is an application that uses generative AI technology. Generative AI can create new text, images, or other content based on what it's been trained on. So a GenAI app could help you write a poem, design a logo, or even compose a song! These are still under development, but they have the potential to be creative tools for many purposes. - Gemini

βœ‹ Parakeet is only for creating GenAI apps generating text (not image, music,...).

Install

go get github.com/parakeet-nest/parakeet

Simple completion

The simple completion can be used to generate a response for a given prompt with a provided model.

package main

import (
	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/llm"
	"fmt"
	"log"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "tinydolphin"

	options := llm.Options{
		Temperature: 0.5,  // default (0.8)
	}

	question := llm.Query{
		Model: model,
		Prompt: "Who is James T Kirk?",
		Options: options,
	}

	answer, err := completion.Generate(ollamaUrl, question)
	if err != nil {
		log.Fatal("😑:", err)
	}
	fmt.Println(answer.Response)
}
Simple completion with stream
package main

import (
	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/llm"
	"fmt"
	"log"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "tinydolphin"

	options := llm.Options{
		Temperature: 0.5, // default (0.8)
	}

	question := llm.Query{
		Model: model,
		Prompt: "Who is James T Kirk?",
		Options: options,
	}
	
	answer, err := completion.GenerateStream(ollamaUrl, question,
		func(answer llm.Answer) error {
			fmt.Print(answer.Response)
			return nil
		})

	if err != nil {
		log.Fatal("😑:", err)
	}
}
Completion with context

see: https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion

The context can be used to keep a short conversational memory for the next completion.

package main

import (
	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/llm"

	"fmt"
	"log"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "tinydolphin"

	options := llm.Options{
		Temperature: 0.5, // default (0.8)
	}

	firstQuestion := llm.Query{
		Model: model,
		Prompt: "Who is James T Kirk?",
		Options: options,
	}

	answer, err := completion.Generate(ollamaUrl, firstQuestion)
	if err != nil {
		log.Fatal("😑:", err)
	}
	fmt.Println(answer.Response)

	fmt.Println()

	secondQuestion := llm.Query{
		Model: model,
		Prompt: "Who is his best friend?",
		Context: answer.Context,
		Options: options,
	}

	answer, err = completion.Generate(ollamaUrl, secondQuestion)
	if err != nil {
		log.Fatal("😑:", err)
	}
	fmt.Println(answer.Response)
}

Chat completion

The chat completion can be used to generate a conversational response for a given set of messages with a provided model.

package main

import (
	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/llm"

	"fmt"
	"log"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "deepseek-coder"

	systemContent := `You are an expert in computer programming.
	Please make friendly answer for the noobs.
	Add source code examples if you can.`

	userContent := `I need a clear explanation regarding the following question:
	Can you create a "hello world" program in Golang?
	And, please, be structured with bullet points`

	options := llm.Options{
		Temperature: 0.5, // default (0.8)
		RepeatLastN: 2, // default (64)
		RepeatPenalty: 2.0, // default (1.1)
	}

	query := llm.Query{
		Model: model,
		Messages: []llm.Message{
			{Role: "system", Content: systemContent},
			{Role: "user", Content: userContent},
		},
		Options: options,
		Stream: false,
	}

	answer, err := completion.Chat(ollamaUrl, query)
	if err != nil {
		log.Fatal("😑:", err)
	}
	fmt.Println(answer.Message.Content)
}

βœ‹ To keep a conversational memory for the next chat completion, update the list of messages with the previous question and answer.

Chat completion with stream
package main

import (
	"fmt"
	"log"

	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/llm"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "deepseek-coder"

	systemContent := `You are an expert in computer programming.
	Please make friendly answer for the noobs.
	Add source code examples if you can.`

	userContent := `I need a clear explanation regarding the following question:
	Can you create a "hello world" program in Golang?
	And, please, be structured with bullet points`

	options := llm.Options{
		Temperature: 0.5, // default (0.8)
		RepeatLastN: 2, // default (64) 
	}

	query := llm.Query{
		Model: model,
		Messages: []llm.Message{
			{Role: "system", Content: systemContent},
			{Role: "user", Content: userContent},
		},
		Options: options,
		Stream:  false,
	}

	_, err := completion.ChatStream(ollamaUrl, query,
		func(answer llm.Answer) error {
			fmt.Print(answer.Message.Content)
			return nil
		})

	if err != nil {
		log.Fatal("😑:", err)
	}
}

Protected endpoint

If your Ollama endpoint is protected with a header token, you can specify the token like this:

query := llm.Query{
    Model: model,
    Messages: []llm.Message{
        {Role: "system", Content: systemContent},
        {Role: "user", Content: userContent},
    },
    Options: options,
    TokenHeaderName: "X-TOKEN",
    TokenHeaderValue: "john_doe",
}

Verbose mode

You can activate the "verbose mode" with all kinds of completions.

options := llm.Options{
    Temperature: 0.5,
    RepeatLastN: 2,
    RepeatPenalty: 2.0,
    Verbose: true,
}

You will get an output like this (with the query and the completion):

[llm/query] {
  "model": "deepseek-coder",
  "messages": [
    {
      "role": "system",
      "content": "You are an expert in computer programming.\n\tPlease make friendly answer for the noobs.\n\tAdd source code examples if you can."
    },
    {
      "role": "user",
      "content": "I need a clear explanation regarding the following question:\n\tCan you create a \"hello world\" program in Golang?\n\tAnd, please, be structured with bullet points"
    }
  ],
  "options": {
    "repeat_last_n": 2,
    "temperature": 0.5,
    "repeat_penalty": 2,
    "Verbose": true
  },
  "stream": false,
  "prompt": "",
  "context": null,
  "tools": null,
  "TokenHeaderName": "",
  "TokenHeaderValue": ""
}

[llm/completion] {
  "model": "deepseek-coder",
  "message": {
    "role": "assistant",
    "content": "Sure, here's a simple \"Hello, World!\" program in Golang.\n\t1. First, you need to have Golang installed on your machine.\n\t2. Open your text editor, and write the following code:\n\t```go\n\tpackage main\n\timport \"fmt\"\n\tfunc main() {\n\t    fmt.Println(\"Hello, World!\")\n\t} \n\t```\n\t3. Save the file with a `.go` extension (like `hello.go`).\n\t4. In your terminal, navigate to the directory containing the `.go` file.\n\t5. Run the program with the command:\n\t```\n\tgo run hello.go\n\t```\n\t6. If everything goes well, you should see \"Hello, World!\" printed in your terminal.\n\t7. If there's an error, you will see the error message.\n\t8. If everything is correct, you'll see \"Hello, World!\" printed in your terminal.\n"
  },
  "done": true,
  "response": "",
  "context": null,
  "created_at": "2024-08-19T05:57:23.979361Z",
  "total_duration": 3361191958,
  "load_duration": 2044932125,
  "prompt_eval_count": 79,
  "prompt_eval_duration": 95034000,
  "eval_count": 222,
  "eval_duration": 1216689000
}

Chat completion with conversational memory

In memory history

To store the messages in memory, use history.MemoryMessages

package main

import (
	"fmt"
	"log"

	"github.com/parakeet-nest/parakeet/completion"
	"github.com/parakeet-nest/parakeet/history"
	"github.com/parakeet-nest/parakeet/llm"
)

func main() {
	ollamaUrl := "http://localhost:11434"
	model := "tinydolphin" // fast, and perfect answer (short, brief)

	conversation := history.MemoryMessages{
		Messages: make(map[string]llm.MessageRecord),
	}

	systemContent := `You are an expert with the Star Trek series. use the history of the conversation to answer the question`

	userContent := `Who is James T Kirk?`

	options := llm.Options{
		Temperature: 0.5,
		RepeatLastN: 2,  
	}

	query := llm.Query{
		Model: model,
		Messages: []llm.Message{
			{Role: "system", Content: systemContent},
			{Role: "user", Content: userContent},
		},
		Options: options,
	}

	// Ask the question
	answer, err := completion.ChatStream(ollamaUrl, query,
		func(answer llm.Answer) error {
			fmt.Print(answer.Message.Content)
			return nil
		},
	)
	if err != nil {
		log.Fatal("😑:", err)
	}

	// Save the conversation
	_, err = conversation.SaveMessage("1", llm.Message{
		Role:    "user",
		Content: userContent,
	})
	if err != nil {
		log.Fatal("😑:", err)
	}

	_, err = conversation.SaveMessage("2", llm.Message{
		Role:    "system",
		Content: answer.Message.Content,
	})

	if err != nil {
		log.Fatal("😑:", err)
	}

	// New question
	userContent = `Who is his best friend ?`

	previousMessages, _ := conversation.GetAllMessages()

	// (Re)Create the conversation
	conversationMessages := []llm.Message{}
	// instruction
	conversationMessages = append(conversationMessages, llm.Message{Role: "system", Content: systemContent})
	// history
	conversationMessages = append(conversationMessages, previousMessages...)
	// last question
	conversationMessages = append(conversationMessages, llm.Message{Role: "user", Content: userContent})

	query = llm.Query{
		Model:    model,
		Messages: conversationMessages,
		Options:  options,
	}

	answer, err = completion.ChatStream(ollamaUrl, query,
		func(answer llm.Answer) error {
			fmt.Print(answer.Message.Content)
			return nil
		},
	)
	fmt.Println()
	if err != nil {
		log.Fatal("😑:", err)
	}

}
Bbolt history

Bbolt is an embedded key/value database for Go.

To store the messages in a bbolt bucket, use history.BboltMessages

conversation := history.BboltMessages{}
conversation.Initialize("../conversation.db")

πŸ‘€ you will find a complete example in examples/11-chat-conversational-bbolt

  • examples/11-chat-conversational-bbolt/begin: start a conversation and save the history
  • examples/11-chat-conversational-bbolt/resume: load the messages from the history bucket and resue the conversation

Embeddings

Create embeddings
embedding, err := embeddings.CreateEmbedding(
	ollamaUrl,
	llm.Query4Embedding{
		Model:  "all-minilm",
		Prompt: "Jean-Luc Picard is a fictional character in the Star Trek franchise.",
	},
	"Picard", // identifier
)

Vector stores

A vector store allows to store and search for embeddings in an efficient way.

In memory vector store

Create a store:

store := embeddings.MemoryVectorStore{
	Records: make(map[string]llm.VectorRecord),
}

Save embeddings:

store.Save(embedding)

Search embeddings:

embeddingFromQuestion, err := embeddings.CreateEmbedding(
	ollamaUrl,
	llm.Query4Embedding{
		Model:  "all-minilm",
		Prompt: "Who is Jean-Luc Picard?",
	},
	"question",
)
// find the nearest vector
similarity, _ := store.SearchMaxSimilarity(embeddingFromQuestion)

documentsContent := `<context><doc>` + similarity.Prompt + `</doc></context>`

πŸ‘€ you will find a complete example in examples/08-embeddings

Bbolt vector store

Bbolt is an embedded key/value database for Go.

Create a store, and open an existing store:

store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")

πŸ‘€ you will find a complete example in examples/09-embeddings-bbolt

  • examples/09-embeddings-bbolt/create-embeddings: create and populate the vector store
  • examples/09-embeddings-bbolt/use-embeddings: search similarities in the vector store
Redis vector store

Create a store, and open an existing store:

redisStore := embeddings.RedisVectorStore{}
err := redisStore.Initialize("localhost:6379", "", "chronicles-bucket")

if err != nil {
	log.Fatalln("😑:", err)
}

πŸ‘€ you will find a complete example in examples/32-rag-with-redis

  • examples/32-rag-with-redis/create-embeddings: create and populate the vector store
  • examples/32-rag-with-redis/use-embeddings: search similarities in the vector store
Additional data

you can add additional data to a vector record (embedding):

embedding.Text()
embedding.Reference()
embedding.MetaData()
Create embeddings
ollamaUrl := "http://localhost:11434"
embeddingsModel := "all-minilm"

store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")

// Parse all golang source code of the examples
// Create embeddings from documents and save them in the store
counter := 0
_, err := content.ForEachFile("../../examples", ".go", func(path string) error {
	data, err := os.ReadFile(path)
	if err != nil {
		return err
	}

	fmt.Println("πŸ“ Creating embedding from:", path)
	counter++
	embedding, err := embeddings.CreateEmbedding(
		ollamaUrl,
		llm.Query4Embedding{
			Model:  embeddingsModel,
			Prompt: string(data),
		},
		strconv.Itoa(counter), // don't forget the id (unique identifier)
	)
	fmt.Println("πŸ“¦ Created: ", len(embedding.Embedding))

	if err != nil {
		fmt.Println("😑:", err)
	} else {
		_, err := store.Save(embedding)
		if err != nil {
			fmt.Println("😑:", err)
		}
	}
	return nil
})
if err != nil {
	log.Fatalln("😑:", err)
}
ollamaUrl := "http://localhost:11434"
embeddingsModel := "all-minilm"
chatModel := "magicoder:latest"

store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")

systemContent := `You are a Golang developer and an expert in computer programming.
Please make friendly answer for the noobs. Use the provided context and doc to answer.
Add source code examples if you can.`

// Question for the Chat system
userContent := `How to create a stream chat completion with Parakeet?`

// Create an embedding from the user question
embeddingFromQuestion, err := embeddings.CreateEmbedding(
	ollamaUrl,
	llm.Query4Embedding{
		Model:  embeddingsModel,
		Prompt: userContent,
	},
	"question",
)
if err != nil {
	log.Fatalln("😑:", err)
}
fmt.Println("πŸ”Ž searching for similarity...")

similarities, _ := store.SearchSimilarities(embeddingFromQuestion, 0.3)

// Generate the context from the similarities
// This will generate a string with a content like this one:
// `<context><doc>...<doc><doc>...<doc></context>`
documentsContent := embeddings.GenerateContextFromSimilarities(similarities)

fmt.Println("πŸŽ‰ similarities", len(similarities))

query := llm.Query{
	Model: chatModel,
	Messages: []llm.Message{
		{Role: "system", Content: systemContent},
		{Role: "system", Content: documentsContent},
		{Role: "user", Content: userContent},
	},
	Options: llm.Options{
		Temperature: 0.4,
		RepeatLastN: 2,
	},
	Stream: false,
}

fmt.Println("")
fmt.Println("πŸ€– answer:")

// Answer the question
_, err = completion.ChatStream(ollamaUrl, query,
	func(answer llm.Answer) error {
		fmt.Print(answer.Message.Content)
		return nil
	})

if err != nil {
	log.Fatal("😑:", err)
}
Other similarity search methods

SearchMaxSimilarity searches for the vector record in the BboltVectorStore that has the maximum cosine distance similarity to the given embeddingFromQuestion:

similarity, _ := store.SearchMaxSimilarity(embeddingFromQuestion)

SearchTopNSimilarities searches for vector records in the BboltVectorStore that have a cosine distance similarity greater than or equal to the given limit and returns the top n records:

similarities, _ := store.SearchTopNSimilarities(embeddingFromQuestion, limit, n)

Chunkers and Splitters

There are three methods in the content package to help you chunk and split text:

  • ChunkText takes a text string and divides it into chunks of a specified size with a given overlap. It returns a slice of strings, where each string represents a chunk of the original text.
chunks := content.ChunkText(rulesContent, 900, 400)
  • SplitTextWithDelimiter splits the given text using the specified delimiter and returns a slice of strings.
chunks := content.SplitTextWithDelimiter(rulesContent, "<!-- SPLIT -->")
  • SplitTextWithRegex splits the given text using the provided regular expression delimiter. It returns a slice of strings containing the split parts of the text.
chunks := content.SplitTextWithRegex(rulesContent, `## *`)

Function Calling (before tool support)

What is "Function Calling"? First, it's not a feature where a LLM can call and execute a function. "Function Calling" is the ability for certain LLMs to provide a specific output with the same format (we could say: "a predictable output format").

So, the principle is simple:

  • You (or your GenAI application) will create a prompt with a delimited list of tools (the functions) composed by name, descriptions, and parameters: SayHello, AddNumbers, etc.
  • Then, you will add your question ("Hey, say 'hello' to Bob!") to the prompt and send all of this to the LLM.
  • If the LLM "understand" that the SayHello function can be used to say "hello" to Bob, then the LLM will answer with only the name of the function with the parameter(s). For example: {"name":"SayHello","arguments":{"name":"Bob"}}.

Then, it will be up to you to implement the call of the function.

The latest version (v0.3) of Mistral 7b supports function calling and is available for Ollama.

Define a list of tools

First, you have to provide the LLM with a list of tools with the following format:

toolsList := []llm.Tool{
	{
		Type: "function",
		Function: llm.Function{
			Name:        "hello",
			Description: "Say hello to a given person with his name",
			Parameters: llm.Parameters{
				Type: "object",
				Properties: map[string]llm.Property{
					"name": {
						Type:        "string",
						Description: "The name of the person",
					},
				},
				Required: []string{"name"},
			},
		},
	},
	{
		Type: "function",
		Function: llm.Function{
			Name:        "addNumbers",
			Description: "Make an addition of the two given numbers",
			Parameters: llm.Parameters{
				Type: "object",
				Properties: map[string]llm.Property{
					"a": {
						Type:        "number",
						Description: "first operand",
					},
					"b": {
						Type:        "number",
						Description: "second operand",
					},
				},
				Required: []string{"a", "b"},
			},
		},
	},
}
Generate a prompt from the tools list and the user instructions

The tools.GenerateContent method generates a string with the tools in JSON format surrounded by [AVAILABLE_TOOLS] and [/AVAILABLE_TOOLS]:

toolsContent, err := tools.GenerateContent(toolsList)
if err != nil {
	log.Fatal("😑:", err)
}

The tools.GenerateInstructions method generates a string with the user instructions surrounded by [INST] and [/INST]:

userContent := tools.GenerateInstructions(`say "hello" to Bob`)

Then, you can add these two strings to the messages list:

messages := []llm.Message{
	{Role: "system", Content: toolsContent},
	{Role: "user", Content: userContent},
}
Send the prompt (messages) to the LLM

It's important to set the Temperature to 0.0:

options := llm.Options{
	Temperature:   0.0,
	RepeatLastN:   2,
	RepeatPenalty: 2.0,
}

You must set the `Format` to `json` and `Raw` to `true`:
query := llm.Query{
	Model: model,
	Messages: messages,
	Options: options,
	Format:  "json",
	Raw:     true,
}

When building the payload to be sent to Ollama, we need to set the Raw field to true, thanks to that, no formatting will be applied to the prompt (we override the prompt template of Mistral), and we need to set the Format field to "json".

No you can call the Chat method. The answer of the LLM will be in JSON format:

answer, err := completion.Chat(ollamaUrl, query)
if err != nil {
	log.Fatal("😑:", err)
}
// PrettyString is a helper that prettyfies the JSON string
result, err := gear.PrettyString(answer.Message.Content)
if err != nil {
	log.Fatal("😑:", err)
}
fmt.Println(result)

You should get this answer:

{
  "name": "hello",
  "arguments": {
    "name": "Bob"
  }
}

You can try with the other tool (or function):

userContent := tools.GenerateInstructions(`add 2 and 40`)

You should get this answer:

{
  "name": "addNumbers",
  "arguments": {
    "a": 2,
    "b": 40
  }
}

Remark: always test the format of the output, even if Mistral is trained for "function calling", the result are not entirely predictable.

Look at this sample for a complete sample: examples/15-mistral-function-calling

Function Calling with LLMs that do not implement Function Calling

It is possible to reproduce this feature with some LLMs that do not implement the "Function Calling" feature natively, but we need to supervise them and explain precisely what we need. The result (the output) will be less predictable, so you will need to add some tests before using the output, but with some "clever" LLMs, you will obtain correct results. I did my experiments with phi3:mini.

The trick is simple:

Add this message at the begining of the list of messages:

systemContentIntroduction := `You have access to the following tools:`

Add this message at the end of the list of messages, just before the user message:

systemContentInstructions := `If the question of the user matched the description of a tool, the tool will be called.
To call a tool, respond with a JSON object with the following structure: 
{
	"name": <name of the called tool>,
	"arguments": {
	<name of the argument>: <value of the argument>
	}
}

search the name of the tool in the list of tools with the Name field
`

At the end, you will have this:

messages := []llm.Message{
	{Role: "system", Content: systemContentIntroduction},
	{Role: "system", Content: toolsContent},
	{Role: "system", Content: systemContentInstructions},
	{Role: "user", Content: `say "hello" to Bob`},
}

Look at this sample for a complete sample: examples/17-fake-function-calling

Function Calling with tool support

Ollama API: chat request with tools https://github.com/ollama/ollama/blob/main/docs/api.md#chat-request-with-tools

Since Ollama 0.3.0, Ollama supports tools calling, blog post: https://ollama.com/blog/tool-support. A list of supported models can be found under the Tools category on the models page: https://ollama.com/search?c=tools

Define a list of tools

use a supported model

model := "mistral:7b"

toolsList := []llm.Tool{
	{
		Type: "function",
		Function: llm.Function{
			Name:        "hello",
			Description: "Say hello to a given person with his name",
			Parameters: llm.Parameters{
				Type: "object",
				Properties: map[string]llm.Property{
					"name": {
						Type:        "string",
						Description: "The name of the person",
					},
				},
				Required: []string{"name"},
			},
		},
	},
	{
		Type: "function",
		Function: llm.Function{
			Name:        "addNumbers",
			Description: "Make an addition of the two given numbers",
			Parameters: llm.Parameters{
				Type: "object",
				Properties: map[string]llm.Property{
					"a": {
						Type:        "number",
						Description: "first operand",
					},
					"b": {
						Type:        "number",
						Description: "second operand",
					},
				},
				Required: []string{"a", "b"},
			},
		},
	},
}
Set the Tools property of the query
  • set the Temperature to 0.0
  • you don't need to set the row mode to true
  • set query.Tools with toolsList
messages := []llm.Message{
	{Role: "user", Content: `say "hello" to Bob`},
}

options := llm.Options{
	Temperature:   0.0,
	RepeatLastN:   2,
	RepeatPenalty: 2.0,
}

query := llm.Query{
	Model:    model,
	Messages: messages,
	Tools:    toolsList,
	Options:  options,
	Format:   "json",
}
Run the completion
answer, err := completion.Chat(ollamaUrl, query)
if err != nil {
	log.Fatal("😑:", err)
}

// It's a []map[string]interface{}
toolCalls := answer.Message.ToolCalls

// Convert toolCalls into a JSON string
jsonBytes, err := json.Marshal(toolCalls)
if err != nil {
	log.Fatal("😑:", err)
}
// Convert JSON bytes to string
result := string(jsonBytes)

fmt.Println(result)

The result will look like this:

[{"function":{"arguments":{"name":"Bob"},"name":"hello"}}]
Or you can use the ToolCallsToJSONString helper
answer, err = completion.Chat(ollamaUrl, query)
if err != nil {
	log.Fatal("😑:", err)
}

result, err = answer.Message.ToolCallsToJSONString()
if err != nil {
	log.Fatal("😑:", err)
}
fmt.Println(result)

The result will look like this:

[{"function":{"arguments":{"name":"Bob"},"name":"hello"}}]

Look at this sample for a complete sample: examples/19-mistral-function-calling-tool-support

Wasm plugins

The release 0.0.6 of Parakeet brings the support of WebAssembly thanks to the Extism project. That means you can write your own wasm plugins for Parakeet to add new features (for example, a chunking helper for doing RAG) with various languages (Rust, Go, C, ...).

Or you can use the Wasm plugins with the "Function Calling" feature, which is implemented in Parakeet.

You can find an example of "Wasm Function Calling" in examples/18-call-functions-for-real - the wasm plugin is located in the wasm folder and it is built with TinyGo.

🚧 more samples to come.

Other Parakeet methods

Get Information about a model
llm.ShowModelInformation(url, model string) (llm.ModelInformation, int, error)

ShowModelInformation retrieves information about a model from the specified URL.

Parameters:

  • url: the base URL of the API.
  • model: the name of the model to retrieve information for.

Returns:

  • ModelInformation: the information about the model.
  • int: the HTTP status code of the response.
  • error: an error if the request fails.

βœ‹ Remark: if the model does not exist, it will return an error with a status code of 404.

Pull a model
llm.PullModel(url, model string) (llm.PullResult, int, error)

PullModel sends a POST request to the specified URL to pull a model with the given name.

Parameters:

  • url: The URL to send the request to.
  • model: The name of the model to pull.

Returns:

  • PullResult: The result of the pull operation.
  • int: The HTTP status code of the response.
  • error: An error if the request fails.
Prompt helpers
Meta prompts

package: prompt

Meta-prompts are special instructions embedded within a prompt to guide a language model in generating a specific kind of response.

Meta-Prompt Purpose
[Brief] What is AI? For a concise answer
[In Layman’s Terms] Explain LLM For a simplified explanation
[As a Story] Describe the evolution of cars To get the information in story form
[Pros and Cons] Is AI useful? For a balanced view with advantages and disadvantages
[Step-by-Step] How to do a smart prompt? For a detailed, step-by-step guide
[Factual] What is the best pizza of the world? For a straightforward, factual answer
[Opinion] What is the best pizza of the world? To get an opinion-based answer
[Comparison] Compare pineapple pizza to pepperoni pizza For a comparative analysis
[Timeline] What are the key milestones to develop a WebApp? For a chronological account of key events
[As a Poem] How to cook a cake? For a poetic description
[For Kids] How to cook a cake? For a child-friendly explanation
[Advantages Only] What are the benefits of AI? To get a list of only the advantages
[As a Recipe] How to cook a cake? To receive the information in the form of a recipe
Meta prompts methods
  • prompt.Brief(s string) string
  • prompt.InLaymansTerms(s string) string
  • prompt.AsAStory(s string) string
  • prompt.ProsAndCons(s string) string
  • prompt.StepByStep(s string) string
  • prompt.Factual(s string) string
  • prompt.Opinion(s string) string
  • prompt.Comparison(s string) string
  • prompt.Timeline(s string) string
  • prompt.AsAPoem(s string) string
  • prompt.ForKids(s string) string
  • prompt.AdvantagesOnly(s string) string
  • prompt.AsARecipe(s string) string

Parakeet Demos

Blog Posts

Documentation ΒΆ

Index ΒΆ

Constants ΒΆ

This section is empty.

Variables ΒΆ

View Source
var About = "🦜 Parakeet v0.1.1 πŸ“— [green-textbook]"
View Source
var Version = "v0.1.1"

Functions ΒΆ

This section is empty.

Types ΒΆ

This section is empty.

Directories ΒΆ

Path Synopsis

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL