README ΒΆ
π¦πͺΊ Parakeet
Parakeet is the simplest Go library to create GenAI apps with Ollma.
A GenAI app is an application that uses generative AI technology. Generative AI can create new text, images, or other content based on what it's been trained on. So a GenAI app could help you write a poem, design a logo, or even compose a song! These are still under development, but they have the potential to be creative tools for many purposes. - Gemini
β Parakeet is only for creating GenAI apps generating text (not image, music,...).
Install
go get github.com/parakeet-nest/parakeet
Simple completion
The simple completion can be used to generate a response for a given prompt with a provided model.
package main
import (
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/llm"
"fmt"
"log"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "tinydolphin"
options := llm.Options{
Temperature: 0.5, // default (0.8)
}
question := llm.Query{
Model: model,
Prompt: "Who is James T Kirk?",
Options: options,
}
answer, err := completion.Generate(ollamaUrl, question)
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(answer.Response)
}
Simple completion with stream
package main
import (
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/llm"
"fmt"
"log"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "tinydolphin"
options := llm.Options{
Temperature: 0.5, // default (0.8)
}
question := llm.Query{
Model: model,
Prompt: "Who is James T Kirk?",
Options: options,
}
answer, err := completion.GenerateStream(ollamaUrl, question,
func(answer llm.Answer) error {
fmt.Print(answer.Response)
return nil
})
if err != nil {
log.Fatal("π‘:", err)
}
}
Completion with context
see: https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
The context can be used to keep a short conversational memory for the next completion.
package main
import (
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/llm"
"fmt"
"log"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "tinydolphin"
options := llm.Options{
Temperature: 0.5, // default (0.8)
}
firstQuestion := llm.Query{
Model: model,
Prompt: "Who is James T Kirk?",
Options: options,
}
answer, err := completion.Generate(ollamaUrl, firstQuestion)
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(answer.Response)
fmt.Println()
secondQuestion := llm.Query{
Model: model,
Prompt: "Who is his best friend?",
Context: answer.Context,
Options: options,
}
answer, err = completion.Generate(ollamaUrl, secondQuestion)
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(answer.Response)
}
Chat completion
The chat completion can be used to generate a conversational response for a given set of messages with a provided model.
package main
import (
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/llm"
"fmt"
"log"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "deepseek-coder"
systemContent := `You are an expert in computer programming.
Please make friendly answer for the noobs.
Add source code examples if you can.`
userContent := `I need a clear explanation regarding the following question:
Can you create a "hello world" program in Golang?
And, please, be structured with bullet points`
options := llm.Options{
Temperature: 0.5, // default (0.8)
RepeatLastN: 2, // default (64)
RepeatPenalty: 2.0, // default (1.1)
}
query := llm.Query{
Model: model,
Messages: []llm.Message{
{Role: "system", Content: systemContent},
{Role: "user", Content: userContent},
},
Options: options,
Stream: false,
}
answer, err := completion.Chat(ollamaUrl, query)
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(answer.Message.Content)
}
β To keep a conversational memory for the next chat completion, update the list of messages with the previous question and answer.
Chat completion with stream
package main
import (
"fmt"
"log"
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/llm"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "deepseek-coder"
systemContent := `You are an expert in computer programming.
Please make friendly answer for the noobs.
Add source code examples if you can.`
userContent := `I need a clear explanation regarding the following question:
Can you create a "hello world" program in Golang?
And, please, be structured with bullet points`
options := llm.Options{
Temperature: 0.5, // default (0.8)
RepeatLastN: 2, // default (64)
}
query := llm.Query{
Model: model,
Messages: []llm.Message{
{Role: "system", Content: systemContent},
{Role: "user", Content: userContent},
},
Options: options,
Stream: false,
}
_, err := completion.ChatStream(ollamaUrl, query,
func(answer llm.Answer) error {
fmt.Print(answer.Message.Content)
return nil
})
if err != nil {
log.Fatal("π‘:", err)
}
}
Protected endpoint
If your Ollama endpoint is protected with a header token, you can specify the token like this:
query := llm.Query{
Model: model,
Messages: []llm.Message{
{Role: "system", Content: systemContent},
{Role: "user", Content: userContent},
},
Options: options,
TokenHeaderName: "X-TOKEN",
TokenHeaderValue: "john_doe",
}
Verbose mode
You can activate the "verbose mode" with all kinds of completions.
options := llm.Options{
Temperature: 0.5,
RepeatLastN: 2,
RepeatPenalty: 2.0,
Verbose: true,
}
You will get an output like this (with the query and the completion):
[llm/query] {
"model": "deepseek-coder",
"messages": [
{
"role": "system",
"content": "You are an expert in computer programming.\n\tPlease make friendly answer for the noobs.\n\tAdd source code examples if you can."
},
{
"role": "user",
"content": "I need a clear explanation regarding the following question:\n\tCan you create a \"hello world\" program in Golang?\n\tAnd, please, be structured with bullet points"
}
],
"options": {
"repeat_last_n": 2,
"temperature": 0.5,
"repeat_penalty": 2,
"Verbose": true
},
"stream": false,
"prompt": "",
"context": null,
"tools": null,
"TokenHeaderName": "",
"TokenHeaderValue": ""
}
[llm/completion] {
"model": "deepseek-coder",
"message": {
"role": "assistant",
"content": "Sure, here's a simple \"Hello, World!\" program in Golang.\n\t1. First, you need to have Golang installed on your machine.\n\t2. Open your text editor, and write the following code:\n\t```go\n\tpackage main\n\timport \"fmt\"\n\tfunc main() {\n\t fmt.Println(\"Hello, World!\")\n\t} \n\t```\n\t3. Save the file with a `.go` extension (like `hello.go`).\n\t4. In your terminal, navigate to the directory containing the `.go` file.\n\t5. Run the program with the command:\n\t```\n\tgo run hello.go\n\t```\n\t6. If everything goes well, you should see \"Hello, World!\" printed in your terminal.\n\t7. If there's an error, you will see the error message.\n\t8. If everything is correct, you'll see \"Hello, World!\" printed in your terminal.\n"
},
"done": true,
"response": "",
"context": null,
"created_at": "2024-08-19T05:57:23.979361Z",
"total_duration": 3361191958,
"load_duration": 2044932125,
"prompt_eval_count": 79,
"prompt_eval_duration": 95034000,
"eval_count": 222,
"eval_duration": 1216689000
}
Chat completion with conversational memory
In memory history
To store the messages in memory, use history.MemoryMessages
package main
import (
"fmt"
"log"
"github.com/parakeet-nest/parakeet/completion"
"github.com/parakeet-nest/parakeet/history"
"github.com/parakeet-nest/parakeet/llm"
)
func main() {
ollamaUrl := "http://localhost:11434"
model := "tinydolphin" // fast, and perfect answer (short, brief)
conversation := history.MemoryMessages{
Messages: make(map[string]llm.MessageRecord),
}
systemContent := `You are an expert with the Star Trek series. use the history of the conversation to answer the question`
userContent := `Who is James T Kirk?`
options := llm.Options{
Temperature: 0.5,
RepeatLastN: 2,
}
query := llm.Query{
Model: model,
Messages: []llm.Message{
{Role: "system", Content: systemContent},
{Role: "user", Content: userContent},
},
Options: options,
}
// Ask the question
answer, err := completion.ChatStream(ollamaUrl, query,
func(answer llm.Answer) error {
fmt.Print(answer.Message.Content)
return nil
},
)
if err != nil {
log.Fatal("π‘:", err)
}
// Save the conversation
_, err = conversation.SaveMessage("1", llm.Message{
Role: "user",
Content: userContent,
})
if err != nil {
log.Fatal("π‘:", err)
}
_, err = conversation.SaveMessage("2", llm.Message{
Role: "system",
Content: answer.Message.Content,
})
if err != nil {
log.Fatal("π‘:", err)
}
// New question
userContent = `Who is his best friend ?`
previousMessages, _ := conversation.GetAllMessages()
// (Re)Create the conversation
conversationMessages := []llm.Message{}
// instruction
conversationMessages = append(conversationMessages, llm.Message{Role: "system", Content: systemContent})
// history
conversationMessages = append(conversationMessages, previousMessages...)
// last question
conversationMessages = append(conversationMessages, llm.Message{Role: "user", Content: userContent})
query = llm.Query{
Model: model,
Messages: conversationMessages,
Options: options,
}
answer, err = completion.ChatStream(ollamaUrl, query,
func(answer llm.Answer) error {
fmt.Print(answer.Message.Content)
return nil
},
)
fmt.Println()
if err != nil {
log.Fatal("π‘:", err)
}
}
Bbolt history
Bbolt is an embedded key/value database for Go.
To store the messages in a bbolt bucket, use history.BboltMessages
conversation := history.BboltMessages{}
conversation.Initialize("../conversation.db")
π you will find a complete example in
examples/11-chat-conversational-bbolt
examples/11-chat-conversational-bbolt/begin
: start a conversation and save the historyexamples/11-chat-conversational-bbolt/resume
: load the messages from the history bucket and resue the conversation
Embeddings
Create embeddings
embedding, err := embeddings.CreateEmbedding(
ollamaUrl,
llm.Query4Embedding{
Model: "all-minilm",
Prompt: "Jean-Luc Picard is a fictional character in the Star Trek franchise.",
},
"Picard", // identifier
)
Vector stores
A vector store allows to store and search for embeddings in an efficient way.
In memory vector store
Create a store:
store := embeddings.MemoryVectorStore{
Records: make(map[string]llm.VectorRecord),
}
Save embeddings:
store.Save(embedding)
Search embeddings:
embeddingFromQuestion, err := embeddings.CreateEmbedding(
ollamaUrl,
llm.Query4Embedding{
Model: "all-minilm",
Prompt: "Who is Jean-Luc Picard?",
},
"question",
)
// find the nearest vector
similarity, _ := store.SearchMaxSimilarity(embeddingFromQuestion)
documentsContent := `<context><doc>` + similarity.Prompt + `</doc></context>`
π you will find a complete example in
examples/08-embeddings
Bbolt vector store
Bbolt is an embedded key/value database for Go.
Create a store, and open an existing store:
store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")
π you will find a complete example in
examples/09-embeddings-bbolt
examples/09-embeddings-bbolt/create-embeddings
: create and populate the vector storeexamples/09-embeddings-bbolt/use-embeddings
: search similarities in the vector store
Additional data
you can add additional data to a vector record (embedding):
embedding.Text()
embedding.Reference()
embedding.MetaData()
Create embeddings from text files and Similarity search
Create embeddings
ollamaUrl := "http://localhost:11434"
embeddingsModel := "all-minilm"
store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")
// Parse all golang source code of the examples
// Create embeddings from documents and save them in the store
counter := 0
_, err := content.ForEachFile("../../examples", ".go", func(path string) error {
data, err := os.ReadFile(path)
if err != nil {
return err
}
fmt.Println("π Creating embedding from:", path)
counter++
embedding, err := embeddings.CreateEmbedding(
ollamaUrl,
llm.Query4Embedding{
Model: embeddingsModel,
Prompt: string(data),
},
strconv.Itoa(counter), // don't forget the id (unique identifier)
)
fmt.Println("π¦ Created: ", len(embedding.Embedding))
if err != nil {
fmt.Println("π‘:", err)
} else {
_, err := store.Save(embedding)
if err != nil {
fmt.Println("π‘:", err)
}
}
return nil
})
if err != nil {
log.Fatalln("π‘:", err)
}
Similarity search
ollamaUrl := "http://localhost:11434"
embeddingsModel := "all-minilm"
chatModel := "magicoder:latest"
store := embeddings.BboltVectorStore{}
store.Initialize("../embeddings.db")
systemContent := `You are a Golang developer and an expert in computer programming.
Please make friendly answer for the noobs. Use the provided context and doc to answer.
Add source code examples if you can.`
// Question for the Chat system
userContent := `How to create a stream chat completion with Parakeet?`
// Create an embedding from the user question
embeddingFromQuestion, err := embeddings.CreateEmbedding(
ollamaUrl,
llm.Query4Embedding{
Model: embeddingsModel,
Prompt: userContent,
},
"question",
)
if err != nil {
log.Fatalln("π‘:", err)
}
fmt.Println("π searching for similarity...")
similarities, _ := store.SearchSimilarities(embeddingFromQuestion, 0.3)
// Generate the context from the similarities
// This will generate a string with a content like this one:
// `<context><doc>...<doc><doc>...<doc></context>`
documentsContent := embeddings.GenerateContextFromSimilarities(similarities)
fmt.Println("π similarities", len(similarities))
query := llm.Query{
Model: chatModel,
Messages: []llm.Message{
{Role: "system", Content: systemContent},
{Role: "system", Content: documentsContent},
{Role: "user", Content: userContent},
},
Options: llm.Options{
Temperature: 0.4,
RepeatLastN: 2,
},
Stream: false,
}
fmt.Println("")
fmt.Println("π€ answer:")
// Answer the question
_, err = completion.ChatStream(ollamaUrl, query,
func(answer llm.Answer) error {
fmt.Print(answer.Message.Content)
return nil
})
if err != nil {
log.Fatal("π‘:", err)
}
Other similarity search methods
SearchMaxSimilarity
searches for the vector record in the BboltVectorStore
that has the maximum cosine distance similarity to the given embeddingFromQuestion
:
similarity, _ := store.SearchMaxSimilarity(embeddingFromQuestion)
SearchTopNSimilarities
searches for vector records in the BboltVectorStore
that have a cosine distance similarity greater than or equal to the given limit
and returns the top n
records:
similarities, _ := store.SearchTopNSimilarities(embeddingFromQuestion, limit, n)
Chunkers and Splitters
There are three methods in the content
package to help you chunk and split text:
ChunkText
takes a text string and divides it into chunks of a specified size with a given overlap. It returns a slice of strings, where each string represents a chunk of the original text.
chunks := content.ChunkText(rulesContent, 900, 400)
SplitTextWithDelimiter
splits the given text using the specified delimiter and returns a slice of strings.
chunks := content.SplitTextWithDelimiter(rulesContent, "<!-- SPLIT -->")
SplitTextWithRegex
splits the given text using the provided regular expression delimiter. It returns a slice of strings containing the split parts of the text.
chunks := content.SplitTextWithRegex(rulesContent, `## *`)
Function Calling (before tool support)
What is "Function Calling"? First, it's not a feature where a LLM can call and execute a function. "Function Calling" is the ability for certain LLMs to provide a specific output with the same format (we could say: "a predictable output format").
So, the principle is simple:
- You (or your GenAI application) will create a prompt with a delimited list of tools (the functions) composed by name, descriptions, and parameters:
SayHello
,AddNumbers
, etc. - Then, you will add your question ("Hey, say 'hello' to Bob!") to the prompt and send all of this to the LLM.
- If the LLM "understand" that the
SayHello
function can be used to say "hello" to Bob, then the LLM will answer with only the name of the function with the parameter(s). For example:{"name":"SayHello","arguments":{"name":"Bob"}}
.
Then, it will be up to you to implement the call of the function.
The latest version (v0.3) of Mistral 7b supports function calling and is available for Ollama.
Define a list of tools
First, you have to provide the LLM with a list of tools with the following format:
toolsList := []llm.Tool{
{
Type: "function",
Function: llm.Function{
Name: "hello",
Description: "Say hello to a given person with his name",
Parameters: llm.Parameters{
Type: "object",
Properties: map[string]llm.Property{
"name": {
Type: "string",
Description: "The name of the person",
},
},
Required: []string{"name"},
},
},
},
{
Type: "function",
Function: llm.Function{
Name: "addNumbers",
Description: "Make an addition of the two given numbers",
Parameters: llm.Parameters{
Type: "object",
Properties: map[string]llm.Property{
"a": {
Type: "number",
Description: "first operand",
},
"b": {
Type: "number",
Description: "second operand",
},
},
Required: []string{"a", "b"},
},
},
},
}
Generate a prompt from the tools list and the user instructions
The tools.GenerateContent
method generates a string with the tools in JSON format surrounded by [AVAILABLE_TOOLS]
and [/AVAILABLE_TOOLS]
:
toolsContent, err := tools.GenerateContent(toolsList)
if err != nil {
log.Fatal("π‘:", err)
}
The tools.GenerateInstructions
method generates a string with the user instructions surrounded by [INST]
and [/INST]
:
userContent := tools.GenerateInstructions(`say "hello" to Bob`)
Then, you can add these two strings to the messages list:
messages := []llm.Message{
{Role: "system", Content: toolsContent},
{Role: "user", Content: userContent},
}
Send the prompt (messages) to the LLM
It's important to set the Temperature
to 0.0
:
options := llm.Options{
Temperature: 0.0,
RepeatLastN: 2,
RepeatPenalty: 2.0,
}
You must set the `Format` to `json` and `Raw` to `true`:
query := llm.Query{
Model: model,
Messages: messages,
Options: options,
Format: "json",
Raw: true,
}
When building the payload to be sent to Ollama, we need to set the
Raw
field to true, thanks to that, no formatting will be applied to the prompt (we override the prompt template of Mistral), and we need to set theFormat
field to"json"
.
No you can call the Chat
method. The answer of the LLM will be in JSON format:
answer, err := completion.Chat(ollamaUrl, query)
if err != nil {
log.Fatal("π‘:", err)
}
// PrettyString is a helper that prettyfies the JSON string
result, err := gear.PrettyString(answer.Message.Content)
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(result)
You should get this answer:
{
"name": "hello",
"arguments": {
"name": "Bob"
}
}
You can try with the other tool (or function):
userContent := tools.GenerateInstructions(`add 2 and 40`)
You should get this answer:
{
"name": "addNumbers",
"arguments": {
"a": 2,
"b": 40
}
}
Remark: always test the format of the output, even if Mistral is trained for "function calling", the result are not entirely predictable.
Look at this sample for a complete sample: examples/15-mistral-function-calling
Function Calling with LLMs that do not implement Function Calling
It is possible to reproduce this feature with some LLMs that do not implement the "Function Calling" feature natively, but we need to supervise them and explain precisely what we need. The result (the output) will be less predictable, so you will need to add some tests before using the output, but with some "clever" LLMs, you will obtain correct results. I did my experiments with phi3:mini.
The trick is simple:
Add this message at the begining of the list of messages:
systemContentIntroduction := `You have access to the following tools:`
Add this message at the end of the list of messages, just before the user message:
systemContentInstructions := `If the question of the user matched the description of a tool, the tool will be called.
To call a tool, respond with a JSON object with the following structure:
{
"name": <name of the called tool>,
"arguments": {
<name of the argument>: <value of the argument>
}
}
search the name of the tool in the list of tools with the Name field
`
At the end, you will have this:
messages := []llm.Message{
{Role: "system", Content: systemContentIntroduction},
{Role: "system", Content: toolsContent},
{Role: "system", Content: systemContentInstructions},
{Role: "user", Content: `say "hello" to Bob`},
}
Look at this sample for a complete sample: examples/17-fake-function-calling
Function Calling with tool support
Ollama API: chat request with tools https://github.com/ollama/ollama/blob/main/docs/api.md#chat-request-with-tools
Since Ollama 0.3.0
, Ollama supports tools calling, blog post: https://ollama.com/blog/tool-support.
A list of supported models can be found under the Tools category on the models page: https://ollama.com/search?c=tools
Define a list of tools
use a supported model
model := "mistral:7b"
toolsList := []llm.Tool{
{
Type: "function",
Function: llm.Function{
Name: "hello",
Description: "Say hello to a given person with his name",
Parameters: llm.Parameters{
Type: "object",
Properties: map[string]llm.Property{
"name": {
Type: "string",
Description: "The name of the person",
},
},
Required: []string{"name"},
},
},
},
{
Type: "function",
Function: llm.Function{
Name: "addNumbers",
Description: "Make an addition of the two given numbers",
Parameters: llm.Parameters{
Type: "object",
Properties: map[string]llm.Property{
"a": {
Type: "number",
Description: "first operand",
},
"b": {
Type: "number",
Description: "second operand",
},
},
Required: []string{"a", "b"},
},
},
},
}
Set the Tools property of the query
- set the
Temperature
to0.0
- you don't need to set the row mode to true
- set
query.Tools
withtoolsList
messages := []llm.Message{
{Role: "user", Content: `say "hello" to Bob`},
}
options := llm.Options{
Temperature: 0.0,
RepeatLastN: 2,
RepeatPenalty: 2.0,
}
query := llm.Query{
Model: model,
Messages: messages,
Tools: toolsList,
Options: options,
Format: "json",
}
Run the completion
answer, err := completion.Chat(ollamaUrl, query)
if err != nil {
log.Fatal("π‘:", err)
}
// It's a []map[string]interface{}
toolCalls := answer.Message.ToolCalls
// Convert toolCalls into a JSON string
jsonBytes, err := json.Marshal(toolCalls)
if err != nil {
log.Fatal("π‘:", err)
}
// Convert JSON bytes to string
result := string(jsonBytes)
fmt.Println(result)
The result will look like this:
[{"function":{"arguments":{"name":"Bob"},"name":"hello"}}]
Or you can use the ToolCallsToJSONString
helper
answer, err = completion.Chat(ollamaUrl, query)
if err != nil {
log.Fatal("π‘:", err)
}
result, err = answer.Message.ToolCallsToJSONString()
if err != nil {
log.Fatal("π‘:", err)
}
fmt.Println(result)
The result will look like this:
[{"function":{"arguments":{"name":"Bob"},"name":"hello"}}]
Look at this sample for a complete sample: examples/19-mistral-function-calling-tool-support
Wasm plugins
The release 0.0.6
of Parakeet brings the support of WebAssembly thanks to the Extism project. That means you can write your own wasm plugins for Parakeet to add new features (for example, a chunking helper for doing RAG) with various languages (Rust, Go, C, ...).
Or you can use the Wasm plugins with the "Function Calling" feature, which is implemented in Parakeet.
You can find an example of "Wasm Function Calling" in examples/18-call-functions-for-real - the wasm plugin is located in the wasm
folder and it is built with TinyGo.
π§ more samples to come.
Other Parakeet methods
Get Information about a model
llm.ShowModelInformation(url, model string) (llm.ModelInformation, int, error)
ShowModelInformation
retrieves information about a model from the specified URL.
Parameters:
- url: the base URL of the API.
- model: the name of the model to retrieve information for.
Returns:
- ModelInformation: the information about the model.
- int: the HTTP status code of the response.
- error: an error if the request fails.
β Remark: if the model does not exist, it will return an error with a status code of 404.
Pull a model
llm.PullModel(url, model string) (llm.PullResult, int, error)
PullModel
sends a POST request to the specified URL to pull a model with the given name.
Parameters:
- url: The URL to send the request to.
- model: The name of the model to pull.
Returns:
- PullResult: The result of the pull operation.
- int: The HTTP status code of the response.
- error: An error if the request fails.
Prompt helpers
Meta prompts
package:
prompt
Meta-prompts are special instructions embedded within a prompt to guide a language model in generating a specific kind of response.
Meta-Prompt | Purpose |
---|---|
[Brief] What is AI? | For a concise answer |
[In Laymanβs Terms] Explain LLM | For a simplified explanation |
[As a Story] Describe the evolution of cars | To get the information in story form |
[Pros and Cons] Is AI useful? | For a balanced view with advantages and disadvantages |
[Step-by-Step] How to do a smart prompt? | For a detailed, step-by-step guide |
[Factual] What is the best pizza of the world? | For a straightforward, factual answer |
[Opinion] What is the best pizza of the world? | To get an opinion-based answer |
[Comparison] Compare pineapple pizza to pepperoni pizza | For a comparative analysis |
[Timeline] What are the key milestones to develop a WebApp? | For a chronological account of key events |
[As a Poem] How to cook a cake? | For a poetic description |
[For Kids] How to cook a cake? | For a child-friendly explanation |
[Advantages Only] What are the benefits of AI? | To get a list of only the advantages |
[As a Recipe] How to cook a cake? | To receive the information in the form of a recipe |
prompt.Brief(s string) string
prompt.InLaymansTerms(s string) string
prompt.AsAStory(s string) string
prompt.ProsAndCons(s string) string
prompt.StepByStep(s string) string
prompt.Factual(s string) string
prompt.Opinion(s string) string
prompt.Comparison(s string) string
prompt.Timeline(s string) string
prompt.AsAPoem(s string) string
prompt.ForKids(s string) string
prompt.AdvantagesOnly(s string) string
prompt.AsARecipe(s string) string
Parakeet Demos
Blog Posts
Documentation ΒΆ
Index ΒΆ
Constants ΒΆ
This section is empty.
Variables ΒΆ
var About = "π¦ Parakeet v0.1.0 π [blue-book]"
var Version = "v0.1.0"
Functions ΒΆ
This section is empty.
Types ΒΆ
This section is empty.