trie

package
v0.0.7 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 29, 2024 License: GPL-3.0 Imports: 21 Imported by: 0

Documentation

Overview

Package trie implements Merkle Patricia Tries.

Index

Constants

This section is empty.

Variables

View Source
var ErrAlreadyProcessed = errors.New("already processed")

ErrAlreadyProcessed is returned by the trie sync when it's requested to process a node it already processed previously.

View Source
var ErrCommitted = errors.New("trie is already committed")

ErrCommitted is returned when a already committed trie is requested for usage. The potential usages can be `Get`, `Update`, `Delete`, `NodeIterator`, `Prove` and so on.

View Source
var ErrNotRequested = errors.New("not requested")

ErrNotRequested is returned by the trie sync when it's requested to process a node it did not request.

View Source
var HashDefaults = &Config{
	Preimages: false,
	HashDB:    hashdb.Defaults,
}

HashDefaults represents a config for using hash-based scheme with default settings.

Functions

func ResolvePath

func ResolvePath(path []byte) (common.Hash, []byte)

ResolvePath resolves the provided composite node path by separating the path in account trie if it's existent.

func VerifyProof

func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error)

VerifyProof checks merkle proofs. The given proof must contain the value for key in a trie with the given root hash. VerifyProof returns an error if the proof contains invalid trie nodes or the wrong value.

func VerifyRangeProof

func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error)

VerifyRangeProof checks whether the given leaf nodes and edge proof can prove the given trie leaves range is matched with the specific root. Besides, the range should be consecutive (no gap inside) and monotonic increasing.

Note the given proof actually contains two edge proofs. Both of them can be non-existent proofs. For example the first proof is for a non-existent key 0x03, the last proof is for a non-existent key 0x10. The given batch leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given batch is valid.

The firstKey is paired with firstProof, not necessarily the same as keys[0] (unless firstProof is an existent proof). Similarly, lastKey and lastProof are paired.

Expect the normal case, this function can also be used to verify the following range proofs:

  • All elements proof. In this case the proof can be nil, but the range should be all the leaves in the trie.

  • One element proof. In this case no matter the edge proof is a non-existent proof or not, we can always verify the correctness of the proof.

  • Zero element proof. In this case a single non-existent proof is enough to prove. Besides, if there are still some other leaves available on the right side, then an error will be returned.

Except returning the error to indicate the proof is valid or not, the function will also return a flag to indicate whether there exists more accounts/slots in the trie.

Note: This method does not verify that the proof is of minimal form. If the input proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful' data, then the proof will still be accepted.

Types

type CodeSyncResult

type CodeSyncResult struct {
	Hash common.Hash // Hash the originally unknown bytecode
	Data []byte      // Data content of the retrieved bytecode
}

CodeSyncResult is a response with requested bytecode along with its hash.

type Config

type Config struct {
	Preimages bool           // Flag whether the preimage of node key is recorded
	HashDB    *hashdb.Config // Configs for hash-based scheme
	PathDB    *pathdb.Config // Configs for experimental path-based scheme
}

Config defines all necessary options for database.

type Database

type Database struct {
	// contains filtered or unexported fields
}

Database is the wrapper of the underlying backend which is shared by different types of node backend as an entrypoint. It's responsible for all interactions relevant with trie nodes and node preimages.

func NewDatabase

func NewDatabase(diskdb ethdb.Database, config *Config) *Database

NewDatabase initializes the trie database with default settings, note the legacy hash-based scheme is used by default.

func (*Database) Cap

func (db *Database) Cap(limit common.StorageSize) error

Cap iteratively flushes old but still referenced trie nodes until the total memory usage goes below the given threshold. The held pre-images accumulated up to this point will be flushed in case the size exceeds the threshold.

It's only supported by hash-based database and will return an error for others.

func (*Database) Close

func (db *Database) Close() error

Close flushes the dangling preimages to disk and closes the trie database. It is meant to be called when closing the blockchain object, so that all resources held can be released correctly.

func (*Database) Commit

func (db *Database) Commit(root common.Hash, report bool) error

Commit iterates over all the children of a particular node, writes them out to disk. As a side effect, all pre-images accumulated up to this point are also written.

func (*Database) Dereference

func (db *Database) Dereference(root common.Hash) error

Dereference removes an existing reference from a root node. It's only supported by hash-based database and will return an error for others.

func (*Database) Disable

func (db *Database) Disable() error

Disable deactivates the database and invalidates all available state layers as stale to prevent access to the persistent state, which is in the syncing stage.

It's only supported by path-based database and will return an error for others.

func (*Database) Enable

func (db *Database) Enable(root common.Hash) error

Enable activates database and resets the state tree with the provided persistent state root once the state sync is finished.

func (*Database) Initialized

func (db *Database) Initialized(genesisRoot common.Hash) bool

Initialized returns an indicator if the state data is already initialized according to the state scheme.

func (*Database) Journal

func (db *Database) Journal(root common.Hash) error

Journal commits an entire diff hierarchy to disk into a single journal entry. This is meant to be used during shutdown to persist the snapshot without flattening everything down (bad for reorgs). It's only supported by path-based database and will return an error for others.

func (*Database) Node

func (db *Database) Node(hash common.Hash) ([]byte, error)

Node retrieves the rlp-encoded node blob with provided node hash. It's only supported by hash-based database and will return an error for others. Note, this function should be deprecated once ETH66 is deprecated.

func (*Database) Preimage

func (db *Database) Preimage(hash common.Hash) []byte

Preimage retrieves a cached trie node pre-image from memory. If it cannot be found cached, the method queries the persistent database for the content.

func (*Database) Reader

func (db *Database) Reader(blockRoot common.Hash) (Reader, error)

Reader returns a reader for accessing all trie nodes with provided state root. An error will be returned if the requested state is not available.

func (*Database) Recover

func (db *Database) Recover(target common.Hash) error

Recover rollbacks the database to a specified historical point. The state is supported as the rollback destination only if it's canonical state and the corresponding trie histories are existent. It's only supported by path-based database and will return an error for others.

func (*Database) Recoverable

func (db *Database) Recoverable(root common.Hash) (bool, error)

Recoverable returns the indicator if the specified state is enabled to be recovered. It's only supported by path-based database and will return an error for others.

func (*Database) Reference

func (db *Database) Reference(root common.Hash, parent common.Hash) error

Reference adds a new reference from a parent node to a child node. This function is used to add reference between internal trie node and external node(e.g. storage trie root), all internal trie nodes are referenced together by database itself.

It's only supported by hash-based database and will return an error for others.

func (*Database) Scheme

func (db *Database) Scheme() string

Scheme returns the node scheme used in the database.

func (*Database) SetBufferSize

func (db *Database) SetBufferSize(size int) error

SetBufferSize sets the node buffer size to the provided value(in bytes). It's only supported by path-based database and will return an error for others.

func (*Database) Size

Size returns the storage size of diff layer nodes above the persistent disk layer, the dirty nodes buffered within the disk layer, and the size of cached preimages.

func (*Database) Update

func (db *Database) Update(root common.Hash, parent common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error

Update performs a state transition by committing dirty nodes contained in the given set in order to update state from the specified parent to the specified root. The held pre-images accumulated up to this point will be flushed in case the size exceeds the threshold.

The passed in maps(nodes, states) will be retained to avoid copying everything. Therefore, these maps must not be changed afterwards.

func (*Database) WritePreimages

func (db *Database) WritePreimages()

WritePreimages flushes all accumulated preimages to disk forcibly.

type ID

type ID struct {
	StateRoot common.Hash // The root of the corresponding state(block.root)
	Owner     common.Hash // The contract address hash which the trie belongs to
	Root      common.Hash // The root hash of trie
}

ID is the identifier for uniquely identifying a trie.

func StateTrieID

func StateTrieID(root common.Hash) *ID

StateTrieID constructs an identifier for state trie with the provided state root.

func StorageTrieID

func StorageTrieID(stateRoot common.Hash, owner common.Hash, root common.Hash) *ID

StorageTrieID constructs an identifier for storage trie which belongs to a certain state and contract specified by the stateRoot and owner.

func TrieID

func TrieID(root common.Hash) *ID

TrieID constructs an identifier for a standard trie(not a second-layer trie) with provided root. It's mostly used in tests and some other tries like CHT trie.

type Iterator

type Iterator struct {
	Key   []byte // Current data key on which the iterator is positioned on
	Value []byte // Current data value on which the iterator is positioned on
	Err   error
	// contains filtered or unexported fields
}

Iterator is a key-value trie iterator that traverses a Trie.

func NewIterator

func NewIterator(it NodeIterator) *Iterator

NewIterator creates a new key-value iterator from a node iterator. Note that the value returned by the iterator is raw. If the content is encoded (e.g. storage value is RLP-encoded), it's caller's duty to decode it.

func (*Iterator) Next

func (it *Iterator) Next() bool

Next moves the iterator forward one key-value entry.

func (*Iterator) Prove

func (it *Iterator) Prove() [][]byte

Prove generates the Merkle proof for the leaf node the iterator is currently positioned on.

type LeafCallback

type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error

LeafCallback is a callback type invoked when a trie operation reaches a leaf node.

The keys is a path tuple identifying a particular trie node either in a single trie (account) or a layered trie (account -> storage). Each key in the tuple is in the raw format(32 bytes).

The path is a composite hexary path identifying the trie node. All the key bytes are converted to the hexary nibbles and composited with the parent path if the trie node is in a layered trie.

It's used by state sync and commit to allow handling external references between account and storage tries. And also it's used in the state healing for extracting the raw states(leaf nodes) with corresponding paths.

type MissingNodeError

type MissingNodeError struct {
	Owner    common.Hash // owner of the trie if it's 2-layered trie
	NodeHash common.Hash // hash of the missing node
	Path     []byte      // hex-encoded path to the missing node
	// contains filtered or unexported fields
}

MissingNodeError is returned by the trie functions (Get, Update, Delete) in the case where a trie node is not present in the local database. It contains information necessary for retrieving the missing node.

func (*MissingNodeError) Error

func (err *MissingNodeError) Error() string

func (*MissingNodeError) Unwrap

func (err *MissingNodeError) Unwrap() error

Unwrap returns the concrete error for missing trie node which allows us for further analysis outside.

type NodeIterator

type NodeIterator interface {
	// Next moves the iterator to the next node. If the parameter is false, any child
	// nodes will be skipped.
	Next(bool) bool

	// Error returns the error status of the iterator.
	Error() error

	// Hash returns the hash of the current node.
	Hash() common.Hash

	// Parent returns the hash of the parent of the current node. The hash may be the one
	// grandparent if the immediate parent is an internal node with no hash.
	Parent() common.Hash

	// Path returns the hex-encoded path to the current node.
	// Callers must not retain references to the return value after calling Next.
	// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
	Path() []byte

	// NodeBlob returns the rlp-encoded value of the current iterated node.
	// If the node is an embedded node in its parent, nil is returned then.
	NodeBlob() []byte

	// Leaf returns true iff the current node is a leaf node.
	Leaf() bool

	// LeafKey returns the key of the leaf. The method panics if the iterator is not
	// positioned at a leaf. Callers must not retain references to the value after
	// calling Next.
	LeafKey() []byte

	// LeafBlob returns the content of the leaf. The method panics if the iterator
	// is not positioned at a leaf. Callers must not retain references to the value
	// after calling Next.
	LeafBlob() []byte

	// LeafProof returns the Merkle proof of the leaf. The method panics if the
	// iterator is not positioned at a leaf. Callers must not retain references
	// to the value after calling Next.
	LeafProof() [][]byte

	// AddResolver sets a node resolver to use for looking up trie nodes before
	// reaching into the real persistent layer.
	//
	// This is not required for normal operation, rather is an optimization for
	// cases where trie nodes can be recovered from some external mechanism without
	// reading from disk. In those cases, this resolver allows short circuiting
	// accesses and returning them from memory.
	//
	// Before adding a similar mechanism to any other place in Geth, consider
	// making trie.Database an interface and wrapping at that level. It's a huge
	// refactor, but it could be worth it if another occurrence arises.
	AddResolver(NodeResolver)
}

NodeIterator is an iterator to traverse the trie pre-order.

func NewDifferenceIterator

func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int)

NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that are not in a. Returns the iterator, and a pointer to an integer recording the number of nodes seen.

func NewUnionIterator

func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int)

NewUnionIterator constructs a NodeIterator that iterates over elements in the union of the provided NodeIterators. Returns the iterator, and a pointer to an integer recording the number of nodes visited.

type NodeResolver

type NodeResolver func(owner common.Hash, path []byte, hash common.Hash) []byte

NodeResolver is used for looking up trie nodes before reaching into the real persistent layer. This is not mandatory, rather is an optimization for cases where trie nodes can be recovered from some external mechanism without reading from disk. In those cases, this resolver allows short circuiting accesses and returning them from memory.

type NodeSyncResult

type NodeSyncResult struct {
	Path string // Path of the originally unknown trie node
	Data []byte // Data content of the retrieved trie node
}

NodeSyncResult is a response with requested trie node along with its node path.

type Reader

type Reader interface {
	// Node retrieves the trie node blob with the provided trie identifier, node path and
	// the corresponding node hash. No error will be returned if the node is not found.
	//
	// When looking up nodes in the account trie, 'owner' is the zero hash. For contract
	// storage trie nodes, 'owner' is the hash of the account address that containing the
	// storage.
	//
	// TODO(rjl493456442): remove the 'hash' parameter, it's redundant in PBSS.
	Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error)
}

Reader wraps the Node method of a backing trie store.

type SecureTrie

type SecureTrie = StateTrie

SecureTrie is the old name of StateTrie. Deprecated: use StateTrie.

func NewSecure

func NewSecure(stateRoot common.Hash, owner common.Hash, root common.Hash, db *Database) (*SecureTrie, error)

NewSecure creates a new StateTrie. Deprecated: use NewStateTrie.

type StackTrie

type StackTrie struct {
	// contains filtered or unexported fields
}

StackTrie is a trie implementation that expects keys to be inserted in order. Once it determines that a subtree will no longer be inserted into, it will hash it and free up the memory it uses.

func NewStackTrie

func NewStackTrie(options *StackTrieOptions) *StackTrie

NewStackTrie allocates and initializes an empty trie.

func (*StackTrie) Commit

func (t *StackTrie) Commit() common.Hash

Commit will firstly hash the entire trie if it's still not hashed and then commit all nodes to the associated database. Actually most of the trie nodes have been committed already. The main purpose here is to commit the nodes on right boundary.

For stack trie, Hash and Commit are functionally identical.

func (*StackTrie) Hash

func (t *StackTrie) Hash() common.Hash

Hash will firstly hash the entire trie if it's still not hashed and then commit all nodes to the associated database. Actually most of the trie nodes have been committed already. The main purpose here is to commit the nodes on right boundary.

For stack trie, Hash and Commit are functionally identical.

func (*StackTrie) MustUpdate

func (t *StackTrie) MustUpdate(key, value []byte)

MustUpdate is a wrapper of Update and will omit any encountered error but just print out an error message.

func (*StackTrie) Reset

func (t *StackTrie) Reset()

Reset resets the stack trie object to empty state.

func (*StackTrie) Update

func (t *StackTrie) Update(key, value []byte) error

Update inserts a (key, value) pair into the stack trie.

type StackTrieOptions

type StackTrieOptions struct {
	Writer  func(path []byte, hash common.Hash, blob []byte) // The function to commit the dirty nodes
	Cleaner func(path []byte)                                // The function to clean up dangling nodes

	SkipLeftBoundary  bool // Flag whether the nodes on the left boundary are skipped for committing
	SkipRightBoundary bool // Flag whether the nodes on the right boundary are skipped for committing
	// contains filtered or unexported fields
}

StackTrieOptions contains the configured options for manipulating the stackTrie.

func NewStackTrieOptions

func NewStackTrieOptions() *StackTrieOptions

NewStackTrieOptions initializes an empty options for stackTrie.

func (*StackTrieOptions) WithCleaner

func (o *StackTrieOptions) WithCleaner(cleaner func(path []byte)) *StackTrieOptions

WithCleaner configures the cleaner in the option for removing dangling nodes.

func (*StackTrieOptions) WithSkipBoundary

func (o *StackTrieOptions) WithSkipBoundary(skipLeft, skipRight bool, gauge metrics.Gauge) *StackTrieOptions

WithSkipBoundary configures whether the left and right boundary nodes are filtered for committing, along with a gauge metrics to track how many boundary nodes are met.

func (*StackTrieOptions) WithWriter

func (o *StackTrieOptions) WithWriter(writer func(path []byte, hash common.Hash, blob []byte)) *StackTrieOptions

WithWriter configures trie node writer within the options.

type StateTrie

type StateTrie struct {
	// contains filtered or unexported fields
}

StateTrie wraps a trie with key hashing. In a stateTrie trie, all access operations hash the key using keccak256. This prevents calling code from creating long chains of nodes that increase the access time.

Contrary to a regular trie, a StateTrie can only be created with New and must have an attached database. The database also stores the preimage of each key if preimage recording is enabled.

StateTrie is not safe for concurrent use.

func NewStateTrie

func NewStateTrie(id *ID, db *Database) (*StateTrie, error)

NewStateTrie creates a trie with an existing root node from a backing database.

If root is the zero hash or the sha3 hash of an empty string, the trie is initially empty. Otherwise, New will panic if db is nil and returns MissingNodeError if the root node cannot be found.

func (*StateTrie) Commit

func (t *StateTrie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error)

Commit collects all dirty nodes in the trie and replaces them with the corresponding node hash. All collected nodes (including dirty leaves if collectLeaf is true) will be encapsulated into a nodeset for return. The returned nodeset can be nil if the trie is clean (nothing to commit). All cached preimages will be also flushed if preimages recording is enabled. Once the trie is committed, it's not usable anymore. A new trie must be created with new root and updated trie database for following usage

func (*StateTrie) Copy

func (t *StateTrie) Copy() *StateTrie

Copy returns a copy of StateTrie.

func (*StateTrie) DeleteAccount

func (t *StateTrie) DeleteAccount(address common.Address) error

DeleteAccount abstracts an account deletion from the trie.

func (*StateTrie) DeleteStorage

func (t *StateTrie) DeleteStorage(_ common.Address, key []byte) error

DeleteStorage removes any existing storage slot from the trie. If the specified trie node is not in the trie, nothing will be changed. If a node is not found in the database, a MissingNodeError is returned.

func (*StateTrie) GetAccount

func (t *StateTrie) GetAccount(address common.Address) (*types.StateAccount, error)

GetAccount attempts to retrieve an account with provided account address. If the specified account is not in the trie, nil will be returned. If a trie node is not found in the database, a MissingNodeError is returned.

func (*StateTrie) GetAccountByHash

func (t *StateTrie) GetAccountByHash(addrHash common.Hash) (*types.StateAccount, error)

GetAccountByHash does the same thing as GetAccount, however it expects an account hash that is the hash of address. This constitutes an abstraction leak, since the client code needs to know the key format.

func (*StateTrie) GetKey

func (t *StateTrie) GetKey(shaKey []byte) []byte

GetKey returns the sha3 preimage of a hashed key that was previously used to store a value.

func (*StateTrie) GetNode

func (t *StateTrie) GetNode(path []byte) ([]byte, int, error)

GetNode attempts to retrieve a trie node by compact-encoded path. It is not possible to use keybyte-encoding as the path might contain odd nibbles. If the specified trie node is not in the trie, nil will be returned. If a trie node is not found in the database, a MissingNodeError is returned.

func (*StateTrie) GetStorage

func (t *StateTrie) GetStorage(_ common.Address, key []byte) ([]byte, error)

GetStorage attempts to retrieve a storage slot with provided account address and slot key. The value bytes must not be modified by the caller. If the specified storage slot is not in the trie, nil will be returned. If a trie node is not found in the database, a MissingNodeError is returned.

func (*StateTrie) Hash

func (t *StateTrie) Hash() common.Hash

Hash returns the root hash of StateTrie. It does not write to the database and can be used even if the trie doesn't have one.

func (*StateTrie) MustDelete

func (t *StateTrie) MustDelete(key []byte)

MustDelete removes any existing value for key from the trie. This function will omit any encountered error but just print out an error message.

func (*StateTrie) MustGet

func (t *StateTrie) MustGet(key []byte) []byte

MustGet returns the value for key stored in the trie. The value bytes must not be modified by the caller.

This function will omit any encountered error but just print out an error message.

func (*StateTrie) MustNodeIterator

func (t *StateTrie) MustNodeIterator(start []byte) NodeIterator

MustNodeIterator is a wrapper of NodeIterator and will omit any encountered error but just print out an error message.

func (*StateTrie) MustUpdate

func (t *StateTrie) MustUpdate(key, value []byte)

MustUpdate associates key with value in the trie. Subsequent calls to Get will return value. If value has length zero, any existing value is deleted from the trie and calls to Get will return nil.

The value bytes must not be modified by the caller while they are stored in the trie.

This function will omit any encountered error but just print out an error message.

func (*StateTrie) NodeIterator

func (t *StateTrie) NodeIterator(start []byte) (NodeIterator, error)

NodeIterator returns an iterator that returns nodes of the underlying trie. Iteration starts at the key after the given start key.

func (*StateTrie) Prove

func (t *StateTrie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error

Prove constructs a merkle proof for key. The result contains all encoded nodes on the path to the value at key. The value itself is also included in the last node and can be retrieved by verifying the proof.

If the trie does not contain a value for key, the returned proof contains all nodes of the longest existing prefix of the key (at least the root node), ending with the node that proves the absence of the key.

func (*StateTrie) UpdateAccount

func (t *StateTrie) UpdateAccount(address common.Address, acc *types.StateAccount) error

UpdateAccount will abstract the write of an account to the secure trie.

func (*StateTrie) UpdateContractCode

func (t *StateTrie) UpdateContractCode(_ common.Address, _ common.Hash, _ []byte) error

func (*StateTrie) UpdateStorage

func (t *StateTrie) UpdateStorage(_ common.Address, key, value []byte) error

UpdateStorage associates key with value in the trie. Subsequent calls to Get will return value. If value has length zero, any existing value is deleted from the trie and calls to Get will return nil.

The value bytes must not be modified by the caller while they are stored in the trie.

If a node is not found in the database, a MissingNodeError is returned.

type Sync

type Sync struct {
	// contains filtered or unexported fields
}

Sync is the main state trie synchronisation scheduler, which provides yet unknown trie hashes to retrieve, accepts node data associated with said hashes and reconstructs the trie step by step until all is done.

func NewSync

func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, scheme string) *Sync

NewSync creates a new trie data download scheduler.

func (*Sync) AddCodeEntry

func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash, parentPath []byte)

AddCodeEntry schedules the direct retrieval of a contract code that should not be interpreted as a trie node, but rather accepted and stored into the database as is.

func (*Sync) AddSubTrie

func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, parentPath []byte, callback LeafCallback)

AddSubTrie registers a new trie to the sync code, rooted at the designated parent for completion tracking. The given path is a unique node path in hex format and contain all the parent path if it's layered trie node.

func (*Sync) Commit

func (s *Sync) Commit(dbw ethdb.Batch) error

Commit flushes the data stored in the internal membatch out to persistent storage, returning any occurred error.

func (*Sync) MemSize

func (s *Sync) MemSize() uint64

MemSize returns an estimated size (in bytes) of the data held in the membatch.

func (*Sync) Missing

func (s *Sync) Missing(max int) ([]string, []common.Hash, []common.Hash)

Missing retrieves the known missing nodes from the trie for retrieval. To aid both eth/6x style fast sync and snap/1x style state sync, the paths of trie nodes are returned too, as well as separate hash list for codes.

func (*Sync) Pending

func (s *Sync) Pending() int

Pending returns the number of state entries currently pending for download.

func (*Sync) ProcessCode

func (s *Sync) ProcessCode(result CodeSyncResult) error

ProcessCode injects the received data for requested item. Note it can happen that the single response commits two pending requests(e.g. there are two requests one for code and one for node but the hash is same). In this case the second response for the same hash will be treated as "non-requested" item or "already-processed" item but there is no downside.

func (*Sync) ProcessNode

func (s *Sync) ProcessNode(result NodeSyncResult) error

ProcessNode injects the received data for requested item. Note it can happen that the single response commits two pending requests(e.g. there are two requests one for code and one for node but the hash is same). In this case the second response for the same hash will be treated as "non-requested" item or "already-processed" item but there is no downside.

type SyncPath

type SyncPath [][]byte

SyncPath is a path tuple identifying a particular trie node either in a single trie (account) or a layered trie (account -> storage).

Content wise the tuple either has 1 element if it addresses a node in a single trie or 2 elements if it addresses a node in a stacked trie.

To support aiming arbitrary trie nodes, the path needs to support odd nibble lengths. To avoid transferring expanded hex form over the network, the last part of the tuple (which needs to index into the middle of a trie) is compact encoded. In case of a 2-tuple, the first item is always 32 bytes so that is simple binary encoded.

Examples:

  • Path 0x9 -> {0x19}
  • Path 0x99 -> {0x0099}
  • Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19}
  • Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099}

func NewSyncPath

func NewSyncPath(path []byte) SyncPath

NewSyncPath converts an expanded trie path from nibble form into a compact version that can be sent over the network.

type Trie

type Trie struct {
	// contains filtered or unexported fields
}

Trie is a Merkle Patricia Trie. Use New to create a trie that sits on top of a database. Whenever trie performs a commit operation, the generated nodes will be gathered and returned in a set. Once the trie is committed, it's not usable anymore. Callers have to re-create the trie with new root based on the updated trie database.

Trie is not safe for concurrent use.

func New

func New(id *ID, db *Database) (*Trie, error)

New creates the trie instance with provided trie id and the read-only database. The state specified by trie id must be available, otherwise an error will be returned. The trie root specified by trie id can be zero hash or the sha3 hash of an empty string, then trie is initially empty, otherwise, the root node must be present in database or returns a MissingNodeError if not.

func NewEmpty

func NewEmpty(db *Database) *Trie

NewEmpty is a shortcut to create empty tree. It's mostly used in tests.

func (*Trie) Commit

func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error)

Commit collects all dirty nodes in the trie and replaces them with the corresponding node hash. All collected nodes (including dirty leaves if collectLeaf is true) will be encapsulated into a nodeset for return. The returned nodeset can be nil if the trie is clean (nothing to commit). Once the trie is committed, it's not usable anymore. A new trie must be created with new root and updated trie database for following usage

func (*Trie) Copy

func (t *Trie) Copy() *Trie

Copy returns a copy of Trie.

func (*Trie) Delete

func (t *Trie) Delete(key []byte) error

Delete removes any existing value for key from the trie.

If the requested node is not present in trie, no error will be returned. If the trie is corrupted, a MissingNodeError is returned.

func (*Trie) Get

func (t *Trie) Get(key []byte) ([]byte, error)

Get returns the value for key stored in the trie. The value bytes must not be modified by the caller.

If the requested node is not present in trie, no error will be returned. If the trie is corrupted, a MissingNodeError is returned.

func (*Trie) GetNode

func (t *Trie) GetNode(path []byte) ([]byte, int, error)

GetNode retrieves a trie node by compact-encoded path. It is not possible to use keybyte-encoding as the path might contain odd nibbles.

If the requested node is not present in trie, no error will be returned. If the trie is corrupted, a MissingNodeError is returned.

func (*Trie) Hash

func (t *Trie) Hash() common.Hash

Hash returns the root hash of the trie. It does not write to the database and can be used even if the trie doesn't have one.

func (*Trie) MustDelete

func (t *Trie) MustDelete(key []byte)

MustDelete is a wrapper of Delete and will omit any encountered error but just print out an error message.

func (*Trie) MustGet

func (t *Trie) MustGet(key []byte) []byte

MustGet is a wrapper of Get and will omit any encountered error but just print out an error message.

func (*Trie) MustGetNode

func (t *Trie) MustGetNode(path []byte) ([]byte, int)

MustGetNode is a wrapper of GetNode and will omit any encountered error but just print out an error message.

func (*Trie) MustNodeIterator

func (t *Trie) MustNodeIterator(start []byte) NodeIterator

MustNodeIterator is a wrapper of NodeIterator and will omit any encountered error but just print out an error message.

func (*Trie) MustUpdate

func (t *Trie) MustUpdate(key, value []byte)

MustUpdate is a wrapper of Update and will omit any encountered error but just print out an error message.

func (*Trie) NodeIterator

func (t *Trie) NodeIterator(start []byte) (NodeIterator, error)

NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at the key after the given start key.

func (*Trie) Prove

func (t *Trie) Prove(key []byte, proofDb ethdb.KeyValueWriter) error

Prove constructs a merkle proof for key. The result contains all encoded nodes on the path to the value at key. The value itself is also included in the last node and can be retrieved by verifying the proof.

If the trie does not contain a value for key, the returned proof contains all nodes of the longest existing prefix of the key (at least the root node), ending with the node that proves the absence of the key.

func (*Trie) Reset

func (t *Trie) Reset()

Reset drops the referenced root node and cleans all internal state.

func (*Trie) Update

func (t *Trie) Update(key, value []byte) error

Update associates key with value in the trie. Subsequent calls to Get will return value. If value has length zero, any existing value is deleted from the trie and calls to Get will return nil.

The value bytes must not be modified by the caller while they are stored in the trie.

If the requested node is not present in trie, no error will be returned. If the trie is corrupted, a MissingNodeError is returned.

Directories

Path Synopsis
triedb

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL