grafanalib

module
v0.1.2 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Jan 3, 2017 License: Apache-2.0

README

==========
grafanalib
==========

.. image:: https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield
    :target: https://circleci.com/gh/weaveworks/grafanalib

Do you like `Grafana <http://grafana.org/>`_ but wish you could version your
dashboard configuration? Do you find yourself repeating common patterns? If
so, grafanalib is for you.

grafanalib lets you generate Grafana dashboards from simple Python scripts.

Writing dashboards
==================

The following will configure a dashboard with a single row, with one QPS graph
broken down by status code and another latency graph showing median and 99th
percentile latency:

.. code-block:: python

  import itertools

  from grafanalib.core import *


  GRAPH_ID = itertools.count(1)


  dashboard = Dashboard(
    title="Frontend Stats",
    rows=[
      Row(panels=[
        Graph(
          title="Frontend QPS",
          dataSource='My Prometheus',
          targets=[
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
              legendFormat="1xx",
              refId='A',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
              legendFormat="2xx",
              refId='B',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
              legendFormat="3xx",
              refId='C',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
              legendFormat="4xx",
              refId='D',
            ),
            Target(
              expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
              legendFormat="5xx",
              refId='E',
            ),
          ],
          id=next(GRAPH_ID),
          yAxes=[
            YAxis(format=OPS_FORMAT),
            YAxis(format=SHORT_FORMAT),
          ],
        ),
        Graph(
          title="Frontend latency",
          dataSource='My Prometheus',
          targets=[
            Target(
              expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
              legendFormat="0.5 quantile",
              refId='A',
            ),
            Target(
              expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
              legendFormat="0.99 quantile",
              refId='B',
            ),
          ],
          id=next(GRAPH_ID),
          yAxes=[
            YAxis(
              format=SECONDS_FORMAT,
            ),
            YAxis(
              format=SHORT_FORMAT,
              show=False,
            )
          ],
        ),
      ]),
    ],
  )

There is a fair bit of repetition here, but once you figure out what works for
your needs, you can factor that out.
See `our Weave-specific customizations <grafanalib/weave.py>`_ for inspiration.

Generating dashboards
=====================

If you save the above as ``frontend.dashboard.py`` (the suffix must be
``.dashboard.py``), you can then generate the JSON dashboard with:

.. code-block:: console

  $ generate-dashboard -o frontend.json frontend.dashboard.py

Installation
============

grafanalib is just a Python package, so:

.. code-block:: console

  $ pip install grafanalib

Support
=======

This library is in its very early stages. We'll probably make changes that
break backwards compatibility, although we'll try hard not to.

grafanalib works with Python 3.4 and 3.5.

Directories

Path Synopsis
tools

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL