Documentation ¶
Index ¶
- type BitCurve
- func (bitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int)
- func (bitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int)
- func (bitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool
- func (bitCurve *BitCurve) Marshal(x, y *big.Int) []byte
- func (bitCurve *BitCurve) Params() *elliptic.CurveParams
- func (bitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int)
- func (bitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int)
- func (bitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int)
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type BitCurve ¶
type BitCurve struct { P *big.Int // the order of the underlying field N *big.Int // the order of the base point B *big.Int // the constant of the BitCurve equation Gx, Gy *big.Int // (x,y) of the base point BitSize int // the size of the underlying field }
A BitCurve represents a Koblitz Curve with a=0. See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
func (*BitCurve) Marshal ¶
Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.
func (*BitCurve) Params ¶
func (bitCurve *BitCurve) Params() *elliptic.CurveParams
func (*BitCurve) ScalarBaseMult ¶
ScalarBaseMult returns k*G, where G is the base point of the group and k is an integer in big-endian form.
func (*BitCurve) ScalarMult ¶
ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
Click to show internal directories.
Click to hide internal directories.