Documentation ¶
Overview ¶
Package elliptic implements several standard elliptic curves over prime fields.
Index ¶
- type Curve
- func (curve *Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int)
- func (curve *Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int)
- func (curve *Curve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err os.Error)
- func (curve *Curve) IsOnCurve(x, y *big.Int) bool
- func (curve *Curve) Marshal(x, y *big.Int) []byte
- func (curve *Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int)
- func (curve *Curve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int)
- func (curve *Curve) Unmarshal(data []byte) (x, y *big.Int)
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
This section is empty.
Types ¶
type Curve ¶
type Curve struct { P *big.Int // the order of the underlying field N *big.Int // the order of the base point B *big.Int // the constant of the curve equation Gx, Gy *big.Int // (x,y) of the base point BitSize int // the size of the underlying field }
A Curve represents a short-form Weierstrass curve with a=-3. See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
func P224 ¶
func P224() *Curve
P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
func P256 ¶
func P256() *Curve
P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3)
func P384 ¶
func P384() *Curve
P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4)
func P521 ¶
func P521() *Curve
P256 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
func (*Curve) GenerateKey ¶
GenerateKey returns a public/private key pair. The private key is generated using the given reader, which must return random data.
func (*Curve) Marshal ¶
Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.
func (*Curve) ScalarBaseMult ¶
ScalarBaseMult returns k*G, where G is the base point of the group and k is an integer in big-endian form.
func (*Curve) ScalarMult ¶
ScalarMult returns k*(Bx,By) where k is a number in big-endian form.