Go LLM
Integrate the power of large language models (LLM) into your Go application.
This project aims to abstract away much of the plumbing (free text to structured data, contextual memory, tool wrapping, retry logic, etc.) so you can focus on the business logic of your agent.
graph LR
subgraph Input
A[Structured Input] --> B[Compiled Task]
end
subgraph LLM-Based Agent
C[Task Template] --> B[Compiled Task]
B --> D((Agent))
D --"Reasoning"--> D
D --"Action"--> E[Environment]
E --"Observation"--> D
D --"Answer"--> G[Output Validators]
G --> D
end
subgraph Output
G --"Answer"--> F[Structured Output]
end
Usage Example
package main
import (
"encoding/json"
"fmt"
"os"
"github.com/natexcvi/go-llm/agents"
"github.com/natexcvi/go-llm/engines"
"github.com/natexcvi/go-llm/memory"
"github.com/natexcvi/go-llm/tools"
)
type CodeBaseRefactorRequest struct {
Dir string
Goal string
}
func (req CodeBaseRefactorRequest) Encode() string {
return fmt.Sprintf(`{"dir": "%s", "goal": "%s"}`, req.Dir, req.Goal)
}
func (req CodeBaseRefactorRequest) Schema() string {
return `{"dir": "path to code base", "goal": "refactoring goal"}`
}
type CodeBaseRefactorResponse struct {
RefactoredFiles map[string]string `json:"refactored_files"`
}
func (resp CodeBaseRefactorResponse) Encode() string {
marshalled, err := json.Marshal(resp.RefactoredFiles)
if err != nil {
panic(err)
}
return string(marshalled)
}
func (resp CodeBaseRefactorResponse) Schema() string {
return `{"refactored_files": {"path": "description of changes"}}`
}
func main() {
task := &agents.Task[CodeBaseRefactorRequest, CodeBaseRefactorResponse]{
Description: "You will be given access to a code base, and instructions for refactoring." +
"your task is to refactor the code base to meet the given goal.",
Examples: []agents.Example[CodeBaseRefactorRequest, CodeBaseRefactorResponse]{
{
Input: CodeBaseRefactorRequest{
Dir: "/Users/nate/code/base",
Goal: "Handle errors gracefully",
},
Answer: CodeBaseRefactorResponse{
RefactoredFiles: map[string]string{
"/Users/nate/code/base/main.py": "added try/except block",
},
},
IntermediarySteps: []*engines.ChatMessage{
(&agents.ChainAgentThought{
Content: "I should scan the code base for functions that might error.",
}).Encode(engine),
(&agents.ChainAgentAction{
Tool: tools.NewBashTerminal(),
Args: json.RawMessage(`{"command": "ls /Users/nate/code/base"}`),
}).Encode(engine),
(&agents.ChainAgentObservation{
Content: "main.py",
ToolName: tools.NewBashTerminal().Name(),
}).Encode(engine),
(&agents.ChainAgentThought{
Content: "Now I should read the code file.",
}).Encode(engine),
(&agents.ChainAgentAction{
Tool: tools.NewBashTerminal(),
Args: json.RawMessage(`{"command": "cat /Users/nate/code/base/main.py"}`),
}).Encode(engine),
(&agents.ChainAgentObservation{
Content: "def main():\n\tfunc_that_might_error()",
ToolName: tools.NewBashTerminal().Name(),
}).Encode(engine),
(&agents.ChainAgentThought{
Content: "I should refactor the code to handle errors gracefully.",
}).Encode(engine),
(&agents.ChainAgentAction{
Tool: tools.NewBashTerminal(),
Args: json.RawMessage(`{"command": "echo 'def main():\n\ttry:\n\t\tfunc_that_might_error()\n\texcept Exception as e:\n\t\tprint(\"Error: %s\", e)' > /Users/nate/code/base/main.py"}`),
}).Encode(engine),
},
},
},
AnswerParser: func(msg string) (CodeBaseRefactorResponse, error) {
var res CodeBaseRefactorResponse
if err := json.Unmarshal([]byte(msg), &res); err != nil {
return CodeBaseRefactorResponse{}, err
}
return res, nil
},
}
agent := agents.NewChainAgent(engines.NewGPTEngine(os.Getenv("OPENAI_TOKEN"), "gpt-3.5-turbo-0613"), task, memory.NewBufferedMemory(0)).WithMaxSolutionAttempts(12).WithTools(tools.NewPythonREPL(), tools.NewBashTerminal())
res, err := agent.Run(CodeBaseRefactorRequest{
Dir: "/Users/nate/Git/go-llm/tools",
Goal: "Write unit tests for the bash.go file, following the example of python_repl_test.go.",
})
...
}
Note
Fun fact: the tools/bash_test.go
file was written by this very agent, and helped find a bug!
Components
Engines
Connectors to LLM engines. Currently only OpenAI's GPT chat completion API is supported.
Tools that can provide agents with the ability to perform actions interacting with the outside world.
Currently available tools are:
PythonREPL
- a tool that allows agents to execute Python code in a REPL.
IsolatedPythonREPL
- a tool that allows agents to execute Python code in a REPL, but in a Docker container.
BashTerminal
- a tool that allows agents to execute bash commands in a terminal.
GoogleSearch
- a tool that allows agents to search Google.
WebpageSummary
- an LLM-based tool that allows agents to get a summary of a webpage.
WolframAlpha
- a tool that allows agents to query WolframAlpha's short answer API.
KeyValueStore
- a tool for storing and retrieving information. The agent can use this tool to re-use long pieces of information by-reference, removing duplication and therefore reducing context size.
AskUser
- an interactivity tool that lets the agent ask a human operator for clarifications when needed.
JSONAutoFixer
- a meta tool that is enabled by default. When the arguments to any tool are provided in a form that is not valid JSON, this tool attempts to fix the payload using a separate LLM chain.
GenericAgentTool
- lets an agent run another agent, with pre-determined tools, dynamically providing it with its task and input and collecting its final answer.
Warning
The BashTerminal
and regular PythonREPL
tools let the agent run arbitrary commands on your machine, use at your own risk. It may be a good idea to use the built-in support for action confirmation callbacks (see the WithActionConfirmation
method on the ChainAgent
type).
Model-Native Function Calls
go-llm
tools support the new OpenAI function call interface transparently, for model variants that have this feature.
Memory
A memory system that allows agents to store and retrieve information.
Currently available memory systems are:
BufferMemory
- which provides each step of the agent with a fixed buffer of recent messages from the conversation history.
SummarisedMemory
- which provides each step of the agent with a summary of the conversation history, powered by an LLM.
Agents
Agents are the main component of the library. Agents can perform complex tasks that involve iterative interactions with the outside world.
Prebuilt (WIP)
A collection of ready-made agents that can be easily integrated with your application.
Evaluation (WIP)
A collection of evaluation tools for agents and engines.
Example
package main
import (
"fmt"
"os"
"github.com/natexcvi/go-llm/engines"
"github.com/natexcvi/go-llm/evaluation"
)
func goodness(_ *engines.ChatPrompt, _ *engines.ChatMessage, err error) float64 {
if err != nil {
return 0
}
return 1
}
func main() {
engine := engines.NewGPTEngine(os.Getenv("OPENAI_TOKEN"), "gpt-3.5-turbo-0613")
engineRunner := evaluation.NewLLMRunner(engine)
evaluator := evaluation.NewEvaluator(engineRunner, &evaluation.Options[*engines.ChatPrompt, *engines.ChatMessage]{
GoodnessFunction: goodness,
Repetitions: 5,
})
testPack := []*engines.ChatPrompt{
{
History: []*engines.ChatMessage{
{
Text: "Hello, how are you?",
},
{
Text: "I'm trying to understand how this works.",
},
},
},
{
History: []*engines.ChatMessage{
{
Text: "Could you please explain it to me?",
},
},
},
}
results := evaluator.Evaluate(testPack)
fmt.Println("Goodness level of the first prompt:", results[0])
fmt.Println("Goodness level of the second prompt:", results[1])
}