README
¶
Blast
Blast is a full-text search and indexing server written in Go built on top of Bleve.
It provides functions through gRPC (HTTP/2 + Protocol Buffers) or traditional RESTful API (HTTP/1.1 + JSON).
Blast implements a Raft consensus algorithm by hashicorp/raft. It achieves consensus across all the nodes, ensuring that every change made to the system is made to a quorum of nodes, or none at all.
Blast makes it easy for programmers to develop search applications with advanced features.
Features
- Full-text search/indexing
- Faceted search
- Spatial/Geospatial search
- Search result highlighting
- Distributed search/indexing
- Index replication
- Bringing up cluster
- Cluster Federation
- An easy-to-use HTTP API
- CLI is available
- Docker container image is available
Installing dependencies
Blast requires some C/C++ libraries if you need to enable cld2, icu, libstemmer or leveldb. The following sections are instructions for satisfying dependencies on particular platforms.
Ubuntu 18.10
$ sudo apt-get install -y \
libicu-dev \
libstemmer-dev \
libleveldb-dev \
gcc-4.8 \
g++-4.8 \
build-essential
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 80
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 90
$ sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 90
$ export GOPATH=${HOME}/go
$ mkdir -p ${GOPATH}/src/github.com/blevesearch
$ cd ${GOPATH}/src/github.com/blevesearch
$ git clone https://github.com/blevesearch/cld2.git
$ cd ${GOPATH}/src/github.com/blevesearch/cld2
$ git clone https://github.com/CLD2Owners/cld2.git
$ cd cld2/internal
$ ./compile_libs.sh
$ sudo cp *.so /usr/local/lib
macOS High Sierra Version 10.13.6
$ brew install \
icu4c \
leveldb
$ export GOPATH=${HOME}/go
$ go get -u -v github.com/blevesearch/cld2
$ cd ${GOPATH}/src/github.com/blevesearch/cld2
$ git clone https://github.com/CLD2Owners/cld2.git
$ cd cld2/internal
$ perl -p -i -e 's/soname=/install_name,/' compile_libs.sh
$ ./compile_libs.sh
$ sudo cp *.so /usr/local/lib
Building Blast
When you satisfied dependencies, let's build Blast for Linux as following:
$ mkdir -p ${GOPATH}/src/github.com/mosuka
$ cd ${GOPATH}/src/github.com/mosuka
$ git clone https://github.com/mosuka/blast.git
$ cd blast
$ make build
If you want to build for other platform, set GOOS
, GOARCH
environment variables. For example, build for macOS like following:
$ make \
GOOS=darwin \
build
Blast supports some Bleve Extensions (blevex). If you want to build with them, please set CGO_LDFLAGS
, CGO_CFLAGS
, CGO_ENABLED
and BUILD_TAGS
. For example, build LevelDB to be available for index storage as follows:
$ make \
GOOS=linux \
BUILD_TAGS=leveldb \
CGO_ENABLED=1 \
build
You can enable all the Bleve extensions supported by Blast as follows:
Linux
$ make \
GOOS=linux \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
build
macOS
$ make \
GOOS=darwin \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
CGO_LDFLAGS="-L/usr/local/opt/icu4c/lib" \
CGO_CFLAGS="-I/usr/local/opt/icu4c/include" \
build
Build flags
Please refer to the following table for details of Bleve Extensions:
BUILD_TAGS | CGO_ENABLED | Description |
---|---|---|
cld2 | 1 | Enable Compact Language Detector |
kagome | 0 | Enable Japanese Language Analyser |
icu | 1 | Enable ICU Tokenizer, Thai Language Analyser |
libstemmer | 1 | Enable Language Stemmer (Danish, German, English, Spanish, Finnish, French, Hungarian, Italian, Dutch, Norwegian, Portuguese, Romanian, Russian, Swedish, Turkish) |
cznicb | 0 | Enable cznicb KV store |
leveldb | 1 | Enable LevelDB |
badger | 0 | Enable Badger (This feature is considered experimental) |
If you want to enable the feature whose CGO_ENABLE
is 1
, please install it referring to the Installing dependencies section above.
Binaries
You can see the binary file when build successful like so:
$ ls ./bin
blast blastd
Testing Blast
If you want to test your changes, run command like following:
$ make \
test
You can test with all the Bleve extensions supported by Blast as follows:
Linux
$ make \
GOOS=linux \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
test
macOS
$ make \
GOOS=darwin \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
CGO_LDFLAGS="-L/usr/local/opt/icu4c/lib" \
CGO_CFLAGS="-I/usr/local/opt/icu4c/include" \
test
Packaging Blast
Linux
$ make \
GOOS=linux \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
dist
macOS
$ make \
GOOS=darwin \
BUILD_TAGS="kagome icu libstemmer cld2 cznicb leveldb badger" \
CGO_ENABLED=1 \
CGO_LDFLAGS="-L/usr/local/opt/icu4c/lib" \
CGO_CFLAGS="-I/usr/local/opt/icu4c/include" \
dist
Starting Blast in standalone mode
Running a Blast in standalone mode is easy. Start a indexer like so:
$ ./bin/blastd \
indexer \
--node-id=indexer1 \
--bind-addr=:5000 \
--grpc-addr=:5001 \
--http-addr=:5002 \
--data-dir=/tmp/blast/indexer1 \
--index-mapping-file=./example/wiki_index_mapping.json \
--index-type=upside_down \
--index-storage-type=boltdb
Please refer to following document for details of index mapping:
- http://blevesearch.com/docs/Terminology/
- http://blevesearch.com/docs/Text-Analysis/
- http://blevesearch.com/docs/Index-Mapping/
- https://github.com/blevesearch/bleve/blob/master/mapping/index.go#L43
You can now put, get, search and delete the documents via CLI.
Indexing a document via CLI
For document indexing, execute the following command:
$ cat ./example/wiki_doc_enwiki_1.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 enwiki_1
You can see the result in JSON format. The result of the above command is:
1
Getting a document via CLI
Getting a document is as following:
$ ./bin/blast get document --grpc-addr=:5001 enwiki_1
You can see the result in JSON format. The result of the above command is:
{
"_type": "enwiki",
"text_en": "A search engine is an information retrieval system designed to help find information stored on a computer system. The search results are usually presented in a list and are commonly called hits. Search engines help to minimize the time required to find information and the amount of information which must be consulted, akin to other techniques for managing information overload. The most public, visible form of a search engine is a Web search engine which searches for information on the World Wide Web.",
"timestamp": "2018-07-04T05:41:00Z",
"title_en": "Search engine (computing)"
}
Searching documents via CLI
Searching documents is as like following:
$ cat ./example/wiki_search_request.json | xargs -0 ./bin/blast search --grpc-addr=:5001
You can see the result in JSON format. The result of the above command is:
{
"status": {
"total": 1,
"failed": 0,
"successful": 1
},
"request": {
"query": {
"query": "+_all:search"
},
"size": 10,
"from": 0,
"highlight": {
"style": "html",
"fields": [
"title",
"text"
]
},
"fields": [
"*"
],
"facets": {
"Contributor count": {
"size": 10,
"field": "contributor"
},
"Timestamp range": {
"size": 10,
"field": "timestamp",
"date_ranges": [
{
"end": "2010-12-31T23:59:59Z",
"name": "2001 - 2010",
"start": "2001-01-01T00:00:00Z"
},
{
"end": "2020-12-31T23:59:59Z",
"name": "2011 - 2020",
"start": "2011-01-01T00:00:00Z"
}
]
}
},
"explain": false,
"sort": [
"-_score"
],
"includeLocations": false
},
"hits": [
{
"index": "/tmp/blast/indexer1/index",
"id": "enwiki_1",
"score": 0.09703538256409851,
"locations": {
"text_en": {
"search": [
{
"pos": 2,
"start": 2,
"end": 8,
"array_positions": null
},
{
"pos": 20,
"start": 118,
"end": 124,
"array_positions": null
},
{
"pos": 33,
"start": 195,
"end": 201,
"array_positions": null
},
{
"pos": 68,
"start": 415,
"end": 421,
"array_positions": null
},
{
"pos": 73,
"start": 438,
"end": 444,
"array_positions": null
},
{
"pos": 76,
"start": 458,
"end": 466,
"array_positions": null
}
]
},
"title_en": {
"search": [
{
"pos": 1,
"start": 0,
"end": 6,
"array_positions": null
}
]
}
},
"sort": [
"_score"
],
"fields": {
"_type": "enwiki",
"text_en": "A search engine is an information retrieval system designed to help find information stored on a computer system. The search results are usually presented in a list and are commonly called hits. Search engines help to minimize the time required to find information and the amount of information which must be consulted, akin to other techniques for managing information overload. The most public, visible form of a search engine is a Web search engine which searches for information on the World Wide Web.",
"timestamp": "2018-07-04T05:41:00Z",
"title_en": "Search engine (computing)"
}
}
],
"total_hits": 1,
"max_score": 0.09703538256409851,
"took": 201951,
"facets": {
"Contributor count": {
"field": "contributor",
"total": 0,
"missing": 1,
"other": 0
},
"Timestamp range": {
"field": "timestamp",
"total": 1,
"missing": 0,
"other": 0,
"date_ranges": [
{
"name": "2011 - 2020",
"start": "2011-01-01T00:00:00Z",
"end": "2020-12-31T23:59:59Z",
"count": 1
}
]
}
}
}
Please refer to following document for details of search request and result:
- http://blevesearch.com/docs/Query/
- http://blevesearch.com/docs/Query-String-Query/
- http://blevesearch.com/docs/Sorting/
- https://github.com/blevesearch/bleve/blob/master/search.go#L267
- https://github.com/blevesearch/bleve/blob/master/search.go#L443
Deleting a document via CLI
Deleting a document is as following:
$ ./bin/blast delete document --grpc-addr=:5001 enwiki_1
You can see the result in JSON format. The result of the above command is:
1
Indexing documents in bulk via CLI
Indexing documents in bulk, run the following command:
$ cat ./example/wiki_bulk_index.json | xargs -0 ./bin/blast set document --grpc-addr=:5001
You can see the result in JSON format. The result of the above command is:
4
Deleting documents in bulk via CLI
Deleting documents in bulk, run the following command:
$ cat ./example/wiki_bulk_delete.json | xargs -0 ./bin/blast delete document --grpc-addr=:5001
You can see the result in JSON format. The result of the above command is:
4
Using HTTP REST API
Also you can do above commands via HTTP REST API that listened port 5002.
Indexing a document via HTTP REST API
Indexing a document via HTTP is as following:
$ curl -X PUT 'http://127.0.0.1:5002/documents/enwiki_1' -d @./example/wiki_doc_enwiki_1.json
Getting a document via HTTP REST API
Getting a document via HTTP is as following:
$ curl -X GET 'http://127.0.0.1:5002/documents/enwiki_1'
Searching documents via HTTP REST API
Searching documents via HTTP is as following:
$ curl -X POST 'http://127.0.0.1:5002/search' -d @./example/wiki_search_request.json
Deleting a document via HTTP REST API
Deleting a document via HTTP is as following:
$ curl -X DELETE 'http://127.0.0.1:5002/documents/enwiki_1'
Indexing documents in bulk via HTTP REST API
Indexing documents in bulk via HTTP is as following:
$ curl -X PUT 'http://127.0.0.1:5002/documents' -d @./example/wiki_bulk_index.json
Deleting documents in bulk via HTTP REST API
Deleting documents in bulk via HTTP is as following:
$ curl -X DELETE 'http://127.0.0.1:5002/documents' -d @./example/wiki_bulk_delete.json
Starting Blast in cluster mode
Blast can easily bring up a cluster. Running a Blast in standalone is not fault tolerant. If you need to improve fault tolerance, start two more indexers as follows:
First of all, start a indexer in standalone.
$ ./bin/blastd \
indexer \
--node-id=indexer1 \
--bind-addr=:5000 \
--grpc-addr=:5001 \
--http-addr=:5002 \
--data-dir=/tmp/blast/indexer1 \
--index-mapping-file=./example/wiki_index_mapping.json \
--index-type=upside_down \
--index-storage-type=boltdb
Then, start two more indexers.
$ ./bin/blastd \
indexer \
--peer-addr=:5001 \
--node-id=indexer2 \
--bind-addr=:5010 \
--grpc-addr=:5011 \
--http-addr=:5012 \
--data-dir=/tmp/blast/indexer2
$ ./bin/blastd \
indexer \
--peer-addr=:5001 \
--node-id=indexer3 \
--bind-addr=:5020 \
--grpc-addr=:5021 \
--http-addr=:5022 \
--data-dir=/tmp/blast/indexer3
Above example shows each Blast node running on the same host, so each node must listen on different ports. This would not be necessary if each node ran on a different host.
This instructs each new node to join an existing node, specifying --peer-addr=:5001
. Each node recognizes the joining clusters when started.
So you have a 3-node cluster. That way you can tolerate the failure of 1 node. You can check the peers in the cluster with the following command:
$ ./bin/blast get cluster --grpc-addr=:5001
You can see the result in JSON format. The result of the above command is:
{
"indexer1": {
"metadata": {
"bind_addr": ":5050",
"data_dir": "/tmp/blast/indexer1",
"grpc_addr": ":5051",
"http_addr": ":5052"
},
"state": "Leader"
},
"indexer2": {
"metadata": {
"bind_addr": ":5060",
"data_dir": "/tmp/blast/indexer2",
"grpc_addr": ":5061",
"http_addr": ":5062"
},
"state": "Follower"
},
"indexer3": {
"metadata": {
"bind_addr": ":5070",
"data_dir": "/tmp/blast/indexer3",
"grpc_addr": ":5071",
"http_addr": ":5072"
},
"state": "Follower"
}
}
Recommend 3 or more odd number of nodes in the cluster. In failure scenarios, data loss is inevitable, so avoid deploying single nodes.
The following command indexes documents to any node in the cluster:
$ cat ./example/wiki_doc_enwiki_1.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 enwiki_1
So, you can get the document from the node specified by the above command as follows:
$ ./bin/blast get document --grpc-addr=:5001 enwiki_1
You can see the result in JSON format. The result of the above command is:
{
"_type": "enwiki",
"contributor": "unknown",
"text_en": "A search engine is an information retrieval system designed to help find information stored on a computer system. The search results are usually presented in a list and are commonly called hits. Search engines help to minimize the time required to find information and the amount of information which must be consulted, akin to other techniques for managing information overload. The most public, visible form of a search engine is a Web search engine which searches for information on the World Wide Web.",
"timestamp": "2018-07-04T05:41:00Z",
"title_en": "Search engine (computing)"
}
You can also get the same document from other nodes in the cluster as follows:
$ ./bin/blast get document --grpc-addr=:5011 enwiki_1
$ ./bin/blast get document --grpc-addr=:5021 enwiki_1
You can see the result in JSON format. The result of the above command is:
{
"_type": "enwiki",
"contributor": "unknown",
"text_en": "A search engine is an information retrieval system designed to help find information stored on a computer system. The search results are usually presented in a list and are commonly called hits. Search engines help to minimize the time required to find information and the amount of information which must be consulted, akin to other techniques for managing information overload. The most public, visible form of a search engine is a Web search engine which searches for information on the World Wide Web.",
"timestamp": "2018-07-04T05:41:00Z",
"title_en": "Search engine (computing)"
}
Starting Blast in federated mode (experimental)
Running a Blast in cluster mode allows you to replicate the index among indexers in a cluster to improve fault tolerance.
However, as the index grows, performance degradation can become an issue. Therefore, instead of providing a large single physical index, it is better to distribute indices across multiple indexers.
Blast provides a federated mode to enable distributed search and indexing.
Blast provides the following type of node for federation:
- manager: Manager manage common index mappings to index across multiple indexers. It also manages information and status of clusters that participate in the federation.
- dispatcher: Dispatcher is responsible for distributed search or indexing of each indexer. In the case of a index request, send document to each cluster based on the document ID. And in the case of a search request, the same query is sent to each cluster, then the search results are merged and returned to the client.
Bring up the manager cluster.
Manager can also bring up a cluster like an indexer. Specify a common index mapping for federation at startup.
$ ./bin/blastd \
manager \
--node-id=manager1 \
--bind-addr=:15000 \
--grpc-addr=:15001 \
--http-addr=:15002 \
--data-dir=/tmp/blast/manager1 \
--index-mapping-file=./example/wiki_index_mapping.json \
--index-type=upside_down \
--index-storage-type=boltdb
$ ./bin/blastd \
manager \
--peer-addr=:15001 \
--node-id=manager2 \
--bind-addr=:15010 \
--grpc-addr=:15011 \
--http-addr=:15012 \
--data-dir=/tmp/blast/manager2
$ ./bin/blastd \
manager \
--peer-addr=:15001 \
--node-id=manager3 \
--bind-addr=:15020 \
--grpc-addr=:15021 \
--http-addr=:15022 \
--data-dir=/tmp/blast/manager3
Bring up the indexer cluster.
Federated mode differs from cluster mode that it specifies the manager in start up to bring up indexer cluster.
The following example starts two 3-node clusters.
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster1 \
--node-id=indexer1 \
--bind-addr=:5000 \
--grpc-addr=:5001 \
--http-addr=:5002 \
--data-dir=/tmp/blast/indexer1
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster1 \
--node-id=indexer2 \
--bind-addr=:5010 \
--grpc-addr=:5011 \
--http-addr=:5012 \
--data-dir=/tmp/blast/indexer2
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster1 \
--node-id=indexer3 \
--bind-addr=:5020 \
--grpc-addr=:5021 \
--http-addr=:5022 \
--data-dir=/tmp/blast/indexer3
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster2 \
--node-id=indexer4 \
--bind-addr=:5030 \
--grpc-addr=:5031 \
--http-addr=:5032 \
--data-dir=/tmp/blast/indexer4
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster2 \
--node-id=indexer5 \
--bind-addr=:5040 \
--grpc-addr=:5041 \
--http-addr=:5042 \
--data-dir=/tmp/blast/indexer5
$ ./bin/blastd \
indexer \
--manager-addr=:15001 \
--cluster-id=cluster2 \
--node-id=indexer6 \
--bind-addr=:5050 \
--grpc-addr=:5051 \
--http-addr=:5052 \
--data-dir=/tmp/blast/indexer6
Start up the dispatcher.
Finally, start the dispatcher with a manager that manages the target federation so that it can perform distributed search and indexing.
$ ./bin/blastd \
dispatcher \
--manager-addr=:15001 \
--grpc-addr=:25001 \
--http-addr=:25002
$ cat ./example/wiki_bulk_index.json | xargs -0 ./bin/blast set document --grpc-addr=:25001
$ cat ./example/wiki_search_request.json | xargs -0 ./bin/blast search --grpc-addr=:25001
$ cat ./example/wiki_bulk_delete.json | xargs -0 ./bin/blast delete document --grpc-addr=:25001
Blast on Docker
Building Docker container image on localhost
You can build the Docker container image like so:
$ make docker-build
Pulling Docker container image from docker.io
You can also use the Docker container image already registered in docker.io like so:
$ docker pull mosuka/blast:latest
See https://hub.docker.com/r/mosuka/blast/tags/
Pulling Docker container image from docker.io
You can also use the Docker container image already registered in docker.io like so:
$ docker pull mosuka/blast:latest
Running Indexer on Docker
Running a Blast data node on Docker. Start Blast data node like so:
$ docker run --rm --name blast-indexer1 \
-p 5000:5000 \
-p 5001:5001 \
-p 5002:5002 \
-v $(pwd)/example:/opt/blast/example \
mosuka/blast:latest blastd indexer \
--node-id=blast-indexer1 \
--bind-addr=:5000 \
--grpc-addr=:5001 \
--http-addr=:5002 \
--data-dir=/tmp/blast/indexer1 \
--index-mapping-file=/opt/blast/example/wiki_index_mapping.json \
--index-storage-type=leveldb
You can execute the command in docker container as follows:
$ docker exec -it blast-indexer1 blast-indexer node --grpc-addr=:7070
Wikipedia example
This section explain how to index Wikipedia dump to Blast.
Install wikiextractor
$ cd ${HOME}
$ git clone git@github.com:attardi/wikiextractor.git
Download wikipedia dump
$ curl -o ~/tmp/enwiki-20190101-pages-articles.xml.bz2 https://dumps.wikimedia.org/enwiki/20190101/enwiki-20190101-pages-articles.xml.bz2
Parsing wikipedia dump
$ cd wikiextractor
$ ./WikiExtractor.py -o ~/tmp/enwiki --json ~/tmp/enwiki-20190101-pages-articles.xml.bz2
Indexing wikipedia dump
$ for FILE in $(find ~/tmp/enwiki -type f -name '*' | sort)
do
echo "Indexing ${FILE}"
TIMESTAMP=$(date -u "+%Y-%m-%dT%H:%M:%SZ")
DOCS=$(cat ${FILE} | jq -r '. + {fields: {url: .url, title_en: .title, text_en: .text, timestamp: "'${TIMESTAMP}'", _type: "enwiki"}} | del(.url) | del(.title) | del(.text) | del(.fields.id)' | jq -s)
curl -s -X PUT -H 'Content-Type: application/json' "http://127.0.0.1:8080/documents" -d "${DOCS}"
done
Spatial/Geospatial search example
This section explain how to index Spatial/Geospatial data to Blast.
Starting Indexer with Spatial/Geospatial index mapping
$ ./bin/blastd \
indexer \
--node-id=indexer1 \
--bind-addr=:5000 \
--grpc-addr=:5001 \
--http-addr=:5002 \
--data-dir=/tmp/blast/indexer1 \
--index-mapping-file=./example/geo_index_mapping.json \
--index-type=upside_down \
--index-storage-type=boltdb
Indexing example Spatial/Geospatial data
$ cat ./example/geo_doc1.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc1
$ cat ./example/geo_doc2.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc2
$ cat ./example/geo_doc3.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc3
$ cat ./example/geo_doc4.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc4
$ cat ./example/geo_doc5.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc5
$ cat ./example/geo_doc6.json | xargs -0 ./bin/blast set document --grpc-addr=:5001 geo_doc6
Searching example Spatial/Geospatial data
$ cat ./example/geo_search_request.json | xargs -0 ./bin/blast search --grpc-addr=:5001