cephes

package
v0.8.1-0...-a25970e Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Mar 17, 2021 License: BSD-3-Clause Imports: 2 Imported by: 0

Documentation

Overview

Package cephes implements functions originally in the Netlib code by Stephen Mosher.

Index

Constants

This section is empty.

Variables

View Source
var P0 = [5]float64{
	-5.99633501014107895267e1,
	9.80010754185999661536e1,
	-5.66762857469070293439e1,
	1.39312609387279679503e1,
	-1.23916583867381258016e0,
}

approximation for 0 <= |y - 0.5| <= 3/8

View Source
var P1 = [9]float64{
	4.05544892305962419923e0,
	3.15251094599893866154e1,
	5.71628192246421288162e1,
	4.40805073893200834700e1,
	1.46849561928858024014e1,
	2.18663306850790267539e0,
	-1.40256079171354495875e-1,
	-3.50424626827848203418e-2,
	-8.57456785154685413611e-4,
}

Approximation for interval z = math.Sqrt(-2 log y ) between 2 and 8 i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.

View Source
var P2 = [9]float64{
	3.23774891776946035970e0,
	6.91522889068984211695e0,
	3.93881025292474443415e0,
	1.33303460815807542389e0,
	2.01485389549179081538e-1,
	1.23716634817820021358e-2,
	3.01581553508235416007e-4,
	2.65806974686737550832e-6,
	6.23974539184983293730e-9,
}

Approximation for interval z = math.Sqrt(-2 log y ) between 8 and 64 i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.

View Source
var Q0 = [8]float64{

	1.95448858338141759834e0,
	4.67627912898881538453e0,
	8.63602421390890590575e1,
	-2.25462687854119370527e2,
	2.00260212380060660359e2,
	-8.20372256168333339912e1,
	1.59056225126211695515e1,
	-1.18331621121330003142e0,
}
View Source
var Q1 = [8]float64{

	1.57799883256466749731e1,
	4.53907635128879210584e1,
	4.13172038254672030440e1,
	1.50425385692907503408e1,
	2.50464946208309415979e0,
	-1.42182922854787788574e-1,
	-3.80806407691578277194e-2,
	-9.33259480895457427372e-4,
}
View Source
var Q2 = [8]float64{

	6.02427039364742014255e0,
	3.67983563856160859403e0,
	1.37702099489081330271e0,
	2.16236993594496635890e-1,
	1.34204006088543189037e-2,
	3.28014464682127739104e-4,
	2.89247864745380683936e-6,
	6.79019408009981274425e-9,
}

Functions

func Igam

func Igam(a, x float64) float64

Igam computes the incomplete Gamma integral.

Igam(a,x) = (1/ Γ(a)) \int_0^x e^{-t} t^{a-1} dt

The input argument a must be positive and x must be non-negative or Igam will panic.

func IgamC

func IgamC(a, x float64) float64

IgamC computes the complemented incomplete Gamma integral.

IgamC(a,x) = 1 - Igam(a,x)
           = (1/ Γ(a)) \int_0^\infty e^{-t} t^{a-1} dt

The input argument a must be positive and x must be non-negative or IgamC will panic.

func IgamI

func IgamI(a, p float64) float64

IgamI computes the inverse of the incomplete Gamma function. That is, it returns the x such that:

IgamC(a, x) = p

The input argument a must be positive and p must be between 0 and 1 inclusive or IgamI will panic. IgamI should return a positive number, but can return 0 even with non-zero y due to underflow.

func Incbet

func Incbet(aa, bb, xx float64) float64

Incbet computes the regularized incomplete beta function.

func Incbi

func Incbi(aa, bb, yy0 float64) float64

Incbi computes the inverse of the regularized incomplete beta integral.

func Ndtri

func Ndtri(y0 float64) float64

Ndtri returns the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to y.

func Zeta

func Zeta(x, q float64) float64

Zeta computes the Riemann zeta function of two arguments.

Zeta(x,q) = \sum_{k=0}^{\infty} (k+q)^{-x}

Note that Zeta returns +Inf if x is 1 and will panic if x is less than 1, q is either zero or a negative integer, or q is negative and x is not an integer.

Note that:

zeta(x,1) = zetac(x) + 1

Types

This section is empty.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL