Documentation ¶
Overview ¶
Package f32 provides float32 vector primitives.
Index ¶
- func AxpyInc(alpha float32, x, y []float32, n, incX, incY, ix, iy uintptr)
- func AxpyIncTo(dst []float32, incDst, idst uintptr, alpha float32, x, y []float32, ...)
- func AxpyUnitary(alpha float32, x, y []float32)
- func AxpyUnitaryTo(dst []float32, alpha float32, x, y []float32)
- func DdotInc(x, y []float32, n, incX, incY, ix, iy uintptr) (sum float64)
- func DdotUnitary(x, y []float32) (sum float64)
- func DotInc(x, y []float32, n, incX, incY, ix, iy uintptr) (sum float32)
- func DotUnitary(x, y []float32) (sum float32)
- func GemvN(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, ...)
- func GemvT(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, ...)
- func Ger(m, n uintptr, alpha float32, x []float32, incX uintptr, y []float32, ...)
- func L2DistanceUnitary(x, y []float32) (sum float32)
- func L2NormInc(x []float32, n, incX uintptr) (sum float32)
- func L2NormUnitary(x []float32) (sum float32)
- func ScalInc(alpha float32, x []float32, n, incX uintptr)
- func ScalIncTo(dst []float32, incDst uintptr, alpha float32, x []float32, n, incX uintptr)
- func ScalUnitary(alpha float32, x []float32)
- func ScalUnitaryTo(dst []float32, alpha float32, x []float32)
- func Sum(x []float32) float32
Constants ¶
This section is empty.
Variables ¶
This section is empty.
Functions ¶
func AxpyInc ¶
AxpyInc is
for i := 0; i < int(n); i++ { y[iy] += alpha * x[ix] ix += incX iy += incY }
func AxpyIncTo ¶
func AxpyIncTo(dst []float32, incDst, idst uintptr, alpha float32, x, y []float32, n, incX, incY, ix, iy uintptr)
AxpyIncTo is
for i := 0; i < int(n); i++ { dst[idst] = alpha*x[ix] + y[iy] ix += incX iy += incY idst += incDst }
func DdotInc ¶
DdotInc is
for i := 0; i < int(n); i++ { sum += float64(y[iy]) * float64(x[ix]) ix += incX iy += incY } return
func DotInc ¶
DotInc is
for i := 0; i < int(n); i++ { sum += y[iy] * x[ix] ix += incX iy += incY } return sum
func GemvN ¶
func GemvN(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr)
GemvN computes
y = alpha * A * x + beta * y
where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvT ¶
func GemvT(m, n uintptr, alpha float32, a []float32, lda uintptr, x []float32, incX uintptr, beta float32, y []float32, incY uintptr)
GemvT computes
y = alpha * Aᵀ * x + beta * y
where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Ger ¶
func Ger(m, n uintptr, alpha float32, x []float32, incX uintptr, y []float32, incY uintptr, a []float32, lda uintptr)
Ger performs the rank-one operation
A += alpha * x * yᵀ
where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func L2DistanceUnitary ¶
L2DistanceUnitary is the L2 norm of x-y.
func L2NormUnitary ¶
L2NormUnitary is the level 2 norm of x.
func ScalIncTo ¶
ScalIncTo is
var idst, ix uintptr for i := 0; i < int(n); i++ { dst[idst] = alpha * x[ix] ix += incX idst += incDst }
Types ¶
This section is empty.
Click to show internal directories.
Click to hide internal directories.